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Abstract  

In the context of single-case experimental designs, replication is crucial. On the one hand, the 

replication of the basic effect within a study is necessary for demonstrating experimental control. 

On the other hand, replication across studies is required for establishing the generality of the 

intervention effect. Moreover, the “replicability crisis” presents a more general context further 

emphasizing the need for assessing consistency in replications. In the current text, we focus on 

replication of effects within a study and we specifically discuss the consistency of effects. Our 

proposal for assessing the consistency of effects refers to one of the promising data analytical 

techniques: multilevel models, also known as hierarchical linear models or mixed effects models. 

One option is to check, for each case in a multiple-baseline design, whether the confidence 

interval for the individual treatment effect excludes zero. This is relevant for assessing whether 

the effect is replicated as being non-null. However, we consider that it is more relevant and 

informative to assess, for each case, whether the confidence interval for the random effects 

includes zero (i.e., whether the fixed effect estimate is a plausible value for each individual 

effect). This is relevant for assessing whether the effect is consistent in size, with the additional 

requirement that the fixed effect itself is different from zero. The proposal for assessing 

consistency is illustrated with real data and it is implemented in free user-friendly software. 

Keywords: single-case design, replication, consistency, multilevel models, random effects 

  



3 

MULTILEVEL ANALYSIS: CONSISTENT EFFECTS 

Assessing Consistency of Effects when Applying Multilevel Models to Single-Case Data 

Single-case experimental designs (SCEDs) are research designs that entail one or several 

individuals being studied longitudinally, with multiple measurements taken under different 

conditions manipulated by the researcher. SCEDs offer the possibility to carry out 

methodologically rigorous studies for gathering evidence on the effect of interventions (Barlow 

et al., 2009). SCEDs have been recognized as useful in a variety of contexts such as special 

education (Ledford & Gast, 2018), neuropsychological rehabilitation (Tate & Perdices, 2019), 

sport psychology (Barker et al., 2011), and biomedicine (Janosky et al., 2009). The field has 

experienced developments in terms of assessing methodological quality (Ganz & Ayres, 2018), 

data analysis (Kratochwill & Levin, 2014) and meta-analysis (Maggin et al., 2017), as well as 

reporting (Tate et al., 2016). Nevertheless, several challenges still remain, such as choosing 

among many data analytical options (Manolov & Moeyaert, 2017), and discussing the 

importance of randomization (Kratochwill & Levin, 2010; Ledford, 2018) and replication 

(Lanovaz et al., 2019).  

The aim of the current study is to propose a way of assessing consistency in data features 

and consistency of effects, when performing a multilevel analysis of single-case data. Given that 

the assessment consistency is based on the need for replication in single-case research, we first 

discuss the concepts replication and consistency, highlighting their relevance and recent salience. 

Afterwards, we provide a rationale for focusing on multilevel models as a data analytical 

technique.  
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Replication and Consistency 

A recent special issue of Perspectives on Behavior Science (Hantula, 2019) focused on the 

“replicability crisis” in psychology, and how behavior analysts can thoughtfully proceed in their 

use of SCEDs. In the SCED context, within-study replication is relevant for internal validity, 

although it is only one of several aspects to consider (Ganz & Ayres, 2018; Perdices et al., 2019; 

Wendt & Miller, 2012). Specifically, the iterative manipulation of the independent variable and 

the subsequent changes observed in the dependent variable increase the confidence that these 

changes are not due to external factors (Horner et al., 2005), such as history and maturation 

(Petursdottir & Carr, 2018). In order to document experimental control, the covariation between 

changes in the behavioral pattern and the introduction (and withdrawal) of the intervention is to 

be observed at least three times, with more specific recommendations available according to the 

SCED used (What Works Clearinghouse, 2020).  

Two kinds of replication can be distinguished with a SCED study. “Direct replication” or 

“within-subject replication” takes place in a reversal/withdrawal, multiple-baseline design, or an 

alternating treatments design (Horner et al., 2005; Tincani & Travers, 2019). Additionally, 

“systematic replication” or “inter-subject replication” can be achieved within a study (e.g., 

replication of a reversal/withdrawal or an alternating treatments design across participants; 

replication across settings of a multiple-baseline design across participants) or across studies 

(Horner et al., 2005; Kennedy, 2005).  

When dealing with direct replication, one of the relevant concepts is consistency (Lane et al., 

2017; Ledford, 2018). Although consistency has been highlighted especially in the context of 

visual analysis (What Works Clearinghouse, 2020), there have also been recent proposals for its 

quantification (Tanious, De, Michiels, et al., 2019; Tanious, Manolov, et al., 2019). Specifically, 
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both visually and quantitatively, two types of consistency can be distinguished: consistency of 

measurements from similar phases and consistency of effects (e.g., when comparing data points 

from adjacent phases).  

We consider that it is necessary to distinguish between a successful replication of an effect 

and a successful and consistent replication. Whether a “basic effect” (Horner & Odom, 2014) is 

present is an assessment that is usually performed visually, dealing with several data features, 

such as level, trend, variability, overlap, immediacy (Ledford et al., 2019; Maggin et al., 2018; 

What Works Clearinghouse, 2020). Subsequently, several attempts to replicate the basic effect 

take place and an evaluation is performed regarding whether the replication was successful (i.e., 

whether a functional relation or experimental control is documented). However, suppose that we 

proceed quantitatively and the focus of the quantification is put on the immediate effect because 

trends are not expected: the difference between the mean of the last three baseline data points 

and the first three intervention phase data points could be computed (Horner & Kratochwill, 

2012; Michiels & Onghena, 2019a). On the one hand, if the immediate effects for each 

participant in a study are all greater than zero (or than a minimally relevant effect), this would be 

indicative of a successful replication, in case there are no other data features (e.g., trend, 

variability) that suggest the contrary. On the other hand, if the values of the immediate effect are 

similar (e.g., there are small deviations from the average effect, which is greater than zero or than 

a minimally relevant effect), this would be indicative of a successful replication with a consistent 

immediate effect. In the following text, we focus on multilevel models and we first discuss a 

definition for successful replication, before presenting our main proposal for a definition of a 

successful and consistent replication. 
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Focus on Multilevel Modeling 

Multilevel models are one of the promising analytical alternatives for SCED data analysis (Van 

den Noortgate & Onghena, 2007) and they have been recommended in domains such as 

education (Dedrick et al., 2009), experimental psychology (DeHart & Kaplan, 2019), and 

aphasiology (Wiley & Rapp, 2019). Multilevel models were chosen as the focus of the current 

text, as they are applicable to different SCEDs and enable taking multiple data features into 

account (Pustejovsky et al., 2014; Shadish et al., 2013). For instance, unlike nonoverlap 

measures, multilevel models take autocorrelation into account (Baek & Ferron, 2013). Moreover, 

unlike the between-case standardized mean difference (Shadish et al., 2014) and the log response 

ratio (Pustejovsky, 2018), they do not assume absence of trend or require detrending. Moreover, 

multilevel models do not preclude using visual analysis (Davis et al., 2013). 

