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Abstract. In this study we combine the results of two independent analyses to position Spanish regions 

according to both the characteristics of the time series of international tourist arrivals and the accuracy 

of predictions of arrivals at the regional level. We apply a seasonal-trend decomposition procedure 

based on non-parametric regression to isolate the different components of the series and calculate the 

main time series features. Predictions are generated with several machine learning models in a recursive 

multi-step-ahead forecasting experiment. Finally, we summarize all the information from the two 

previous experiments using categorical principal component analysis. By overlapping the distribution of 

the regions and the component loadings of each variable along both dimensions, we observe that 

entropy and dispersion show an inverse relation with forecast accuracy, but the interactions between the 

rest of the features and accuracy are heavily dependent on the forecast horizon. On this evidence, we 

conclude that in order to increase forecast accuracy of tourist arrivals at the regional level, model 

selection should be region-specific and based on the forecast horizon. 
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Introduction 
 

The increasing weight of the tourism industry in the gross domestic product (GDP) of 

most countries explains the growing interest in the sector from economic circles. Bilen, 

Yilanci, and Eryüzlü (2015) and Sharif, Saha, and Loganathan (2017) find evidence of the 

relevance of tourism in economic growth. In this context, machine learning (ML) methods 

are being increasingly applied to anticipate the number of arrivals at the destination level. 

The most commonly used ML techniques for prediction are neural network (NN) and 

support vector regression (SVR) models, which can be regarded as an extension of the 

support vector machine (SVM) mechanism. In recent years, several authors find evidence 

in favour of SVRs and NNs when compared to more traditional time series models (Akin, 

2015; Chen & Wang, 2007; Claveria & Torra, 2014; Hong, Dong, Chen & Wei, 2011). 

The search for more accurate forecasts of tourist arrivals has led to an extensive body 

of research, but in most of these studies time series features are overlooked (Kim & 

Schwartz, 2013). The main objective of this work is to fill this gap. With this aim, we 

combine the output of two independent analysis. First, we compute the time series features 

of international tourist arrivals to the different regions of Spain. In order to do so, we isolate 

the different components of the series by means of a seasonal-trend decomposition 

procedure based on non-parametric regression. Second, we compute the out-of-sample 

forecast accuracy of the predictions of tourist arrivals to every region of Spain in a multi-

step-ahead forecasting experiment. We use several ML methods: SVR and NN models, and 

a Gaussian process regression (GPR) model. GPR is a statistical learning technique 

originally devised for spatial interpolation, which has recently been used for time series 

forecasting (Ben Taieb, Sorjamaa, & Bontempi, 2010). By means of dimensionaltiy 

reduction techniques we synthesize the results of the two previous experiments in two 

dimensions, along which we project the distribution of Spanish regions. 

Spain is one of the world’s top tourist destinations after France and the United States. 

According to the Spanish Statistical Office (https://www.ine.es/), the country received 82 

million interantional tourist arrivals in 2017, which represented an 8.9% increase in relation 

to the previous year. The total expenditure incurred by international tourists increased 

12.4% compared to 2016. The average expenditure per tourist stood at 1,061 euros, with 

an annual increase of more than 3%. Tourism accounts for almost 12% of GDP and 

provides employment for 13% of the working population. The main source markets are the 

United Kingdom, France, Germany and Italy. 

https://www.ine.es/
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Spain has seventeen regions. Most tourist arrivals are concentrated in the 

Mediterranean coast and the islands. Catalonia, Andalusia, Madrid, and the Balearic and 

the Canary Islands are the regions that receive the higher number of tourists, which account 

for 85% of total international tourist demand to Spain. The fact that regional markets 

present marked differences and have evolved in very diverse forms, has led us to conduct 

the analysis at a regional level. 

 

Methodology – ML models 
 

In this study we use different ML techniques: GPR, linear and polynomial SVR, and 

MLP and RBF NN architectures. We denote a time series of length N as  Nxxxx ,,,, 210 

. We refer to the training set as       NN

TRN yxyxyxD ,,,,,, 2211  , which consists of a 

set of tuples  tt yx , , where ty  is the target value and tx  the observation vector at time t, 

constructed from a segment of the time series consisting of the past p samples 

 Tptpttttx  xxxx 11  . Similarly, we refer to the test database as 

      tsttsttsttsttsttstTST

NN
yxyxyxD ,,,,,,

2211
 . The set of tuples is assumed to be drawn from 

the following process: 

   tt xfy  with  2,0~  N  (1) 

GPR is as a method of interpolation based on the assumption that the inputs have a joint 

multivariate Gaussian distribution characterized by an analytical model of the structure of 

the covariance matrix (Rasmussen & Williams, 2006). The model assumes a kernel 

 ji xxk ,  that gives a similarity measure between two given vectors ji xx   , . The covariance 

matrix is denoted as  XXK , . We also define a vector of similarity between the test vector 

tst

tx  and the rest of elements of TRND  as       N

tst

t

tst

t

tst

t xxkxxkXxK ,,, 1  . 

