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DNA methylation patterns are important for establishing cell, tissue, and organism phenotypes, but little is known about
their contribution to natural human variation. To determine their contribution to variability, we have generated genome-
scale DNA methylation profiles of three human populations (Caucasian-American, African-American, and Han Chinese-
American) and examined the differentially methylated CpG sites. The distinctly methylated genes identified suggest an
influence of DNA methylation on phenotype differences, such as susceptibility to certain diseases and pathogens, and
response to drugs and environmental agents. DNA methylation differences can be partially traced back to genetic var-
iation, suggesting that differentially methylated CpG sites serve as evolutionarily established mediators between the
genetic code and phenotypic variability. Notably, one-third of the DNA methylation differences were not associated with
any genetic variation, suggesting that variation in population-specific sites takes place at the genetic and epigenetic levels,
highlighting the contribution of epigenetic modification to natural human variation.

[Supplemental material is available for this article.]

Phenotypic differences between individuals cannot entirely be

explained by genetic differences. Considering the transcriptome as

a mirror of the sum of regulatory events suggests that nongenetic

mechanisms have a profound influence on the phenotype. Epi-

genetics is responsible for part of this additional layer of control

(Feinberg 2007; Portela and Esteller 2010). For example, genetically

identical individuals, such as monozygotic twins (Fraga et al. 2005;

Kaminsky et al. 2009), cloned animals (Rideout et al. 2001), and

Agouti mice (Michaud et al. 1994; Waterland and Jirtle 2003), show

DNA methylation and phenotypical differences. Hence, epigenetic

variations, and in particular DNA methylation, might participate

not only in differences between individuals, but also between

human populations, and could contribute to the observed differ-

ences in distinct physical appearance, behavior, and response to

environmental agents and drugs. In this regard, the presence of

DNA methylation differences between an African and an European

population using a 27,000-CpG-site microarray platform has been

previously reported (Fraser et al. 2012).

DNA methylation at gene promoters is important for tran-

scriptional regulation, with dense promoter hypermethylation

around the transcription start site being associated with gene re-

pression (Feinberg 2007; Portela and Esteller 2010). The picture is,

in fact, more complex, and, recently, intragenic methylation has

been linked to transcriptional and splicing activities ( Jones 2012),

suggesting a sophisticated regulatory potential for this epigenetic

modification. DNA methylation levels are closely related to the ge-

nomic context, with CpG-rich regions (CpG islands) located in the

59 end of genes being predominantly unmethylated. Interindividual

variation in DNA methylation at distinct CpG sites has consistently

been linked to genetic variation in terms of single nucleotide

polymorphisms (SNPs) and defined as methylation quantitative

trait loci (meQTL) (Bell et al. 2011, 2012). However, the causal chain

of events establishing DNA methylation variability, which is cur-

rently under debate, is likely to be mediated in a network of genomic

contexts, transcriptional activity, and additional epigenetic layers of

regulation, such as histone modifications, DNA binding and mod-

ifying factors, nucleosome positioning, and noncoding RNAs.

Many genome-wide association studies (GWAS) have attempted

to establish genetic associations with differences between distinct

populations (Li et al. 2008a; Lachance et al. 2012), diseases (Kamatani

et al. 2009), and the response to external stimuli (Li et al. 2008b; Niu

et al. 2010). However, fewer associations were observed than expected,

and direct genotype–phenotype relations were not easily explica-

ble since the majority of variant sites are located in noncoding loci

(Kilpinen and Dermitzakis 2012). In this context, the epigenetic

network is expected to add layers of regulation, suggesting an in-

terplay between the genotype and epitype in gene regulation and

phenotypic variation (The ENCODE Project Consortium 2012).

In this study, we performed differential DNA methylation analysis

of around 300 individuals from three human populations. In particular,

we analyzed B-lymphocytes obtained from Caucasian-American,
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African-American, and Han Chinese-American individuals at a ge-

nome-scale resolution of around 450,000 CpG sites (Dedeurwaerder

et al. 2011; Sandoval et al. 2011). DNA methylation levels at dis-

tinct loci enabled their separation with respect to geographic ori-

gin and could help explain natural human variation. A subsequent

integration of genotype data enabled the precise separation into

genetically dependent and independent variation.

Results

DNA methylation differences are present in distinct human
populations

We determined differences in DNA methylation between three

populations extensively characterized in the Human Variation

Panel in terms of single nucleotide polymorphisms (SNPs) and

gene expression (Li et al. 2008b; Niu et al. 2010). The DNA meth-

ylation profile was assessed for 288 B-cell lymphoblastoid cell lines

(LCL) representing 96 Caucasian-American (CA), 96 African-

American (AF), and 96 Han Chinese-American (AS) individuals.

After sample randomization, DNA samples were hybridized on the

Infinium DNA methylation BeadChip platform (Illumina), which

analyzes more than 450,000 CpG sites in the genome (Dedeurwaerder

et al. 2011; Sandoval et al. 2011). After normalization, we filtered

out poor-quality probes and those containing single nucleotide

polymorphisms (SNPs; >1%) (The 1000 Genomes Project Consor-

tium 2010) and copy number variations (CNV; >5%) (Redon et al.