The focus of the current text is on the evidence obtained in a single study, using a SCED. 

This initial clarification is important for two reasons. One the one hand, replication in the SCED 

context can refer both to repeated demonstrations of a basic effect (e.g., a difference between two 

adjacent phases) in the same study (Ninci, 2019) and to the replication of effects across studies in 

relation to the way in which a practice can be established as being “evidence-based” (Jenson et 

al., 2007; Schlosser, 2009). On the other hand, multilevel models, which are the focus of the 

current text, have a noteworthy application for meta-analysis (Moeyaert, 2019; Van den 

Noortgate & Onghena, 2003a, 2003b). In the current text, we here focus on within-study 

replication and the use of multilevel models as in studies using multiple-baseline designs (Ferron 

et al., 2009). At the within-study level, the multilevel model usually includes two levels, whereas 

at the across-studies levels, it usually includes at least three-levels (Moeyaert, Ferron, et al., 

2014), although several variations are possible.  
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In the next section we discuss several possible ways in which consistency or results could be 

assessed when using multilevel models. Afterwards, we make a proposal and illustrate it with 

real data.  

Defining Successful Replication in the Context of a Multilevel Model 

A Ratio of Effects to No Effects 

The “replicability crisis” has been linked to the misuse and abuse of null hypothesis testing 

(Branch, 2019) and to the fact that p-values do not inform about the likelihood to replicate the 

effect observed in a given sample (Killeen, 2019). As stated previously, in the SCED context, the 

presence or absence of a basic effect is usually determined by visual analysis rather than by 

means of statistical tests (Maggin et al., 2018), and this effect has to be replicated several times 

within the same study (What Works Clearinghouse, 2020). For the most commonly used designs 

– multiple-baseline and reversal/withdrawal (Shadish & Sullivan, 2011) – the requirement is for 

three replications. However, the recommendation of three demonstrations of a basic effect (for 

direct replications), just like the requirement for the amount of evidence required for calling a 

practice “evidence-based” (see the 5-3-20 rule in Horner & Kratochwill, 2012), more closely 

related to systematic replications, do not take into account the number of attempts for replication 

that did not yield the expected positive result. Following Kratochwill et al. (2018), it is possible 

to distinguish between a “negative result” (absence of a demonstration of an effect or lack of 

evidence for effectiveness) and a “negative effect” (an iatrogenic effect of the intervention). The 

implications of these two different kinds of unexpected and undesired results are not identical. 

While a negative effect may more clearly provide evidence against an intervention, a lack of a 

positive result may lead to introducing methodological modifications (Tincani & Travers, 2018) 

or to identified relevant moderator variables related to the characteristics of participant and/or the 
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target behavior (Ledford et al., 2016). Such considerations are only possible if selective reporting 

of positive results does not take place (Shadish et al., 2016; Simmons et al., 2011).  

In summary, a given practice can be labelled as evidence-based, potentially evidence-

based, neutral/mixed effects, insufficient evidence, or negative effects according to the number 

of methodologically rigorous studies and their results (Cook et al., 2015). Specifically, for direct 

replication in the SCED context, it has been suggested that a ratio of at least 3:1 effects to no 

effects (with no evidence for negative effects) is necessary for demonstrating experimental 

control (Cook et al., 2015; Maggin et al., 2013). Incidentally, the 3:1 ratio suggested resembles 

the historically used critical ratio of three (Garrett, 1937), which usually related a mean 

difference to its standard error (e.g., Nolte, 1937). Before following the 3:1 ratio, it is necessary 

to define what an “effect” is; the following paragraphs in this section deal with this aspect.  

Defining What an “Effect” Is 

It may not be straightforward to define what an effect is when performing a visual analysis (see 

Wolfe et al., 2019), but we will not discuss this here, given that the focus is on multilevel 

models. In terms of quantifying, it may be more straightforward to objectively define an “effect”, 

but it is still not a flawless process. At the outset, we discard grounding the definition of an 

“effect” on the estimate of the fixed effect (e.g., whether it is greater than zero), because it only 

refers to the average and not to each of the replications. Moreover, we also discard using 

statistical significance as the sole basis for defining an effect. Apart from the usually mentioned 

interpretative drawbacks of a p-value (Gigerenzer, 2004; Nickerson, 2000), it is not clear that 

any extrapolation to a population is reasonable in absence of random sampling of individuals 

(Edgington & Onghena, 2007).  
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An initial option is to put the focus on the sign of the empirical Bayes estimates obtained for 

the individual treatment effects (Ferron et al., 2010). An individual treatment effect of the correct 

sign (indicating an improvement) would be interpreted as an “effect”. Subsequently, if the ratio 

of individual effects with the predicted sign to the effects with the opposite sign is at least 3:1, 

this could be interpreted as sufficient evidence for direct replication. Additionally, borrowing the 

logic of the difference between prep (replication of the correct sign) and psupport (replication of an 

effect size of a certain size or more; see Sanabria & Killeen, 2007), a minimally relevant 

difference can be determined prior to gathering the data for labeling the effect as significant. 

However, we consider the focus on the point estimate of the individual treatment effect may not 

be justified, given that these estimates are biased (Ferron et al., 2010).  

In order to take into account the precision of the estimates, a more stringent and probably 

more defensible option would be to count as an “effect”, the individual treatment effects whose 

confidence intervals are entirely on the predicted side of 0. That is, only intervals not containing 

zero would be considered positive effects. Analogously, it could be required for the confidence 

interval to exceed entirely a pre-specified minimally important difference. Therefore, the 

definition of a successful replication would be to require a 3:1 ratio of confidence intervals of the 

individual treatment effects not including zero or a minimally important difference. 