The joint distribution of the variables is the conditional Gaussian distribution, 

parametrized by  XxK tst

t ,  and  XXK , . Thus, as the forecast value we use the mean of 

the ex-post distribution: 

       yIXXKXxKxfy tst

t

tst

t

tst

t

12,,


   (2) 

If we define a vector },,,{ 10 N   as    yIXXK
12,


  , expression (2) can 

be rewritten as: 
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   



N

j

j

tst

tj

tst

t

tst

t xxkxfy
1

0 ,   (3) 

The functional form of the covariance matrix that we use in this experiment is a radial 

basis kernel with a linear trend to account for the trend component present in most of the 

time series over the training period. Alternative sets of kernels are discussed in MacKay 

(2003). See Claveria, Monte, and Torra (2016) and Wu, Law, and Xu (2012) for a detailed 

description of the model used in this study.  

The SVR mechanism can be regarded as an extension of SVMs to construct data-driven 

and nonlinear regressions (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997). With a 

SVR we can define an approximation of the regression function within a tube generated by 

means of a set of support vectors iv  that belong to TRND . This is done by introducing 

restrictions on the structure or curvature of the set of functions over which the estimation 

is done (Vapnik, 1998; Schölkopf & Smola, 2002). The model consists of a linear 

combination of the outputs of a kernel  ti xvK , : 

   



q

j

tijtt xvKxfy
1

0 ,   (4) 

The weights },{ 0 j  combine the outputs of the kernel function and are estimated in 

TRND . The kernel gives a measure of similarity between points in the feature space. In this 

experiment we use both a linear and a polynomial kernel for the estimation of the 

regression. See Chen and Wang (2007) and Hong, Dong, Chen, and Wei (2011) for a 

detailed description of the model. 

NNs are used to identify related temporal patterns. In this study we use two NN models: 

MLP and RBF. The MLP architecture is a feed-forward NN based on supervised learning. 

The topology consists of a hidden layer with q units, followed by a linear combination of 

the outputs of the hidden layer plus a bias term: 

 

(.)

0

1
1

0

1

1
(.)

















 

e
g

wxwgxfy j

p

i

t

T

tj

q

j
tt 

  (5) 

Where g  is the non-linear function of the units in the hidden layer. The number of 

neurons is estimated by cross-validation. The weights j  correspond to the connections of 

the hidden units j  to the output units. The parameters are denoted as 

 Tpjjj

T

t wwww 21 , and are estimated in TRND  using the Levenberg-Marquardt 
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algorithm. The training is done by iteratively estimating the value of the parameters by 

local improvements of the cost function. 

RBF NNs are hybrid networks that combine both supervised and non-supervised 

learning. The hidden layer is formed by a set of radial functions centred each at a centroid. 

The model consists on a linear combination of the outputs of q Gaussians plus an offset: 

   

   






















2

1

2

1
0

2exp j

q

j

jttj

tjj

q

j
tt

xxg

xgxfy





  (6) 

Where j  is the centroid vector for unit j . For each centroid, the variance 
2

j  indicates 

the width over the input space of the Gaussian function. The number of centroids and the 

spread of each centroid are determined by cross-validation in TRND . See Claveria, Monte, 

and Torra (2015; 2017) for a detailed description of the NN models applied in this study. 

 

Results 
 

In this section we first compute the time series features of international tourist arrivals 

to each region of Spain. Data is obtained from the Spanish Statistical Office, and include 

the monthly number of arrivals at a regional level over the time period 1999:01 to 2014:01. 

We apply the “Seasonal and Trend Decomposition using Loess” (STL) procedure proposed 

by Cleveland, Cleveland, McRae, and Terpenning (1990) to isolate the seasonal and trend 

components of the time series. STL presents several advantages over the classical 

decomposition method and X-12-ARIMA (Bergmeir, Hyndman, & Benítez, 2016). 