2006) in the detection sequence: Following these filters, from the

originally printed 485,577 CpG sites in the microarray, we main-

tained 406,021 probes for subsequent analysis. Any DNA meth-

ylation variation introduced by Epstein-Barr virus (EBV) immor-

talization of the LCLs was also excluded by positive filtering for

variant CpG sites between 10 Caucasian, 10 Asian, and 10 African

naive peripheral blood cell samples. Nonetheless, 1373 differen-

tially methylated CpG sites (delta mean b-values $0.12; ANOVA,

FDR < 0.01) separately generated only from LCL samples were able

to cluster naive blood samples perfectly according to their geo-

graphical origin, underscoring the capability of LCL samples to

determine epigenetic differences between ethnicities (Supple-

mental Fig. S1). Herein, we determined 439 CpG sites to be dif-

ferentially methylated between the populations both in LCL

and naive blood samples (delta mean b-values $ 0.12; ANOVA

with Tukey HSD post hoc test, FDR < 0.01) (Fig. 1A; Supplemental

Table S1) and were able to cluster them separately (multiscale

bootstrap resampling, n = 10,000, approximately unbiased P-value >

0.99) (Fig. 1B). The DNA methylation classification originated a

separate branch for AF, and in the other arm of the cluster, two

subbranches were obtained corresponding to CA and AS, consistent

with the accepted prior genetically defined proximities (Fig. 1A; Li

et al. 2008a). These CpG sites with population-specific differential

methylation were termed pop-CpGs. Particularly, 172, 129, and 138

CpG sites revealed DNA methylation that differed significantly

in AF, CA, and AS samples, respectively. Four hundred thirty-nine

randomly selected probes were not able to separate the individuals

with respect to their population identity (multiscale bootstrap

resampling, n = 10,000).

PCA with the pop-CpGs to apportion the majority of the

variation clearly separated the samples with respect to their pop-

ulation identity and identified the ethnic relationship as the

strongest component (Fig. 1C). We also performed surrogate vari-

able analysis (SVA) to exclude covariates, other than population

association, that drove the separation of the samples. SVA did not

detect any surrogate variables, such as batch effects, excluding

unknown, unmodeled, or latent source of noise influencing our

results. To confirm the common ancestral DNA methylation status

within the populations, we performed ADMIXTURE, applying

three DNA methylation scenarios (unmethylated: <0.33; hemi-

methylated: $0.33, #0.66; methylated >0.66). Here, the analyzed

individuals segregated into their assigned populations, displaying

common ancestral DNA methylation levels within populations

and distinct levels between populations (Fig. 1D).

Out of 439 pop-CpGs, 178 were located in gene promoter

regions (including 51 noncoding RNA promoters, GENCODE v13)

(Supplemental Table S2), 147 in gene bodies, and 114 in intergenic

regions (Supplemental Fig. S2A; Supplemental Table S1). Consid-

ering the regional CpG composition and density, 104 pop-CpGs

mapped to CpG islands, 124 to CpG island shores, 36 to CpG is-

land shelves, and 175 CpGs outside of the island context (‘‘open

sea’’) (Supplemental Fig. S2B). Furthermore, we analyzed histone

occupancy frequencies extracted from the genome-wide epige-

netic mapping determined for an LCL (GM12878) within the

ENCODE project at the 439 pop-CpGs (Ernst et al. 2011). Sepa-

rately analyzing promoter, gene body, and intergenic frequencies

revealed an enrichment of pop-CpGs in respect to their repre-

sentation on the array platform within the enhancer marks

H3K27ac and H3K4me1 in intragenic regions and within the

heterochromatin mark H3K9me3 at intergenic loci (Fisher’s

exact test; P < 0.05) (Supplemental Table S3). In addition to

Figure 1. DNA methylation separates African-American (AF, brown),
Caucasian-American (CA, pink), and Han Chinese-American (AS, yellow)
individuals. (A) Hierarchical clustering of 439 pop-CpG sites separating the
three populations using absolute DNA methylation levels (low: green;
high: red). (B) Multiscale bootstrap resampling (n = 10,000) of the 439
pop-CpG sites significantly differentially methylated between African,
Asian, and Caucasian individuals. The three populations cluster sepa-
rately and consistently with prior genetically defined proximities (ap-
proximately unbiased P-value > 0.99). (C ) Principal component analysis
(PCA) of pop-CpGs displaying the first two principal components.
(D) ADMIXTURE analysis of pop-CpGs-defined ancestral DNA methyla-
tion status. Each individual is represented by a vertical line, with the
lengths corresponding to the ancestry coefficients in up to three inferred
ancestral groups.
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intragenic enhancer regions, pop-CpGs revealed enrichment in

insulator sites marked by CTCF and underlining the importance of

regulatory elements outside the promoter context for natural hu-

man variation. Multiple hypotheses testing highlighted the sig-

nificant enrichment of pop-CpGs for H3K4me1 (FDR = 0.0324)

and CTCF (FDR = 0.0378) in intragenic regions (Supplemental

Table S3).

To further dissect functional consequences related to differ-

entially methylated pop-CpG sites, we performed enrichment

analysis for DNA sequence motifs (Supplemental Fig. S3). Outside

the promoter context, we identified an enrichment of DNA motifs

related to the transcription factor RREB1 (ras responsive element

binding protein 1) in respect to the representation on the DNA

methylation array (Hypergeometric test; P < 0.01). Interestingly,

intragenic pop-CpGs also revealed an enrichment of binding sites

for the enhancer-associated factor TFAP2A (transcription factor

activating enhancer binding protein 2a) among others, under-

scoring the previous identified enrichment for the enhancer-as-

sociated histone marks H3K27ac and H3K4me1 in gene bodies.