Obtaining Individual Treatment Effects in Multilevel Models 

When using multilevel models, it is necessary to construct a design matrix that represents the 

kind of effect that the researcher is interested in modelling (Moeyaert, Ugille, et al., 2014). In 

order to obtain the individual treatment effect estimates and their confidence intervals, the 

dummy variable representing the phase has to be included as a random effect but not as a fixed 

effect (Ferron et al., 2010; Van den Noortgate & Onghena, 2003a). The confidence intervals are 
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constructed assuming normal distributions and equal within-phase variances and covariances, on 

the basis of a noncentral t-distribution (Van den Noortgate & Onghena, 2003a). Moreover, 

Ferron et al. (2010) recommend constructing the confidence intervals on the basis of the 

Kenward-Roger method for estimating the degrees of freedom.   

It is noteworthy that, even if all individual treatment effects are greater than zero (or than the 

minimally relevant difference), this does not mean that they are similar in value. Thus, following 

this option we would have evidence on whether the replication is successful, but not whether it is 

consistent. We deal with consistency of effects in the following section.  

Defining Successful and Consistent Replication in the Context of a Multilevel Model 

More Loosely Related Antecedents: A Review of Quantifications of Heterogeneity 

The current text deals mainly with one of the two types of consistency: consistency of effects. In 

order to obtain some overall indication of the difference between conditions and to gain 

statistical power, “internal meta-analysis” of the results obtained in a single study has been 

suggested (Goh et al., 2016; Hales et al., 2019). In relation to meta-analysis, it could be 

considered that it provides a way to measure consistency or heterogeneity of effects (Swan et al., 

2020). Specifically, a possible quantification of the degree of (lack of) consistency, could stem 

from the heterogeneity test and quantifications. However, the Q-test can be expected to have low 

statistical power when few effect sizes (here, direct replications) are being quantitatively 

integrated (Lipsey & Wilson, 2001). Additionally, a drawback related to the descriptive 

quantification known as I2 (the proportion of true variance in effect sizes, with respect to the total 

observed variance), is that it is only a relative measure that may not be informative enough 

(Borenstein et al., 2017). Therefore, it seems that these two options cannot be meaningfully 
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borrowed from the general context of meta-analysis to adopt them for a quantification of 

consistency of effects at the within-study level.  

Two of the analytical procedures proposed for SCED data are noteworthy, due to the fact that 

they: (a) are directly applicable to studies including several participants; and (b) incorporate 

quantifications that can be useful for assessing consistency of effects, as an indicator of the 

degree to which direct replication has been achieved. The between-case standardized mean 

difference (BC-SMD; Hedges et al., 2012, 2013) yields, among other quantifications, an 

“intraclass correlation” (ICC) interpreted as the amount of variability across participants as a 

proportion of the whole variability (within and across participants). Therefore, this value could 

be understood to quantify the degree to which the data patterns are not consistent, with 0.3 as a 

possible cut-off value indicating consistency (Hedges et al., 2012). The ICC in the BC-SMD 

context can be understood as representing both the consistency of data in similar phases and the 

consistency of effects, because even if the average difference were the same for all participants, 

the ICC would not be equal to zero unless the phase means are also the same across participants. 

Thus, it is not a pure quantification of consistency of effects. 

In the context of multilevel models, an ICC can also be computed, with a similar 

interpretation as for the BC-SMD (see Dixon & Cunningham, 2006, for several interpretations). 

Actually, the ICC is usually computed for a null (also called unconditional or intercept-only) 

model without predictors, in order to verify whether a multilevel model is needed, i.e., whether 

there are relevant dependencies to be modelled (Gage & Lewis, 2014). Thus, its use, after the 

definitive model with predictors is built, is not that common. 

More Closely Related Antecedents: Quantifications of Consistency 
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Tanious, De, Michiels, et al. (2019) propose a quantification of consistency of effects, called 

CONEFF, referring to five data aspects, as present in the What Works Clearinghouse (2020) 

Standards: change in level (standardized mean difference), change in trend (using ordinary least 

squares estimation), change in variability (variance ratio), immediacy of the effect (the last three 

baseline phase measurements compared to the first three intervention phase measurements), and 

overlap between data from adjacent phases (using the Nonoverlap of All Pairs; Parker & 

Vannest, 2009). Actually, CONEFF could be applied to other ways of quantifying these five data 

features. In contrast, we here focus on the assessment of consistency of the change in level and 

change in slope, in the context of a multilevel model. As a strength of the current proposal, using 

multilevel models eliminates the ambiguity regarding exactly how to operatively define data 

features such as overlap and trend, both with multiple definitions suggested in the SCED context 

(see Parker et al., 2011, and Manolov, 2018, respectively).  

A quantification of consistency of data in similar phases, called CONDAP has been 

suggested for several SCEDs (Tanious, De, Michiels, et al., 2019; Tanious, Manolov, et al., 

2019). CONDAP can be accompanied by a randomization test in case randomization is present 

in the design (Tanious, De, & Onghena, 2019). CONDAP is based directly on the data, without 

referring to any analytical procedure or representation such as a mean line or a trend line. In 

contrast, we here propose an assessment of the consistency of data in similar phases related to 

the estimates of the intercept and baseline trend, according to a multilevel model. The aim is to 

fully benefit from the output of a multilevel analysis (e.g., interpreting individual treatment 

effects and random effects). Nevertheless, if desired, an additional quantification such as 

CONDAP can be used for an assessment of consistency of data patterns in similar phases that is 

not based on modeling. 
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Alternatives for Quantifying Consistency in the Context of a Multilevel Model 

Discussing Initial Options 

In the context of multilevel models, when the immediate change in level and the change in 

slope are modeled as random effects, it is possible to compute the variance in these effects. 