Given that 
tttt RSTY  , where 

tT  denotes the trend component, tS  the seasonal 

component and 
tR  the residual, we can assess the strength of each component by 

computing two measures introduced by Wang, Smith-Miles, and Hyndman (2009): 

 
 tt

t

SYV

RV


1 trendofstrength    (7) 

 
 tt

t

TYV

RV


1yseasonalit ofstrength    (8) 

Additionally, for each time series we compute the skewness, the kurtosis, the 

coefficient of variation, the first autocorrelation, and two additional statistics: the Box-Cox 

lambda ( 1 ) and spectral entropy (H). 
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The lambda value indicates the power to which all data should be raised in order to be 

normally distributed (Box & Cox, 1964). The Box-Cox power transformation searches 

within the interval [-5;5] until the optimal value is found in: 

 

 

 














0 if       log

 0 if   
1

12

1

1

2
1











t

t

t

Y

Y

Y   (9) 

Entropy describes the complexity of a system and can be used as a proxy for the 

predictability of a given time series (Goerg, 2013). H  can be obtained as: 

   



 dffH yy log   (10) 

Where  yf  is the spectral density of 
tY . Low values of H are indicative of more 

signal, suggesting that a time series is easier to forecast (Kang, Hyndman, & Smith-Miles, 

2017). Figure 1 contains the reuslts of the descriptive analysis of the data in a bar chart for 

each feature. We can observe that the time series features vary across regions. The Canary 

Islands present the highest level of strength of trend, but the lowest in terms of the strength 

of seasonality, Box-Cox lambda, and spectral entropy. On the other hand, the Balearic 

Islands present the highest values of entropy and dispersion. 

 

Figure 1. Time series features of international tourist arrivals to Spanish regions 

  

  

Note. C-Leon stands for Castilla-Leon and C-La Mancha stands for Castilla-La Mancha. 
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Figure 1. (cont.) 

Descriptive analysis – Time series features of international tourist arrivals to Spanish regions 

  

  

Note. C-Leon stands for Castilla-Leon and C-La Mancha stands for Castilla-La Mancha. 

 

Next, we compute the out-of-sample forecast accuracy of the predictions generated 

with the different ML models presented in Section 2. The first 52% of the observations 

were used as the initial training set, the next 33% as the validation set, and and the last 15% 

as the test set. This partition is done sequentially. The estimation of the models is done 

recursively for different forecast horizons (1, 2, 3, 6 and 12 months) during the out-of-

sample period (2013:01-2014:01). All models are implemented using Python. Forecast 

accuracy is measured by means of the Mean Absolute Percentage Error (MAPE). Results 

are presented in Table 1. 

Table 2 contains the number of regions for which we obtain the lowest MAPE with 

each model. We find that MLP NNs outperform the rest models in most regions, and that 

regardless of the ML method, forecast accuracy improves for longer horizons. 

 

  



 

 7 

Table 1 

Out-of-sample forecast accuracy – MAPE (2013:01-2014:01) 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Network 

models 

Forecast 

horizon 
SVR linear SVR poly GPR RBF MLP 

Andalusia      
h=1 0.34 0.45 0.36 0.39 0.36 
h=2 0.47 0.40 0.45 0.44 0.44 
h=3 0.45 0.46 0.42 0.45 0.42 

h=6 0.33 0.40 0.38 0.40 0.35 
h=12   0.13* 0.26 0.14 0.28 0.17 

Aragon      
h=1 0.39 0.33 0.36 0.30 0.30 
h=2 0.44 0.43 0.41 0.37 0.36 

h=3 0.37 0.35 0.37 0.37 0.39 
h=6 0.29 0.32 0.27 0.30   0.22* 

h=12 0.30 0.30 0.29 0.27 0.24 

Asturias      
h=1 0.78 0.88 0.75 0.67 0.61 
h=2 0.99 0.94 0.91 0.75 0.80 
h=3 0.65 0.68 0.75 0.73 0.78 

h=6 0.40 0.59 0.41 0.46 0.34 
h=12   0.28* 0.37 0.29 0.42 0.32 

Balearic Islands     
h=1 5.46 8.16 5.18 4.35 3.98 
h=2 7.19 9.46 6.72 5.72 5.68 

h=3 5.43 4.63 5.99 6.05 5.66 
h=6   0.91* 2.59 0.96 3.14 1.31 

h=12 1.60 2.88 1.66 2.62 1.69 

Canary Islands     
h=1 0.46 0.54 0.46 0.42 0.42 
h=2 0.43 0.45 0.44 0.41 0.42 
h=3 0.44 0.47 0.44 0.41 0.42 