Within gene promoter regions, we identified significant enrich-

ment of the hematopoietic transcription factors IRF1 and SPIB

(Hypergeometric test; P < 0.01) among others. Thus, pop-CpGs are

associated with histone modifications and transcription factor

binding that actively regulate gene expression, suggesting a regu-

latory network that contributes to the variance observed between

populations.

Furthermore, we aimed to determine the relationship be-

tween DNA methylation and transcriptional regulation. Therefore,

we integrated DNA methylation and gene expression levels and

observed significantly decreased gene expression associated to

promoter hypermethylation in 12.9% (13 out of 101) of pop-CpG-

related genes in the analyzed context (Pearson’s correlation test;

FDR < 0.01) (Supplemental Fig. S4A). This is in line with previous

studies reporting rather low overall associations between promoter

DNA methylation and gene expression (Kulis et al. 2012). It is of

note that gene body methylation was significantly associated to

gene expression in 23.9% of intragenic pop-CpGs (27 out of 113;

Pearson’s correlation test; FDR < 0.01) (Supplemental Fig. S4B).

Here, a gain of DNA methylation was associated to gene repression

and activation in 63.0% (17 out of 27) and 37.0% (10 out of 27) of

cases, respectively.

Population-specific differential methylation contributes
to natural human variation

We expected DNA methylation in gene promoters to be directly

associated with gene expression and hence phenotype formation,

so we extracted promoter-associated pop-CpGs. We wondered

whether genes harboring pop-CpGs in their promoter could help

explain the well-known phenotypic variation between CA, AS, and

AF human populations. In this regard, pop-CpGs were located in

genes associated with natural human variation, such as xenobiotic

metabolism and transport (GSTT1, GSTM5, ABCB11, SPATC1L),

taste transducers (TAS1R3), environmental information processing

and adaptation (ARNTL, PRSS3, CNR2), immune response factors

(CERK, LCK, CD226, SEPT8), growth factors (FGFR2), keratinocyte-

associated genes (KRTCAP3), and melanogenesis (CREB3L3). We

also observed the presence of pop-CpGs in genes related to the

different penetrance of diseases among distinct human pop-

ulations, such as diabetes (HLA-B/C, PRKCZ), Parkinson’s disease

onset (PM20D1), HIV infection (HIVEP3, HTATIP2, CDK11B), en-

teropathogenic Escherichia coli and measles virus infection (FYN),

and hepatitis B virus infection (HLA-DPA1). Illustrative examples

of these genes with their DNA methylation differences among

human populations are shown in Figure 2.

To distinguish between random drift at neutral loci and CpG

sites that may have experienced accelerated divergence due to local

selection, we included data from 14 chimpanzee individuals from

three subspecies (Pan troglodytes troglodytes, Pan troglodytes verus,

Pan troglodytes schweinfurthii) as the outgroup in the analysis, since

this is our closest living relative. Positively selected CpG sites were

assessed by determining common ancestral sites between humans

and chimpanzees that had a single human outlier population

(ANOVA with Tukey HSD post hoc test, P < 0.05) (Supplemental

Table S4). We identified 39 CpG sites that could have evolved

under local selection pressure. These CpG sites of local adaptation

include immune (CERK, CDK11B, HTATIP2) and xenobiotic

(GSTT1, SPATC1L) response factors, suggesting that they might be

driven by differences in local pathogen and environmental pres-

sure. In particular, SPATC1L (spermatogenesis and centriole asso-

ciated 1-like) is an interesting case, because it was previously

related to the response to alkylating agents, suggesting that epi-

variation contributes to the variable response to chemothera-

peutic treatment (Fry et al. 2008). It is also tempting to speculate

that the selective pressure that gives rise to the polymorphisms

originates from carcinogens such as nitrosamides, which in-

troduce alkyl groups on guanine bases, the mechanism used by

alkylating drugs.

Cross talk between population-specific epigenetic and genetic
variants

We wondered about the effect of underlying genetic variants on

the characterized pop-CpGs. An example of the connection be-

tween ethnicity-associated epigenetic and genetic marks is the

gene SPATC1L: It was previously identified as a CpG methylation

quantitative trait loci (meQTL) and expression quantitative trait

loci (eQTL) in a lower-resolution (27,000 CpG sites) screening us-

ing Yoruba individuals (Bell et al. 2011). QTLs describe the direct

association between single nucleotide polymorphisms (SNPs) and

methylation or expression events. Accordingly, the gene expres-

sion or CpG site methylation (epitype) are directly correlating to

the underlying genetic sequence (genotype). In the present study,

we did not only validate the association between methylation and

gene expression of SPATC1L, but also established that the entire

promoter region is differentially methylated in African-Americans

with a high correlation between gene expression and the un-

derlying genotype (Fig. 3). To do this, we identified four pop-CpGs

located in the 59 end that were differentially methylated in African-

Americans and directly correlated with gene expression (Fig. 3;

Supplemental Fig. S5A). All four promoter-associated pop-CpGs of

SPATC1L were assigned as meQTLs associated with a single SNP

position (rs8133082) (Fig. 3; Supplemental Fig. S6A). Interest-

ingly, we identified three pop-CpGs in the CpG island that

overlapped the transcription end site (TES) of SPATC1L with

complete inverse correlation of DNA methylation, gene expres-

sion, and genotype association with the promoter region (Fig. 3;

Supplemental Figs. S5B, S6B). Individuals with hypomethylated

and active promoters revealed hypermethylation at the TES

(Pearson’s product-moment correlation, rho = 0.89) (Supple-

mental Fig. S7). Hypermethylation at the TES of actively tran-

scribed SPATC1L might impair the high frequencies of the pre-

viously identified antisense transcription that takes place at

terminator sites (He et al. 2008).