These variance estimates could then be used as an indicator of lack of consistency. One approach 

of doing so would be to argue that if a variance is not statistically significant, then a random 

effect is not necessary in the model, because there is not sufficient variability across participants 

in the treatment effect. However, there are three reasons why we do not recommend using the 

statistical significance of the variance as a criterion. First, there are different ways to assess 

statistically the importance of a random effect: via a Z test under the assumption that the 

sampling distribution of the variances is normal (Moeyaert, 2019) or comparing the deviance 

values (−2 times the log likelihood) of the models with and without the random effect via a chi-

square test (Hox, 2010). These two tests need not necessary coincide, and both are suspect with 

small sample sizes, because the variance estimates are biased in such contexts (Ferron et al., 

2009). Second, not rejecting the null hypothesis does not justify drawing a conclusion about 

similarity (Gigerenzer, 2004) and it is not the same as performing a test of statistical equivalence 

(Tryon, 2001). Third, a summary measure such as the variance and the evaluation of statistical 

significance seem excessively general ways of assessing consistency across individuals, as they 

collapse all the information about the variation in a single value (the estimate or the p-value). In 

contrast, in the SCED context, it is recommended to summarize the information in such a way as 

to maintain the information about each individual (Hagopian, 2020), which is also well-aligned 

with some statistical approaches for contrasting hypothesis for all participants, rather than on 

average (Klaassen, 2020). Accordingly, the proposal that we make in the following section 
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allows representing how much each individual effect differs from the average, rather than how 

much all individuals, on average, differ from the average. 

In order to help interpreting the variance, and not to focus exclusively on its associated p-

value, a coefficient of variation could be computed for each of the effects: immediate change in 

level and change in slope. The numerator would be the square root of the estimated variance of 

the effect and the denominator would be the absolute value of the corresponding fixed effect 

(i.e., estimated average). The coefficient of variation can be expressed as a percentage, but unlike 

the ICC or I2, it is relative to the average effect estimated, which may lead to more meaningful 

interpretations regarding whether this variability is considerable or not. In order to be referring to 

the coefficient of variation of as quantification of how consistent (or actually, not consistent) the 

effect is, the fixed effect estimate should be indicative of an effect being present. 

As a limitation of the use of the coefficient of variation, it has to be mentioned that a specific 

and universal cut-off point for a “small” coefficient of variation (and sufficient consistency to be 

interpreted as a successful and consistent replication) does not exist. A second, and more 

important, limitation is that there is evidence that the variance estimates can be biased1 for fewer 

than five participants in the study (Ferron et al., 2009; Moeyaert et al., 2017). A third limitation 

is that, in case the fixed effect estimate is very small (e.g., close to zero), a large coefficient of 

variation can be expected and this would reduce its informative value. Therefore, the coefficient 

                                                           
1 Ferron et al. (2009) use restricted maximum likelihood estimation report applied to data including an immediate 
and sustained change in level and report that the between-participants variance in the treatment effect was 
overestimated. In contrast, Moeyaert et al. (2017) generated data including both an immediate change in level and 
a change in trend and report that the between-participants variance in the immediate treatment effect was 
underestimated, both for full and restricted maximum likelihood estimation. For the evaluation of consistency, 
underestimating the variance of the effect would induce a false “evidence” for consistency (i.e., a false positive), 
whereas overestimating the variance would induce a false “evidence” against consistency (i.e., a false negative). 
The former is likely to be considered more detrimental, considering the alpha and beta error rates that are usually 
considered acceptable (Cohen, 1992). 
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of variation needs to be interpreted with caution. As an alternative, we present our main proposal 

next. 

A Proposal for Assessing Consistency of Individual Effects 

An alternative to using the variance estimate as the basis for assessing consistency, would be to 

use the random effect estimates. This proposal is similar to the previously mentioned possibility 

for assessing replication in that it is based on confidence intervals. For assessing replication, we 

focused on the confidence intervals for the individual intervention effects. In contrast, we here 

focus on the confidence intervals for the random effects (i.e., the difference between the fixed 

effect estimate and the individual treatment effect estimate). Specifically, it is possible to check 

how many of the confidence intervals for the random effects include 0. In this case, a value of 

zero for the random effect would represent an individual treatment effect equal to the fixed effect 

estimate (i.e., the average for all participants). In that sense, if the confidence interval for a 

random effect includes 0, then it would be plausible for the individual treatment effect to be 

equal to the average. This method of assessing consistency is strengthened by having longer 

observation series with less error variance, because studies that are designed in this manner will 

tend to have more precise estimates of the random effects (i.e., narrower confidence intervals 

that all include 0 make a stronger argument for consistency). With this option, it would still be 

necessary to check that fixed effect estimate exceeds zero or a minimally relevant value. Note 

that for obtaining the estimates of the random effects for the treatment effect, it is necessary to 

include the dummy variable representing the phase both in the fixed and in the random part of 

the equation.  

Once the number of positive and consistent effects is tallied, two quantifications are possible. 

On the one hand, it can be checked whether the ratio of effects to no effects meets or exceeds 
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3:1. On the other hand, the percentage of positive and consistent effects can be computed. 

Obviously, the 3:1 ratio corresponds to 75% of the confidence intervals for the random effects 

including 0. 

Illustrating the Assessment of Consistency of Effects: Lambert et al. (2006) Data 

The data on disruptive behaviors, gathered by Lambert et al. (2006) following an ABAB 

design replicated over nine participants, has been used in several articles that present and 

compare different analytical options (e.g., Michiels & Onghena, 2019b; Moeyaert, Ferron, et al., 

2014; Peng & Chen, 2015; Shadish et al., 2014). In terms of a quantification of consistency, we 

will comment the results of two of these articles. Shadish et al. (2014) applied the BC-SMD and 

obtained a bias-adjusted standardized mean difference equal to −2.51 and, more importantly for 

the current aim, an ICC equal to .03, suggesting the almost all the variability in scores is within 

participants, indicating consistent results across participants. Moeyaert, Ferron, et al. (2014) 

applied several multilevel models and we here focus on the model that quantifies the average 

difference in level, without considering trend or autocorrelation, presenting quantifications 

separately for the A1-B1 comparison and for the A2-B2 comparison (Model 1B in Moeyaert, 

Ferron, et al., 2014). For the change in level in the A1-B1 comparison, the variance reported is 

equal to 0, suggesting a marked consistency in the effect. For the change in level in the A2-B2 

comparison, the variance reported is equal to 1.02, with an associated p-value of .148, indicative 

of lower consistency, as compared to the effect in the A1-B1 comparison. The software used by 

Moeyaert, Ferron et al. (2014) for obtaining the estimates is SAS 9.3. In order to be able to use a 

caterpillar plot for representing the random effects, we used the R package called lme4 

(https://cran.r-project.org/web/packages/lme4/index.html). The data file used for the illustration 

https://cran.r-project.org/web/packages/lme4/index.html
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provided here can be downloaded from https://osf.io/p3bna/, where there is also a time series line 

plot representing the measurements obtained by Lambert et al. (2006).  

