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Abstract. We find an explicit sequence of univariate polynomials of arbitrary
degree with optimal condition number. This solves a problem posed by Michael

Shub and Stephen Smale in 1993.

1. Introduction

1.1. The Weyl norm and the condition number of polynomials. Closely
following the notation of the celebrated paper [19], we denote by HN the vector space
of bivariate homogeneous polynomials of degree N , that is the set of polynomials of
the form

(1) g(x, y) =

N∑
i=0

aix
iyN−i, ai ∈ C

where x, y are complex variables. The Weyl norm of g (sometimes called Kostlan or
Bombieri-Weyl or Bombieri norm) is

‖g‖ =

(
N∑
i=0

(
N

i

)−1

|ai|2
)1/2

,

where the binomial coefficients in this definition are introduced to satisfy the property
‖g‖ = ‖g ◦ U‖ where U ∈ C2×2 is any unitary 2× 2 matrix and g ◦ U ∈ HN is the
polynomial given by g ◦ U(x, y) = g(U

(
x
y

)
). Indeed, with this metric we have

‖g‖2 =
N + 1

π

∫
P(C2)

|g(η)|2

‖η‖2N
dV (η),

where the integration is made with respect to volume form V arising from the
standard Riemannian structure in P(C2). Note that the expression inside the
integral is well defined since it does not depend on the choice of the representative
of η ∈ P(C2).

The zeros of g lie naturally in the complex projective space P(C2). The condition
number of g at a zero ζ is defined as follows. If the derivative Dg(ζ) does not vanish,
by the Implicit Function Theorem the zero ζ of g can be continued in a unique
differentiable manner to a zero ζ ′ of any sufficiently close polynomial g′. This thus
defines (locally) a solution map given by Sol(g′) = ζ ′. The condition number is by
definition the operator norm of the derivative of the solution map, in other words
µ(g, ζ) = ‖DSol(g, ζ)‖, where the tangent spaces Tg HN and TζP(C2) are endowed
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respectively with the Weyl norm and the Fubini–Study metric. In [17] it was proved
that

(2) µ(g, ζ) = ‖g‖ ‖ζ‖N−1|(Dg(ζ) |ζ⊥)−1|,

(the definition and theory in [17] applies to the more general case of polynomial
systems). Here, Dg(ζ) is just the derivative

Dg(ζ) =

(
∂

∂x
g(x, y),

∂

∂y
g(x, y)

)
(x,y)=ζ

and Dg(ζ) |ζ⊥ is the restriction of this derivative to the orthogonal complement of

ζ in C2. If this restriction is not invertible, which corresponds to ζ being a double
root of g, then by definition µ(g, ζ) =∞.

Shub and Smale also introduced a normalized version of the condition number
since it turns out to produce more beautiful formulas in the later development of the
theory (very remarkably in the extension to polynomial systems), see for example
[5] or [9]. In the case of polynomials it is simply defined by

(3) µnorm(g, ζ) =
√
N µ(g, ζ) =

√
N ‖g‖ ‖ζ‖N−1|(Dg(ζ) |ζ⊥)−1|.

The normalized condition number of g (without reference to a particular zero) is
defined by

µnorm(g) = max
ζ∈P(C2):g(ζ)=0

µnorm(g, ζ).

Now, given a univariate degree N complex polynomial P (z) =
∑N
i=0 aiz

i, it has a

homogeneous counterpart g(x, y) =
∑N
i=0 aix

iyN−i. The condition number and the
Weyl norm of P are defined via its homogenized version

‖P‖ = ‖g‖, µnorm(P, z) = µnorm(g, (z, 1)),

µnorm(P ) = µnorm(g) = max
z∈C:P (z)=0

µnorm(P, z).

A simple expression for the condition number of a univariate polynomial (see for
example [1]) is

(4) µnorm(P, z) = N1/2 ‖P‖(1 + |z|2)N/2−1

|P ′(z)|
,

and we have µnorm(P, z) =∞ if and only if z is a double zero of P . For example,
the condition number of the polynomial zN − 1 is equal at all of its zeros and

(5) µnorm(zN − 1) = N1/2 ‖zN − 1‖2N/2−1

N
=

2N/2−1/2

√
N

.

(Note that the same computation gives a slightly different result in [19, p. 7]; the
correct quantity is (5)).

1.2. The problem of finding a sequence of well–conditioned polynomials.
In [18] it was proved that, if P is uniformly chosen in the unit sphere of HN (i.e.
the set of polynomials of unit Weyl norm, endowed with the probability measure
corresponding to the metric inherited from HN ) then µnorm(P ) is smaller than N
with probability at least 1/2. Indeed, as pointed out in [19], with positive probability
a polynomial of degree N with µnorm(P ) ≤ N3/4 can be found. In other words,
there exist plenty of degree N polynomials with rather small condition number.