DNA methylation contributes to human variation
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From the original observation in SPATC1L, we extended

the search of meQTLs to the entire set of 439 pop-CpGs. We

found 68% (298 of 439) of differentially methylated CpG sites were

significantly related to underlying ge-

netic variation (596 SNPs, random forest

selection frequencies, FDR < 0.05) (Sup-

plemental Table S5). Because only 13% of

the randomly selected 439 CpG sites

revealed genetic association, we excluded

the common event of epitype–genotype

association of CpG sites interrogated in

this study (Fisher’s exact test, P < 0.01). To

exclude the idea that confounding effects

based on genetic differences between

the populations were driving the associ-

ation of pop-CpG methylation levels

with the underlying genotype, we per-

formed meQTL analysis separately for the

three populations. Importantly, we con-

firmed an association to the genetic

background in at least one of the three

populations, for 91.6% (273 out of 298) of

the meQTLs, suggesting that the detected

associations are mainly independent

from ethnic variation. Furthermore, we

aimed to interrogate the tissue specificity

of epitype–genotype associations by an-

alyzing 159 normal primary specimens

representing three different solid-tissue

types. Taking advantage of genotype and

DNA methylation data available from

The Cancer Genome Atlas (TCGA), we determined the associations

of pop-CpG sites to the underlying genetic background to be

maintained across tissue types in 60.7% (181 out of 298) of the

Figure 2. Differentially methylated gene promoters of KRTCAP3 (A), TNNT1 (B ), SEPT8 (C ), CD226 (D), PM20D1 (E ), and FGFR2 (F ) in Han Chinese-
American (yellow), Caucasian-American (pink), and African-American (brown) individuals. Absolute DNA methylation levels at population-specific CpG
sites in gene promoters (low: green; high: red) are displayed for single individuals (n = 269). The distance to the gene transcription start site is indicated.
The samples are ranked according to their average DNA methylation levels (middle panel) at displayed pop-CpGs. Population enrichment (right panel) is
illustrated using absolute sample numbers in a 10-sample window.

Figure 3. Genotype and DNA methylation regulate gene expression of SPATC1L in a conjoined
manner and inversely correlate at the transcription start (TSS) and end site (TES). (A) Schematic overview
of the gene structure of SPATC1L. (B) AF individuals have high levels of promoter DNA methylation, a TT
phenotype enriched in rs8133082, and reduced expression of SPATC1L. The figure displays the absolute
DNA methylation levels (low: green; high: red) for four promoter-related pop-CpGs of African-American
(brown), Caucasian-American (pink), and Han Chinese-American (yellow) individuals; the genotype of
rs8133082 for the individual samples (GG, GT, TT); the correlation between DNA methylation
(cg08742575) and the genotype (rs8133082); and the gene expression level (SPATC1L). Samples are
ranked by mean CpG methylation values. (C ) Unlike the promoter, AF individuals have CpG hypo-
methylation, which is positively correlated with SPATC1L gene expression (cg11766577).
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meQTLs, suggesting that the interplay between both layers is

partially independent of the cell-type context. In particular, we

confirmed the presence of blood-related meQTLs in 40.6% of

breast, 38.9% of colon, and 32.6% of lung-tissue samples. It is of

note that meQTLs are located close to the correlated SNP site, with

69% (412 out of 596) present within a 15-kb window and 38% (227

out of 596) within 5 kb (Supplemental Fig. S8).

However, for the remaining 32% of pop-CpGs, no direct re-

lationship could be detected between the genetic background and

variability of CpG sites. We excluded the possibility that the ab-

sence of genetic association was a consequence of an uneven

number of SNPs in the 61-Mb region surrounding the pop-CpGs

by showing that both groups harbored similar numbers of SNPs in

the analyzed regions (Supplemental Fig. S9). The analyzed win-

dows also harbored equal coverage of repetitive elements (SINE,

LINE, LTR), and, thus, the same power to identify SNPs (Supple-

mental Fig. S10). Interestingly, gene promoters associated with

potentially epigenetically inherited CpG sites were related to im-

mune response components (FYN, CD226, HIVEP3) (Supplemen-

tal Table S1) and enriched for transcription factor binding sites for

NFKB (z-test; TRANSFAC: FDR = 0.0195; JASPAR: FDR = 0.0057),

a transcription factor involved in the immune defense system,

protecting against, for example, viral (i.e., hepatitis B) and bacterial

(i.e., Shigellosis) pathogen infection. This raises the possibility that

the pathogens in the environment leave stable fingerprints in the

epigenomes of the human host population.

Noteworthy, when we interrogated the three aforementioned

primary tissue types, we found no further genetic associations of

potentially epigenetic inherited CpG sites in 66.0% of cases (93 out

of 141), supporting their genetic independence. In this respect,

proportional analysis detected no differences in the power to de-

tect genotype–epitype associations between the initial LCL sample

set and the primary specimens (Chi-square test; OR: 1.13, P = 0.51),

underlining the reliability of the study design.