h=6 0.41 0.42 0.42 0.41 0.41 
h=12 0.47 0.52 0.45   0.40* 0.43 

Cantabria      
h=1 1.13 1.39 1.07 0.95 1.03 
h=2 1.38 1.70 1.19 1.00 1.03 

h=3 1.13 0.96 1.03 1.05 1.05 
h=6 0.33 0.60 0.37 0.51 0.38 

h=12   0.29* 0.50 0.33 0.57 0.32 

Castilla-Leon     
h=1 0.60 0.74 0.61 0.59 0.52 
h=2 0.76 0.82 0.70 0.65 0.66 
h=3 0.70 0.49 0.66 0.66 0.66 

h=6 0.31 0.47 0.31 0.39 0.26 
h=12   0.17* 0.35 0.18 0.36 0.23 

Castilla-La Mancha     
h=1 0.32 0.39 0.33 0.31 0.28 
h=2 0.41 0.43 0.37 0.36 0.36 

h=3 0.41 0.51 0.37 0.38 0.38 
h=6 0.26 0.32 0.27 0.28 0.23 

h=12 0.11 0.22   0.10* 0.21 0.14 

Catalonia      
h=1 0.42 0.46 0.39 0.37 0.38 
h=2 0.51 0.51 0.47 0.42 0.44 
h=3 0.45 0.38 0.42 0.42 0.42 

h=6 0.40 0.37 0.32 0.31 0.30 
h=12 0.33 0.41 0.32 0.30   0.26* 

Note. * Model with the lowest MAPE 



 

 8 

 

Table 1 (cont.) 

Out-of-sample forecast accuracy – MAPE (2013:01-2014:01) 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Network 

models 

Forecast 

horizon 
SVR linear SVR poly GPR RBF MLP 

Valencia      

h=1 0.30 0.49 0.30 0.31 0.27 
h=2 0.36 0.33 0.36 0.33 0.33 

h=3 0.35 0.34 0.37 0.34 0.36 

h=6 0.34 0.28 0.34 0.34 0.35 
h=12 0.29 0.52 0.27 0.30   0.25* 

Extremadura     
h=1 0.32 0.38 0.33 0.37 0.33 
h=2 0.41 0.40 0.39 0.40 0.39 
h=3 0.38 0.42 0.36 0.39 0.37 

h=6 0.35 0.40 0.39 0.37 0.33 

h=12   0.19* 0.36 0.20 0.30 0.21 

Galicia      
h=1 0.86 1.01 0.85 0.76 0.72 
h=2 1.07 1.07 0.98 0.87 0.89 

h=3 0.82 1.05 0.88 0.90 0.92 

h=6 0.53 0.75 0.55 0.63 0.46 
h=12   0.34* 0.90 0.35 0.52 0.39 

Madrid (Community)     
h=1 0.27 0.35 0.26 0.26 0.24 
h=2 0.26 0.29 0.25 0.25 0.24 
h=3 0.26 0.19 0.25 0.25 0.24 

h=6 0.26 0.26 0.25 0.25   0.23* 

h=12 0.24 0.42 0.24 0.25 0.25 

Murcia (Region)     
h=1 0.24 0.23 0.26 0.22 0.23 
h=2 0.29 0.28 0.32 0.25 0.27 

h=3 0.26 0.23 0.34 0.28 0.30 

h=6 0.25 0.21 0.29 0.27 0.31 
h=12 0.20 0.26 0.19 0.20   0.17* 

Navarra      
h=1 0.59 0.67 0.59 0.57 0.53 
h=2 0.72 0.80 0.71 0.62 0.65 

h=3 0.65 0.61 0.63 0.62 0.63 
h=6 0.38 0.55 0.33 0.47 0.33 

h=12 0.31 0.45 0.31 0.40   0.30* 

Basque Country     
h=1 0.41 0.39 0.41 0.37 0.44 
h=2 0.46 0.43 0.44 0.39 0.41 

h=3 0.39 0.38 0.39 0.39 0.40 

h=6 0.42 0.36 0.35   0.33* 0.34 
h=12 0.39 0.43 0.38 0.36 0.35 

La Rioja      
h=1 0.56 0.73 0.59 0.57 0.53 
h=2 0.77 0.62 0.71 0.67 0.68 

h=3 0.77 0.65 0.70 0.70 0.69 
h=6 0.46 0.64 0.48 0.45 0.30 

h=12 0.19 0.39   0.19* 0.39 0.23 

Note. * Model with the lowest MAPE 
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Table 2 

Number of regions with lowest MAPE by model and forecast horizon 

 Support Vector Regression 

models 

Gaussian 

Proces 

Regression 

Neural Network 

models 

Forecast 

horizon 
SVR 

linear 

SVR 

polynomial 
GPR RBF MLP 

h=1 2 0 0 5 10 

h=2 0 3 0 9 5 

h=3 2 11 3 1 0 

h=6 3 1 0 2 10 

h=12 8 0 2 1 6 

 

Due to the observed cross-regional differences, we finally project the Spanish regions 

according to the characteristics of tourist arrivals time series and to the forecast accuracy 

obtained in each region for each forecast horizon. To that end, we combine the results of 

both the descriptive analysis and the forecasting experiment, and summarize all the 

information in two components using the multivariate positioning approach proposed by 

Claveria (2016; 2017). First, we rank each region according to its time series features and 

the obtained MAPE values in increasing order. These rankings are then used as the input 

for a categorical principal components analysis (CATPCA). 