For this initial illustration (“Model.L1”), we apply a multilevel model which includes only a 

dummy variable representing phase and treats this dummy variable as a random effect. In that 

sense, the estimates obtained are the average baseline level and the average change in level when 

the intervention is introduced (as fixed effects) and the between case variance of these effects. 

The numerical results can be consulted from Table 1. Additionally, the individual empirical 

Bayes estimates for level and change in level were obtained, ranging from 5.86 to 7.47 for the 

baseline level and from −6.20 to −4.86 for the change in level. The graphical representation of 

the model can be consulted in Figure 1. 

 

Table 1 

Results from Applying Multilevel Models Representing Change in Level, Using the lme4 

Package. 

Aspect Average estimate Standard Error Standard Deviation 

Model.L1 for the Lambert et al. (2006) data 

Baseline level 7.00 0.34 0.76 

Change in level −5.79 0.43 0.62 

Model.L2 for the Lambert et al. (2006) data 

Baseline level 6.56 0.63 1.74 

Change in level −4.85 0.54 1.53 

Model.S1 for the Sherer and Schreibman (2005) data 

Baseline level 15.64 9.76 23.53 

Change in level 21.91 9.71 23.06 

Note. The average estimate represents the fixed effect, whereas the standard deviation 

represents the random effect 

https://osf.io/p3bna/
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Figure 1 

Graphical Representation of the Multilevel Model Representing Change in Level, Applied to the 

A1-B1 Comparisons from the Lambert et al. (2006) Data 

 

 

For the A1-B1 comparison, we obtained the caterpillar plot of the random effects represented 

in Figure 2, upper panel. It can be seen that eight out of nine confidence intervals (88.89% or a 

ratio of 8:1) include the fixed effect estimate (equal to −5.79 using the lme4 package vs. −5.66 
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reported by Moeyaert, Ferron, et al., 2014, using SAS). Additionally, the lower panel of Figure 

2, including the empirical Bayes estimates of the individual treatment effects (LevelChange), 

indicates that all nine point estimates suggest a reduction. Actually, eight of the individual effects 

exceed a reduction of five disruptive behaviors. However, a cut-off value for a minimally 

relevant difference would ideally be established prior to gathering the data. The coefficient of 

variation, dividing the square root of the variance by the estimate of the fixed effect would be 

100×(0.62423/|-5.7955|)=10.77%. 
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Figure 2 

The upper panel includes the caterpillar plot for the random effects their confidence intervals as 

obtained via a multilevel model and including only change in level, for the A1-B1 comparison 

from Lambert et al. (2006). The lower panel includes the empirical Bayes estimates of the 

individual treatment effects.  
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For the A2-B2 comparison (“Model.L2”), the graphical representation is available on Figure 3, 

whereas the numerical results regarding the fixed and random effects can be consulted from 

Table 1. Additionally, the individual empirical Bayes estimates for level and change in level 

were obtained, ranging from 4.18 to 8.52 for the baseline level and from −6.45 to −3.37 for the 

change in level. 

Figure 3 

Graphical Representation of the Multilevel Model Representing Change in Level, Applied to the 

A2-B2 Comparisons from the Lambert et al. (2006) Data 

 



22 

MULTILEVEL ANALYSIS: CONSISTENT EFFECTS 

Regarding the assessment of consistency, the caterpillar plot of the random effects is 

represented in Figure 4, upper panel. It can be seen that five out of nine confidence intervals 

(55.56% or a ratio of 1.25:1) include the fixed effect estimate (equal to −5.06 using the lme4 

package vs. −5.08 reported by Moeyaert, Ferron, et al., 2014, using SAS). Additionally, the 

lower panel of Figure 4, including the empirical Bayes estimates of the individual treatment 

effects, indicates that all nine point estimates suggest a reduction. However, greater variability in 

the A2-B2 effects is visible, as compared to the A1-B1 effects in the lower panel of Figure 2. 

Accordingly, the coefficient of variation, dividing the square root of the random effect by the 

estimate of the fixed effect, is larger than for the A1-B1 comparison: 100×(1.2349/|-

5.061032|)=24.40%. 
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Figure 4 

The upper panel includes the caterpillar plot for the random effects and their confidence 

intervals, as obtained via a multilevel model including only change in level, for the A2-B2 

comparison from Lambert et al. (2006). The lower panel includes the empirical Bayes estimates 

of the individual treatment effects. 
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Illustrating the Assessment of Consistency of Effects: Sherer and Schreibman (2005) Data 

In order to illustrate the results for a data set with lower consistency, we use the data on 

appropriate speech, gathered by Sherer and Schreibman (2005), using a multiple-baseline design 

across participants, and included in the illustration of multilevel modeling for meta-analysis by 

Moeyaert, Ferron, et al. (2014). Just as for the previous illustration, we apply a multilevel model 

(“Model.S1”) which includes only a dummy variable representing phase and treats this dummy 

variable as a random effect. The fixed and random effects can be consulted from Table 1. 

Additionally, the individual empirical Bayes estimates for level and change in level were 

obtained, ranging from −0.47 to 49.83 for the baseline level and from 1.10 to 56.82 for the 

change in level. The graphical representation of the model can be consulted in Figure 5. 
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Figure 5 

Graphical Representation of the Multilevel Model Representing Change in Level, Applied to the 

Sherer and Schreibman (2005) Data 
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Figure 6, upper panel, includes the caterpillar plot, according to which only one of the six 

confidence intervals (16.67%) includes the fixed effect estimate. The lower panel also illustrates 

the variability in the individual treatment effects, with two of them very close to zero. Similarly, 

according to the coefficient of variation, dividing the square root of the random effect by the 

estimate of the fixed effect, there is considerable variation: 100 × (23.059/|21.91|) =

105.24%. This variability is related to the presence of two different profiles of participants in the 

Sherer and Schreibman (2005) study: responders and nonresponders. We here used the data in 

order to illustrate a study with lack of consistency, without suggesting that it is necessarily 

meaningful to integrate quantitatively the results of all participants. The data file used for the 

illustration provided here can be downloaded from https://osf.io/p3bna/, where there is also a 

time series line plot representing the measurements obtained by Sherer and Schreibman (2005). 