Population-specific differential methylation could be useful
in genome-wide association studies of genetic variants

Only 13% (79 out of 596) of SNPs related to differentially meth-

ylated pop-CpGs are located in exonic regions and hence can be

directly associated with functional gene alterations (Supplemental

Table S6). Therefore, we postulated that DNA methylation pres-

ents a little-recognized but highly informative level in the in-

terpretation of genetic variants between human individuals.

Comprehensive analysis of genetic variation in genome-wide as-

sociation studies (GWAS) often reveals genotype–phenotype con-

nections. These include many polymorphisms that are directly

connected with phenotypes, but are located within intergenic or

intronic regions of unknown function. Studying the close in-

terplay between genetic and epigenetic regulation could help in-

terpret these connections, which are otherwise difficult to explain.

In this respect, DNA methylation might display a potent in-

termediate event that could be useful to interpret the GWAS re-

sults. For this reason, we performed model-based gene set analysis

(Bauer et al. 2011) to compare SNPs directly associated with pop-

CpGs and GWA studies available at GWASdb (Li et al. 2012). We

found some interesting associations related to age of menarche,

and HIV control; in particular, we determined highly significant

enrichment for hepatitis B infection through the detection of six

SNPs directly related to CpG sites that were differentially methyl-

ated between populations (Enrichment score: 0.99) (Supplemental

Table S7; Bauer et al. 2011). These six SNPs were located within the

HLA-DPA1 and HLA-DPB1 locus, which is strongly associated with

chronic hepatitis B virus (HBV) infection (Kamatani et al. 2009).

Concordantly, HBV infection risk alleles are more abundant in

populations with a higher incidence of disease, such as those with

Asian or African ancestry. However, none of the SNPs is located in

a coding context, making it difficult to connect genetic variation

and risk phenotype. Functionally, the HLA-DPA1- and HLA-DPB1-

related SNPs were defined as eQTLs and thus directly connected to

gene expression (O’Brien et al. 2011), although the regulatory

mechanism remains elusive.

Here, we integrated GWAS results into differential DNA

methylation analysis, determining a direct correlation between

genetic variation and differences in the methylation of CpGs lo-

cated in the HLA-DPA1 locus. In particular, the 10 HBV infection–

associated SNPs (Kamatani et al. 2009) were significantly correlated

with 17 CpG sites in the HLA-DPA1 locus (Pearson’s correlation,

rho > 0.6) (Fig. 4; Supplemental Table S8). The risk alleles were

associated with altered CpG methylation and occurred at high

frequencies in Asian and African populations. In detail, the risk

alleles were related to DNA hypermethylation in the promoter of

HLA-DPA1, which was inversely correlated with gene expression

(Fig. 4; Supplemental Fig. S11). Hypermethylation of the promoter

of HLA-DPA1 was conjoined with DNA hypomethylation in the

gene body, which is also associated with a lower level of gene ex-

pression (Jones 2012). Hence, we found DNA methylation associated

with HLA-DPA1 gene repression in the Asian and African individuals,

identifying the risk alleles for mediating DNA methylation variation

and gene repression. These give rise to variation in cell surface re-

ceptor presentation and altered HBV binding and infection risk.

Consequently, we suggest that DNA methylation could be the un-

identified regulatory event connecting genotype (risk alleles), gene

expression (eQTLs), and phenotype (infection incidence).

Discussion
Epigenetic modification, and DNA methylation in particular,

provides a layer of gene regulation that has a great influence on

phenotypes. It has been widely studied in human cancer. However,

outside of the disease context, there are few examples of epigenetic

variations that are directly associated with phenotypic differences.

Interestingly, a recent genome-wide epigenetic analysis of different

casts of honey bees revealed DNA methylation differences between

nurse and forager bees at different genomic loci, suggesting that

despite being genetically identical, the social behavior of bees is

directly associated with their epigenetic profile (Herb et al. 2012).

Although done in another species, this study gives an insight into

the potential impact of DNA methylation changes on distinct

human phenotypes beyond the disease context. Consistently, we

aimed to determine DNA methylation differences between human

populations and their association with the natural phenotypic

variation occurring in the human species. Here, using 439 CpG

sites differentially methylated between Caucasian-American, Af-

rican-American, and Han Chinese-American individuals, we were

able to perfectly separate the distinct populations with respect to

their geographical origins and to associate them with distinct

phenotypic characteristics, such as appearance, drug metabolism,

response to external stimuli, sensory perception, and disease sus-

ceptibility. Importantly, local selective pressure was shown to in-

duce the manifestation of epigenetic variants, exemplified by im-

mune and xenobiotic response factors and their potential positive

selection by differences in local pathogen and environmental

pressure.

DNA methylation contributes to human variation
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Taking advantage of the comprehensive characterization of

the analyzed samples at the genetic level, we were able to in-

terrogate genotype–epitype associations to distinguish further

between the two types of inheritance—genotype dependent and

independent. Although, DNA methylation in general reveals low

dependence on the genotype (Bell et al. 2011, 2012), two-thirds

of population-specific CpG sites were directly associated with the

underlying genetic background, suggesting the evolutionarily

set genetic context influences DNA methylation, which sub-

sequently functions as an intermediate regulatory event medi-

ating phenotypic differences between populations. Here, the

hepatitis B infection risk, which is directly related to underlying

genotypes and epitypes, and the consequent enrichment of

these in affected populations is an illustrative example of the

tight interplay between the two layers of organization. Similar

causal connections were concluded by Feinberg and Irizarry from

results obtained from high-resolution DNA methylation pro-

filing of normal human and mouse tissues (Feinberg and Irizarry

2010). These investigators suggested that a change in regional

CpG density over time was responsible for DNA methylation

changes between the species. Genotype–epitype associations in

terms of methylation quantitative trait loci were also observed

in LCL samples from African and European populations (Bell

et al. 2011; Fraser et al. 2012) and human brain samples (Gibbs

et al. 2010; Zhang et al. 2010), highlighting their close con-

nection. Accordingly, variation in the DNA methylation of

population-specific loci followed similar trends to those seen in

genetic variation studies, suggesting that both levels have similar

patterns of variation and underlying related selection criteria

(Li et al. 2008a).