Along both dimensions, the biplot in Figure 2 overlaps the object scores (regions) and 

the rotated component loadings (Table 3). The coordinates of the end point of each vector 

are given by the loadings of each variable on the two components. Long vectors are 

indicative of a good fit. The variables that are close together in the plot, are positively 

related; the variables with vectors that make approximately a 180º angle with each other, 

are closely and negatively related; finally, non-related variables correspond with vectors 

making a 90º angle. 
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Figure 2. Biplot 

 
 

Notes. Rotation Method: Varimax with Kaiser Normalization. Acf_1 denotes the first autocorrelation. For 

visual clarity, we have coded each region (object) with a number: Andalusia (1), Aragon (2), Asturias (3), 

Balearic Islands (4), Canary Islands (5), Cantabria (6), Castilla-Leon (7), Castilla-La Mancha (8), Catalonia 

(9), Valencia (10), Extremadura (11), Galicia (12), Madrid (13), Murcia (14), Navarra (15), Basque 

Country (16), La Rioja (17). 

 

Table 3. Rotated component loadings 

 
Dimension 

1 2 

Strength of trend 0.76 0.40 

Strength of seasonality 0.63 -0.21 

Optimal Box-Cox transformation -0.43 0.73 

Spectral entropy -0.03 0.87 

Autocorrelation function (r1) 0.66 0.25 

Coefficient of variation 0.09 0.93 

Skewness -0.13 -0.79 

Kurtosis 0.72 -0.06 

MAPE for h=1 -0.78 0.44 

MAPE for h=6 -0.77 0.46 

MAPE for h=12 0.92 0.21 

Note. Component loadings indicate Pearson correlations between the 

quantified variables and the principal components (ranging between -1 

and 1). 
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The proximity observed between entropy and dispersion is indicative of a close and 

positive relation between them, and of a negative relation with accuracy. The strength of 

the trend, the first autocorrelation, and the MAPE for h=12 are close to the strength of 

seasonality and kurtosis, all of which seem negatively related to the rankings based on the 

MAPE for one- and six-month ahead forecasts. Based on this evidence, we conclude that 

the interactions of the strength of the seasonal and the trend components with forecast 

accuracy vary depending on the forecast horizon. This finding is in line with the results 

obtained by Hassani, Silva, Antonakakis, Filis, and Gupta (2017). 

 

 

Conclusions 
 

The increasing importance of the tourism industry worldwide is fostering a growing 

interest in new approaches to tourism modelling and forecasting. In this paper we have 

combined the results of two independent analyses so as to position Spanish regions 

according to the features of international tourist arrivals time series and to the accuracy of 

forecasts obtained for each region. 

First, we have applied a seasonal-trend decomposition procedure based on non-

parametric regression to isolate the different components of the series and compute their 

features. Despite certain similarities between regions regarding the strength of seasonality, 

the rest of the characteristics of the time series markedly differ across regions. Then, we 

have calculated the out-of-sample accuracy of several machine learning methods in a 

multiple-step-ahead forecasting experiment, also finding substantially different results 

between regions, techniques and forecast horizons. Finally, we have ranked the regions 

according to the obtained results in the two previous analyses and synthesized all the 

information in two components. 

By means of categorical principal components analysis we have projected the 

distribution of the Spanish regions in two dimensions according to their time series features 

and the obtained forecasting results. We observed that altough entropy and dispersion 

appear to be negatively related with forecast accuracy for all horizons, the interactions of 

the rest of data characteristics with forecast accuracy depend on the length of the prediction 

horizon. As a result, in order to improve forecast accuracy of tourist arrivals at the regional 

level, we suggest applying region-specific model selection that takes into account the 

forecast horizon. 
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We want to note that we have carried out an exploratory study, and consequently the 

results cannot be generalized. A question left for further research is the incorporation of 

additional time series features and the implementation of other forecasting methods. 

Finally, extending the analysis to regions of other destinations would allow to test if there 

are significant differences across countries. 
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