  

https://osf.io/p3bna/
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Figure 6 

The upper panel includes the caterpillar plot for the random effects and their confidence 

intervals, as obtained via a multilevel model including only change in level, for the Sherer and 

Schreibman (2005) data. The lower panel includes the empirical Bayes estimates of the 

individual treatment effects. 
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Additional Illustration with More Complex Models: Consistency of Effects and Consistency in 

Similar Phases 

The illustrations presented in the text so far refer to the simplest model in which only a mean 

difference is modelled in absence of trend. In the current section, we present the results for a 

model that also includes general trend and change in trend after introducing the intervention. For 

such a model, it is most common to code and interpret the change in level as an immediate 

change taking place during the first intervention phase measurement occasion (Moeyaert, Ugille, 

et al., 2014). Moreover, there are two effects whose consistency can be assessed: the immediate 

change in level and the change in trend. Additionally, it is also possible to perform a more 

complete evaluation of the consistency of data in similar phases, by comparing the intercept 

(initial baseline level) and the baseline trend across participants. In contrast, in the previously 

presented simpler models, for performing an assessment of the consistency of similar phases, we 

could have only focused on the intercept, which then represented the average baseline level.  

The more complex model can be applied to the Lambert et al. (2006) data, because Moeyaert, 

Ferron, et al. (2014) and Shadish et al. (2014) also discuss possible baseline trends. We refer to 

this model as “Model.L3”: Table 2 includes the numerical results for fixed effect (baseline level, 

immediate change in level, baseline trend, and change in trend) and the standard deviations 

representing the random effects. Additionally, the individual empirical Bayes estimates were as 

follows: (a) for baseline level, ranging from 5.65 to 6.54; (b) for immediate change in level, 

ranging from −8.65 to −3.89; (c) for baseline trend, ranging from −0.05 to 0.25; and (d) for 

change in trend, ranging from −0.98 to 1.07. The graphical representation of the model can be 

consulted in Figure 7. 
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Table 2 

Results from Applying Multilevel Models Representing Immediate Change in Level and 

Change in Trend, Using the lme4 Package. 

Aspect Average estimate Standard Error Standard Deviation 

Model.L3 for the Lambert et al. (2006) data 

Baseline level 6.23 0.52 0.34 

Immediate change in level −7.05 0.09 1.66 

Baseline trend 0.15 0.94 0.11 

Change in trend −0.28 0.31 0.71 

Model.S2 for the Sherer and Schreibman (2005) data 

Baseline level 10.92 8.93 20.07 

Immediate change in level 4.93 8.29 6.89 

Baseline trend 0.14 0.29 0.31 

Change in trend 0.55 0.48 0.83 

Note. The average estimate represents the fixed effect, whereas the standard deviation 

represents the random effect 
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Figure 7 

Graphical Representation of the Multilevel Model Representing Immediate Change in Level and 

Change in Slope, Applied to the A1-B1 Comparisons from the Lambert et al. (2006) Data 

 

 

For assessing consistency, the caterpillar plot for the A1-B1 comparison is presented in Figure 

8. In terms of consistency of effect, all nine confidence intervals include the fixed effect estimate 

for the immediate change in level, whereas for the change in trend eight of the nine confidence 

intervals include the fixed effect estimate. According to the coefficient of variation, for the 
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immediate change in level, there is very small variability and high consistency: 100 ×

(0.423604/|−6.1857317|) = 6.85% . Given that the estimate for the change in trend is very 

close to zero (i.e., there is practically no change in trend), the coefficient of variation suggests 

less consistency (100 × (0.575299/|−0.2671592|) = 215.34%), but it should not be the main 

quantification for such a small effect. In terms of consistency of data in similar phases, focusing 

on the baseline, eight of the nine confidence intervals include the fixed effect estimate for the 

intercept and for the baseline trend. The coefficient of variation for the intercept is 100 ×

(0.424273/|6.2486904|) = 6.79%, whereas for the baseline trend is 100 × (0.081208/

|0.1432806|) = 56.68%. Once again, there is apparently lower consistency in baseline trend, 

but this is related to the data presenting almost no baseline trend on average. 
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Figure 8 

Caterpillar plot for the random effects of a multilevel model including trend, change in trend, 

and immediate change in level, for the A1-B1 comparison from Lambert et al. (2006).  

 

 

 

The visual inspection of the Sherer and Schreibman (2005) data suggest that there are 

different trends in the baseline and intervention phase, which makes the more complex model 

reasonable. We refer to this model as “Model.S2”: Table 2 includes the numerical results for 

fixed effect (baseline level, immediate change in level, baseline trend, and change in trend) and 

the standard deviations representing the random effects. Additionally, the individual empirical 
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Bayes estimates were as follows: (a) for baseline level, ranging from −1.71 to 37.46; (b) for 

immediate change in level, ranging from −5.63 to 11.55; (c) for baseline trend, ranging from 

−0.08 to 0.57; and (d) for change in trend, ranging from −0.68 to 1.27. The graphical 

representation of the model can be consulted in Figure 9. 

The caterpillar plot is presented on Figure 10. Regarding the consistency of effects, none of 

the six confidence intervals includes the fixed effect estimate for the immediate change in level, 

whereas for the change in trend two of the six confidence intervals include the fixed effect 

estimate. Accordingly, the coefficient of variation is very high in both cases: 100 ×

(4.55251/|2.584279|) = 176.16% for the immediate change in level and 100 ×

(0.71328/|0.552067|) = 129.20% for the change in trend. For the consistency of the baseline 

phases, none of the confidence intervals includes the fixed effect estimate of the intercept and 

only one includes the fixed effect estimate for the baseline trend. Accordingly, the coefficient of 

variation is very high in both cases: 100 × (16.85489/|10.99686|) = 153.27% for the 

intercept and 100 × (0.28957/|0.12886|) = 224.71% for the baseline trend.  

In summary, the graphical representation of the confidence intervals for the random effects 

can be used to distinguish between a data set with more consistent and successful replications 

(Lambert et al.) and a data set with lower consistency in similar phases and lower consistency in 

effects (Sherer and Schreibman). 
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Figure 9 

Graphical Representation of the Multilevel Model Representing Immediate Change in Level and 

Change in Slope, Applied to the Sherer and Shcreibman (2005) Data 
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Figure 10. Caterpillar plot for the random effects of a multilevel model including trend, change 

in trend, and immediate change in level, for the Sherer and Schreibman (2005) data.  
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Beyond Multiple-Baseline Designs 

Multilevel modelling in general and the current proposals for assessing consistency of effects 

at the within-study level is most straightforward for multiple-baseline designs. Actually, several 

reviews of published SCED research suggest that multiple-baseline designs are the most 

commonly used ones (Hammond & Gast, 2010; Shadish & Sullivan, 2011; Smith, 2012), present 

in more than half of the articles reviewed.  