Interestingly, no direct relation to genetic variation could be

detected for one-third of differentially methylated loci, suggesting

Figure 4. Genetic polymorphisms related to HBV infection influence DNA methylation and gene expression at the HLA-DPA1 locus. Using Circos
(Krzywinski et al. 2009), the figure shows a schematic overview of the HLA-DPA1 locus and DNA methylation, genotype and expression data from African-
American (brown), Caucasian-American (pink), and Han Chinese-American (yellow) individuals: DNA methylation levels (low: green; high: red) of CpG
sites (n = 17) significantly correlated with the genotype of HBV infection-associated SNPs (n = 10) (Kamatani et al. 2009). Samples are ranked by mean CpG
methylation values. SNP-CpG relations are displayed by colored lines. The genotype distribution of SNPs in the HLA-DPA1 locus is shown, which is
significantly correlated with the level of CpG methylation (gray boxes; risk alleles are highlighted in red) (Kamatani et al. 2009). The distribution of
expression levels of HLA-DPA1 is shown in the blue box.
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that the epivariance might be independent of the coding se-

quence (Rando 2012). In this regard, external stimuli such as

toxic xenobiotics (Anway et al. 2005; Zeybel et al. 2012) and

differences in dietary or hormone exposure (de Assis et al. 2012)

or stress (Seong et al. 2011) are known to induce epigenetic

changes with an impact on subsequent generations and may also

have been the source of the differences between populations

observed here. Detecting immune system–related genes enriched

at potentially epigenetically inherited CpG sites suggests that the

impact of pathogens on their host’s DNA profiles (Paschos and

Allday 2010) subsequently leaves footprints in the epigenome

of their progeny. However, we cannot entirely exclude that the

lack of genetic association for these potentially epigenetically

inherited pop-CpG sites is based on unmodeled or unmeasured

components in this study. Although, we applied multivariate

methodology and interrogated large genomic regions, trans-act-

ing polymorphisms or those not present on the SNP array plat-

form might reveal epitype associations not reported as meQTLs.

Herein, using stringent thresholds to identify differentially

methylated CpG sites between the populations, the study design

favored the selection of high-frequency variables and therefore

unmeasured low-frequency polymorphisms were not the scope of

this study, and their absence should have influenced the identifi-

cation of meQTLs only minimally. It is of note that environmental

variations between populations (e.g., diet preferences) could have

influenced the epitype of germline cells, but might have also di-

rectly affected the DNA methylation levels of the somatic cell type

analyzed here.

In conclusion, we have identified DNA methylation differ-

ences that distinguish three major human ethnic groups. Al-

though many of them are associated with underlying genetic

changes, suggesting a direct relationship between the genetic and

epigenetic codes, others stand alone as epigenetic markers and

CpG methylation quantitative trait loci associated with natural

variation in our species. Thus, DNA methylation is a likely

contributor to the different phenotypic characteristics, such as

differences in drug response and disease frequencies that occur

between human populations. From the regulatory point of view,

we suggest a scenario wherein the genetic and epigenetic back-

grounds set the evolutionarily established blueprint, resulting in

phenotypic variation. Detecting distinct pop-CpG sites within

populations suggests that divergence and selection pressure

not only shape the genetic code, but also the DNA methylation

landscape.

Methods

Sample description
DNA samples of 96 unrelated healthy Caucasian-Americans, 96
African-Americans, and 96 Asian-Americans were obtained from
lymphoblastoid cell lines included in the Human Variation panel
(sample sets HD100AA, HD100CAU, HD100CHI; Coriell Cell Re-
positories). These samples had been collected and anonymized by
the National Institute of General Medical Science (NIGMS), and all
subjects had provided written consent for their experimental use.
Sample processing was performed in a randomized manner to
avoid batch effects. Gender distribution (male frequency) and
mean age (6standard deviation) for each ethnicity were 0.5 and
37.3 6 16.2 yr for Caucasian-American samples, 0.2 and 29.4 6 9.9
yr for African-Americans, 0.5 and 36.2 6 15.7 yr for the Han Chi-
nese-Americans, respectively. DNA from naive blood samples was
extracted from peripheral blood mononuclear cells of unrelated

healthy Caucasian and Asian donors. These samples had been
collected and anonymized by the Bellvitge Biomedical Research
Institute (IDIBELL) and the National Research Institute for Child
Health and Development (NRICHD), and all subjects had provided
written consent for their experimental use. DNA methylation data
from naive blood samples of African individuals have been pre-
viously published (Alisch et al. 2012). Gender distribution (male
frequency) and mean age (6standard deviation) for each ethnicity
of naive samples were 0.5 and 27.7 6 2.8 yr for Caucasian samples,
1.0 and 3.8 6 3.7 yr for Africans, and 0.3 and 33.0 6 3.4 yr for
Asians, respectively.