For other SCEDs, some decisions need to be made before applying a multilevel model. For 

instance, for an across participant replicated ABAB, several design matrices are possible, 

allowing for different comparisons (Moeyaert, Ugille, et al., 2014). For an across participant 

replicated ATD, in case there is an initial baseline phase before the comparison phase with rapid 

alternation of conditions, it is possible to compare the baseline to each of the alternating 

conditions (Moeyaert, Ugille, et al., 2014). Otherwise, the average difference between the 

alternating conditions can be computed (Shadish et al., 2013). For a changing criterion design, 

one option is to compare the baseline phase to the last intervention subphase, i.e., for the final 

criterion level (Faith et al., 1996). Another option is to quantify the slope of the trend line across 

all intervention subphases (Shadish et al., 2013). It should be noted that for applying a multilevel 

model and for assessing the consistency of effects within a study, it is necessary to replicate the 

reversal/withdrawal, alternating treatments, or changing criterion design across participants. 

Once the appropriate design matrix is constructed and the multilevel analysis is carried out, the 

assessment of the consistency of effects can be performed as described in the previously 

presented examples. 
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Discussion 

The research on multilevel models in their application to a single study has primarily focused on 

studying the estimation of fixed and random effects, as well as the coverage of confidence 

intervals (e.g., Baek & Ferron, 2013; Ferron et al., 2009; Ferron et al., 2010; Ferron et al., 2014; 

Moeyaert et al., 2017), Type I error and power (Heyvaert et al., 2017), or dealing with count data 

(Declercq et al., 2019). Thus, the focus of the current text (namely, consistency of effects) is 

novel and it complements previous research. Moreover, the focus on consistency is well-aligned 

with recent research on the topic (Tanious, De, Michiels, et al., 2019; Tanious, Manolov et al., 

2019).  As a strength of the proposal made here, this assessment of consistency can be performed 

using a free user-friendly website and it can be easily represented visually. This makes it more 

likely to be accepted by applied researchers.  

The Assessment of Consistency in the Context of Model Building 

One of the questionable research practices mentioned in relation to the “replicability 

crisis” are the ambiguous choices regarding data analysis (Hantula, 2019), which could be 

countered by preregistering analysis plans (Hales et al., 2019). A multilevel model, just like 

using the BC-SMD (Shadish et al., 2014), imposes the same kind of quantification for all 

participants for whom the different conditions are being compared. Such an analytical practice 

avoids the possibility of adapting the analysis or the quantitative emphasis to the most salient 

features of the data. However, the flexibility of multilevel models comes with the price of many 

decisions that need to be made regarding the exact model to apply (Baek et al., 2016).  

In relation to model building, the decisions (e.g., include trend or not, which effects to 

include as random) could be made in relation to what is visible on the plots of raw data, but such 
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a practice leads potentially to overfitting (Baek et al., 2016; Hox, 2010). The subjective visual 

inspection can be complemented by fit indices (e.g., the Akaike or the Bayesian information 

criterion) for deciding whether a more complex model offers sufficient improvement in fit 

(Dedrick et al., 2009; Ferron et al., 2008). In that sense, more complex models are not 

necessarily desirable, given that they may entail estimation problems and require larger samples 

(Wiley & Rapp, 2019). A different kind of comparison across models can be made via sensitivity 

analysis: checking the degree to which the conclusions change, for different modeling options 

(Baek & Ferron, 2013; Moeyaert, Ferron, et al., 2014). 

In order to avoid excessively data-driven decisions and to reduce the possibility of 

overfitting, the model can be selected prior to data collection on the basis of theoretical 

considerations and previous evidence (Ferron et al., 2008; Onghena et al., 2018; Wiley & Rapp, 

2019). For instance, modeling baseline trend or not can be based on the expectations regarding 

spontaneous improvement (e.g., in neurorehabilitation, Krasny-Pacini & Evans, 2018) or on the 

knowledge about baseline stability (Baek et al., 2014), whereas modeling change in trend or not 

can be related to whether a gradual effect is expected (e.g., in academic interventions, Maggin et 

al., 2018). Additionally, if modeling trend is considered necessary, Shadish et al. (2013) suggest 

that random intercepts and random slopes are both needed for the proper modelling of 

autocorrelation. In fact, several illustrations of the use of multilevel models incorporating terms 

for trend, include both random intercepts and random slopes (e.g., Baek et al., 2014; Gage & 

Lewis, 2014; Moeyaert, Ferron, et al., 2014). In context of the current proposal, including 

random intercepts and random slopes allows for the assessment of consistency in similar phases 

(i.e., consistency of baseline level and baseline trend across cases) and consistency of effects 

(i.e., consistency of change in level and change in slope. 
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In summary, considering that all models are wrong (Box & Draper, 1987), trying out 

multiple models without an a priori basis may lead not only to capitalizing on chance, but also to 

ethical concerns (Levin et al., 2017). Thus, we recommend that the fundament for the model 

chosen should at least partially be related to the expectations stemming from the available 

literature, whereas visual analysis can still be used post hoc, in order to comment on the 

meaningfulness of these quantifications (Parker et al., 2006). Specifically in relation to the 

current proposal, including pre-defined criterion for what is considered to be a successful and 

consistent replication, as suggested here, is expected to lead to results that are less affected by the 

“researcher degrees of freedom” (Hantula, 2019). 

Software Considerations 

For the proposals made in the current text, we opted for a software implementation in R, because 

it offers the possibility to create a freely available menu-driven website, via the Shiny package. 

In contrast, software such as SAS (which has been previously presented for using multilevel 

models; Baek & Ferron, 2013; Ferron et al., 2014; Moeyaert, Ferron, et al., 2014; Moeyaert et 

al., 2013) is commercial and would require that the user works with programming code (syntax).   

Using the website https://manolov.shinyapps.io/ExpectedPattern/ it is possible to obtain both 

numerical results and graphical representations. The website provides an example of the 

expected data structure, whereas the example data sets used in the current text can be obtained 

from https://osf.io/p3bna/. Once a data file is located and loaded, it is possible to specify 

expectations such as the presence of baseline trend, or the immediacy of effect that help with 

choosing a multilevel model. After the expectations are specified, the quantitative results of 

multilevel models are obtained, along with line graphs representing the measurements for all 

https://manolov.shinyapps.io/ExpectedPattern/
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participants, with superimposed mean or trend lines. Additionally, caterpillar plots such as the 

ones included in the present text are also obtained. 