Genotype and DNA methylation data for primary samples of
normal breast (n = 78), colon (n = 38), and lung (n = 32) tissues were
obtained from The Cancer Genome Atlas (TCGA) data portal
(https://tcga-data.nci.nih.gov/tcga).

Infinium HumanMethylation450 BeadChip

All DNA samples were assessed for integrity, quantity, and purity
by electrophoresis in a 1.3% agarose gel, picogreen quantification,
and nanodrop measurements. All samples were randomly distrib-
uted into 96-well plates. Bisulfite conversion of 500 ng of genomic
DNA was performed using the EZ DNA Methylation Kit (Zymo
Research) following the manufacturer’s instructions. Two hundred
nanograms of bisulfite-converted DNA was used for hybridization
on the HumanMethylation450 BeadChip (Illumina). Briefly, sam-
ples were whole-genome amplified followed by enzymatic end-point
fragmentation, precipitation, and resuspension. The resuspended
samples were hybridized onto the BeadChip for 16 h at 48°C,
then washed. A single nucleotide extension with labeled dideoxy-
nucleotides was performed, and repeated rounds of staining were
applied with a combination of labeled antibodies differentiating
between biotin and DNP.

A three-step normalization procedure was performed using
the lumi (Du et al. 2008) package available for Bioconductor
(Gentleman et al. 2004), within the R statistical environment
(R Development Core Team 2009), consisting of color bias ad-
justment, background level adjustment, and quantile normali-
zation across arrays (Du et al. 2008). The methylation level
(b-value) for each of the 485,577 CpG sites was calculated as the
ratio of methylated signal divided to the sum of methylated and
unmethylated signals plus 100. After the normalization step, we
removed probes related to X and Y chromosomes, and those
with a SNP frequency >1% (The 1000 Genomes Project Con-
sortium 2010) in the probe sequence or interrogated CpG site.
All analyses were performed in human genome version 18 or
19 (hg18/19). However, to exclude regions of potential copy
number variation, we integrated a data set (Redon et al. 2006)
that was available only at the version hg17. Therefore, we
transformed the loci represented on the array platform into the
coordinates of the older genome version ( hg19 to hg17) using
the LiftOver tool from UCSC. Subsequently, all probes associated
to CNV with a frequency higher than 5% were excluded from
the study.

Hierarchical clustering

Samples were organized by hierarchical clustering using the com-
plete agglomeration method for Manhattan distances. The strength
of the cluster was assessed from 10,000 bootstrap samples using
the pvclust (Suzuki and Shimodaira 2006) package available for
the R statistical environment. We also calculated 10,000 clusters
using 439 random CpG sites to ensure that the cluster was not
generated based on genome-wide differences between the sam-
ples and populations.
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Surrogate variable identification

To identify possible latent factors that influence the methylation
levels, we did a surrogate variable analysis as described in Leek and
Storey (2007). We used the SVA11 R package provided by these
investigators and ran the two-step protocol to identify the number
of latent factors that need to be estimated and to identify the
surrogate variables.

Admixture

To describe the ancestral allele methylation status of each in-
dividual, we discretized the b-values into three stages, simulating
the diploid structure of the human genome. Loci with b-value <

0.33 were annotated as having AA alleles. Those with a b-value >

0.66 were designated BB alleles. All other loci were considered to be
AB alleles. We ran the PLINK software (Purcell et al. 2007) with
these data to store the pedigree/phenotype information in PLINK
format, and then used the ADMIXTURE program to perform max-
imum likelihood estimation of individual ancestries from multi-
locus SNPs (with discretized b-values), as described in Alexander
et al. (2009).

Identification of population-specific DNA methylation
(pop-CpGs sites)

To define CpG sites that are differentially methylated between
populations, we excluded outlier samples with an abnormal ge-
nome-wide DNA methylation profile to avoid the influence of
unmodeled sources on the results. By performing PCA of CpG sites
that do not overlap SNPs or CNVs, or that are located in gender-
specific chromosomes (with the first two principal components
explaining 27% of the variance), we excluded 11 Caucasian and
eight African samples that fell outside the 95% confidence interval.
Differential methylation analysis of individual CpG sites for the
three populations was measured by selecting CpG sites with an
absolute difference of the average methylation between two pop-
ulations above 0.12, in terms of b-values (ranging from 0 to 1). An
ANOVA with a Tukey HSD post hoc test was performed, and CpG
sites showing an FDR-adjusted P-value < 0.01 were considered to be
differentially methylated between populations. Subsequently, a set
of naive blood samples from 10 Caucasians, 10 Africans, and 10
Asians was used as a filter to rule out side effects introduced by EBV
immortalization of the lymphoblastoid cell lines. Therefore, the
arrays were quantile-normalized, and CpG sites with an absolute
difference in the average methylation between populations >0.12
were considered to be population-specific CpG sites (pop-CpGs).

Identification of pop-CpGs sites under local selective pressure

To define pop-CpG sites derived by local selective pressure, we
integrated DNA methylation data (Infinium HumanMethylation450
BeadChip) from DNA obtained from whole blood of 14 chimpanzee
individuals (four P. t. schweinfurthii; four P. t. verus; three P. t. troglo-
dytes; and three of unknown origin), using these as the outgroup.

Because the Infinium HumanMethylation450 BeadChip is
designed for use with the human reference genome, we first
mapped the probes to the chimpanzee genome (Pan_troglodytes-
2.1.4), using BWA (Li and Durbin 2009) and allowing a three
edit distance. We retained only the autosomal probes that un-
ambiguously mapped to a single location in the reference chim-
panzee genome and probes with either a perfect match, or one
mismatch in the 59 45 bp and with no mismatches in the 39 5 bp
(closest to the CpG sites that are being assayed). We also excluded
probes with a detection P-value > 0.01 in at least one individual.

This filtering step resulted in the retention of 299,924 probes
(66.6%). Using this conservative subset of CpG sites, we performed
two-color channel signal adjustment and quantile normalization
of human and chimpanzee samples on the pooled signals from
both channels and recalculated the average b-values (Du et al.
2008). CpG sites with a single human outlier population (ANOVA
with Tukey HSD post hoc test, P < 0.05) were considered to have
evolved under local selective pressure.

Expression analysis

Expression data for the analyzed samples were obtained using the
Human Genome U133 Plus 2.0 expression microarray (Affyme-
trix), available in the GEO database (GSE24277). A total of 24
Caucasian-American, six African-American, and one Han Chinese-
American samples were excluded because expression data were not
available. Expression arrays were loaded into the R statistical en-
vironment using the affy (Gautier et al. 2004) package, and nor-
malized using the RMA method as described in Irizarry et al.
(2003). Associations between DNA methylation and expression
were calculated using Pearson’s correlation coefficients. P-values
below 0.01 after correction for multiple hypothesis testing were
considered as significant.

meQTL identification

Genotype information for the analyzed samples was obtained
from a set of HumanHap550k and HumanHap650k SNP arrays
(Illumina), available in the GEO database (GSE24260, GSE24274).
Data sets were combined into a single table containing 660,919
unique SNPs. A total of 24 Caucasians, seven African-American,
and two Han Chinese samples were excluded from subsequent
analysis because genotyping data were not available.

meQTLs for the 439 differentially methylated sites were
identified by interrogating SNPs located in a 61-Mb window
flanking the CpG sites. The window was reduced in 100-kb in-
tervals if it contained more than 1000 SNPs. We used the Random
Forest Selection Frequency (RFSF) multivariate method, as de-
scribed in Michaelson et al. (2010), to identify unique SNPs or
additive effects of multiple SNPs on single CpG sites. This method
performs well compared with other methods and enables us to
identify multiple SNPs acting on a feature (Michaelson et al. 2009,
2010).

The Random Forest algorithm is implemented in R in the
randomForest package (Liaw and Wiener 2002). First, we called the
Random Forest algorithm to generate 2000 trees for regression and
calculated the selection frequency (SF) of the variables (SNPs)
used in the construction of the regression model. Bias correction
was then applied to the frequencies by subtracting the deviation
between the SF of the variable under the null hypothesis (no as-
sociation between the SNPs and the methylation value) and the
average SF of all variables under the null hypothesis; we used 1000
forests of 10 trees to obtain the SF under the null hypothesis,
generating a methylation matrix from a random distribution, and
applied the correction to the original SF. Eventually, in order to get
a metric of how associated with the epitype the SF of a poly-
morphic site was, we constructed an empirical distribution from
the SFs of 10 forests of 2000 trees by permuting the SNP values
of our samples, reporting a Q-value for every SNP by comparing
its SF with the ones under the null hypothesis.

Enrichment analysis of GWAS-associated polymorphisms

To establish a causal relationship between genetic variability,
DNA methylation level, and distinct phenotypes, we determined
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enrichment of meQTL-related SNPs in the entire set of GWA
studies available at GWASdb (Li et al. 2012) using model-based
gene set analysis (Bauer et al. 2011). The method analyzes all cat-
egories at once by embedding them in a Bayesian network. Prob-
abilistic inference is used to identify the active categories, giving
a score that is simply the probability that associates a natural
weight to each term, reflecting a measure of certainty of its in-
volvement in the process.

Sequence motif enrichment analysis

De novo motif discovery of promoter-related, intragenic, or
intergenic pop-CpGs was performed using GADEM software
(Li 2009), using a window of maximal 50 bp flanking the CpG
of interest (E-value < 0.05). Subsequently, sequence motifs were
assigned to human transcription factor binding sites using JASPAR
(Bryne et al. 2008), while removing artifactual and background
motifs using MotIV (Motif Identification and Validation) (Mercier
et al. 2011). We calculated the enrichment P-values based on the
hypergeometric distribution of motif matches at pop-CpG sites,
relative to their abundance in the search space (DNA methylation
BeadChip). The hypergeometric test reports the probability to
obtain the number of motif hits in the pop-CpG set compared with
the number present in all CpG sites represented on the BeadChip.
The P-values were calculated separately for promoter-, gene body-
related, and intergenic CpG sites.

Transcription factor enrichment analysis for pop-CpG sites
without genetic association located in promoters was performed
using PSCAN (Zambelli et al. 2009). Transcription factor bind-
ing annotations defined by TRANSFAC or JASPAR were used in-
dependently. The gene promoter region was defined as �950 and
+50 bp to the gene transcription start site. Z-test P-values were
corrected for multiple hypotheses testing using the Bonferroni
method.

Data access
The DNA methylation data generated for this study have been
submitted to the NCBI Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) under accession number GSE36369.
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