However, given that the topic is consistency, we have to mention that there may be 

inconsistencies between the different software programs used for carrying out multilevel models 

and even between different packages within R. Specifically, the nlme package (https://cran.r-

project.org/web/packages/nlme/index.html) allows modelling for autocorrelation, which can be 

considered an advantage given the evidence available on the presence of autocorrelation in 

SCED data (Shadish & Sullivan, 2011). In contrast, the lme4 package (https://cran.r-

project.org/web/packages/lme4/index.html) does not offer this option, but has two advantages as 

compared to the nlme package: (a) the possibility to use the Kenward-Roger correction for 

degrees of freedom when obtaining p values (Wiley & Rapp, 2019), and (b) the automatic 

construction of caterpillar plots. In relation to the topic of the current text, to the best of our 

knowledge, caterpillar plots cannot be easily constructed for the objects resulting from a 

applying a multilevel model via the nlme package. Therefore, an optimal solution (modelling 

autocorrelation, using Kenward-Roger degrees of freedom, and obtaining caterpillar plots) is 

apparently currently not possible in R. Thus, the caterpillar plots obtained via the website 

https://manolov.shinyapps.io/ExpectedPattern/ are based on models without autocorrelation. For 

the sake of completeness and comparability, the numerical results from both the nlme and the 

lme4 packages are included in the website.  

Alternatively, software like SAS could be used to estimate the multilevel models, which 

would facilitate construction of confidence intervals that reflect Kenward-Roger adjusted degrees 

of freedom, but would require additional work to construct the caterpillar plots. Finally, it should 

be noted that the results obtained with other pieces of software for multilevel models, such as 

https://cran.r-project.org/web/packages/nlme/index.html
https://cran.r-project.org/web/packages/nlme/index.html
https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/web/packages/lme4/index.html
https://manolov.shinyapps.io/ExpectedPattern/
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SAS PROC MIXED, MLwiN, SPSS Mixed, or HLM, cannot be expected to be completely 

identical. Therefore, despite the current developments and the software availability, more work is 

necessary for making all analytical options available across several instances of software in order 

to avoid suboptimal analyses. 

Limitations and Future Research 

The focus of the current text is on the quantification and graphical representation of the 

consistency of effects (i.e., direct replication) within a SCED study. Therefore, the illustrations 

are presented with verbal descriptions of the model building process. The reader interested in 

multilevel model building and formal presentation of the multilevel models within a single study, 

can refer to Baek et al. (2014), Dedrick et al. (2009), and Moeyaert, Ferron, et al. (2014). 

Provided that the focus is on within-study replication, we did not deal extensively with 

replication across studies. Although certain uses of SCEDs are not aimed at demonstrating the 

generality of the intervention effects (Riley-Tillman & Burns, 2009), if the aim is to establish the 

generalizability of the intervention effects, systematic replications across studies are relevant 

(Maggin, 2015; Onghena et al., 2018; Tate & Perdices, 2019), Even when generalization is 

desirable, the external validity in the SCED context is not an issue of statistical inference and 

extrapolation, but rather follows a more inductive approach (Kennedy, 2005). In this approach, 

the descriptions of participants, interventions, target behaviors, and settings are crucial (Maggin, 

2015; Tate et al., 2013) and the amount of generality can be understood as a continuum 

according to the number of variables (related to participants, target behaviors, and settings) that 

change across systematic replications across studies (Gast & Ledford, 2018; Riley-Tillman & 

Burns, 2009). In that sense, failing to replicate an effect allows for discovering the limitations of 

an intervention, which is also useful for prompting further modifications and further research for 
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understanding better the causes due to which an intervention does or does not work (Gast & 

Ledford, 2018). Finally, building the evidence about generality on the basis of a series individual 

studies makes the meta-analyses of the SCED studies and multilevel models relevant (Jenson et 

al., 2007; Onghena et al., 2018).   

Regarding the proposal of quantifying the percentage of random effect confidence intervals 

that include 0, it should be noted that this percentage is not expected to approximate any 

theoretically desirable quantity. In that sense, we are not quantifying how many of the 

confidence intervals in different samples or replications are including a population parameter, 

which would be equivalent to studying the coverage of a confidence interval (e.g., Baek et al., 

2019; Ferron et al., 2009; Moeyaert et al., 2017), expected to be .95 for a 95% confidence. 

Additionally, what we are proposing is not the same as estimating the capture percentage of an 

initial confidence interval in reference to the means of subsequent replications, expected to be 

equal to .83 for a 95% confidence (called “prediction interval for a replication mean” by 

Cumming, 2012). Therefore, for the percentage of random effects’ confidence intervals that 

include 0, there is not an exact cut-off point that suggests sufficient consistency, just like 

experimental control should be understood as a continuum and not as something that is either 

present or absent (Horner & Odom, 2014). The 3:1 ratio (Maggin et al., 2013) and the 

corresponding percentage of 75% is only an indication, but not a fixed criterion.  Nevertheless, it 

has been highlighted that statistical thinking is more important than applying mechanically a 

given ritual (Gigerenzer, 2004). 

In terms of the statistical properties of the quantifications proposed, some comments are 

necessary. There is evidence that the confidence intervals for the variance of the treatment effect 

(i.e., change in level) present undercovering (Ferron et al., 2009). However, it is unclear whether 
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this evidence can be extrapolated to each of the confidence intervals for the random effects (i.e., 

for the confidence intervals for the difference between the individual treatment effects and the 

fixed effect estimate). Similarly, it is not clear whether the evidence about the confidence 

intervals for the individual treatment effects (wider intervals, but better coverage when using the 

Kenward-Roger estimation of the degrees of freedom; Ferron et al., 2010) can be extrapolated to 

the confidence intervals for the difference between the individual treatment effects and the fixed 

effect estimate. Therefore, more research is needed on the latter.   
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Open Practices Statements 

The current text is not based on gathering data (e.g., in the context of an experiment). Therefore, 

there are no primary data or materials to be made available and there is no empirical study 

requiring preregistration. Nonetheless, the data used for the illustrations and the R code for 

constructing the caterpillar plots are available at https://osf.io/p3bna/. 
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