Indeed, the least value that µnorm can attain for a degree N polynomial seems to
be unknown. We prove in Section 3 the following lemma.

Lemma 1.1. There is a universal constant C such that µnorm(P ) ≥ C
√
N for every

degree N polynomial P .
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Despite the existence of well–conditioned polynomials of all degrees, explicitly
describing such a sequence of polynomials was proved to be a difficult task, which
lead to the following:

Problem 1.2 (Main Problem in [19]). Find explicitly a family of polynomials PN
of degree N with µnorm(PN ) ≤ N .

By “find explicitly” Shub and Smale meant “giving a handy description” or
more formally describing a polynomial time machine in the BSS (Blum-Shub-Smale)
model of computation describing PN as a function of N . Indeed, Shub and Smale
pointed out that it is already difficult to describe a family such that µnorm(PN ) ≤ Nk

for any fixed constant k, say k = 100 (this would be considered a well–conditioned
sequence of polynomials, or we would just say that the PN are well–conditioned).
Despite the existence of many well conditioned polynomials, we cannot even find
one! This fact was recalled by Michael Shub in his plenary talk at the FoCM 2014
conference where he referred to the problem as finding hay in the haystack.

Remark 1.3. Note that to solve Problem 1.1, only the assymptotic behaviour as N
goes to infinity is important. We will use a standard procedure in complexity theory
to deal with the first terms. Assume that a BSS algorithm T that runs in polynomial
time is designed such that for sufficiently large N ≥ N0 its output is a polynomial
PN with µ(PN ) ≤ N . The exact value of N0 is not needed to be known but it must
be some fixed natural number. Consider the BSS algorithm that on input N ≥ 1
runs in parallel the two following methods:

• Run T on input N .
• Enumerate all the polynomials P of degree N whose zeros have rational

coefficients, starting with rationals containing 1 or less digits, then rationals
with 2 or less digits, and so on, and check whether µ(P ) ≤ N or not.

For N ≥ N0 the first method T will finish in time which is polynomial on N . For
all N ≤ N0 polynomials with µ(PN ) < N are known to exist, they form an open set
by the continuity of µ, and they will be found by the second method in a time which
is bounded by a constant (which depends on N0 that is fixed). We thus conclude
that this BSS algorithm runs in polynomial time and formally solves Problem 1.2.
In other words: the explicit answer to Problem 1.2 only requires to be found for
sufficiently large N , there is no need to specify how large N must be.

One of the reasons that lead Shub and Smale to pose the question above was the
possible impact on the design of efficient algorithms for solving polynomial equations.
In short, a homotopy method to solve a target polynomial P1 will start by choosing
another polynomial of the same degree P0 all of whose roots are known and will try
to follow closely the path of solutions of the polynomial segment Pt = (1− t)P0 + tP1.
Shub and Smale noticed that if P0 has a large condition number then the resulting
algorithm will be unstable, thus the interest in finding an explicit expression for some
well–conditioned sequence. The reverse claim (that a well conditioned polynomial
will produce efficient and stable algorithms) is quite nontrivial, yet true: it was
proved in [8] that if P0 has a condition number which is bounded by a polynomial
in N then the total expected complexity of a carefully designed homotopy method
is polynomial in N for random inputs. The question of finding a good starting pair
for the homotopy (which is the core of Smale’s 17th problem [20]) has actually been
solved by other means even in the polynomial system case, see [3, 8, 12] that solve
Smale’s 17th problem and subsequent papers which improve on these results. Yet,
Problem 1.2 remained unsolved. It was also included as Problem 12 in [9, Chpt:
Open Problems], and there were several unsuccesful attempts to solve it via some
particular constructions of polynomials that seemed to behave well (remarkably
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there exists an explicit unpublished example by Pierre Lairez that seems to satisfy
µ(PN ) ≈

√
N/2), but only numerical data was produced.

1.3. Relation to spherical points and Smale’s 7th problem. Given a point
z ∈ C we denote by ẑ the point in S2 = {(a, b, c) ∈ R3 : a2 + b2 + c2 = 1}
obtained from the stereographic projection. That is if we denote ẑ = (a, b, c) then
z = (a+ ib)/(1− c) and conversely

a =
z + z̄

1 + |z|2
, b =

z − z̄
i(1 + |z|2)

, c =
|z|2 − 1

1 + |z|2
.

Given P (z) =
∏N
i=1(z − zi) we consider the continuous function P̂ : S2 → R

defined as P̂ (x) =
∏N
i=1 |x − ẑi|. Moreover for any given zero ζ of P we define

P̂ζ(x) = P̂ (x)/|x− ζ̂|, that in the case x = ζ = ẑi for some i simply means

P̂zi(ẑi) =
∏
j 6=i

|ẑi − ẑj |.

With this notation, [19, Proposition 2] claims that

(6) µnorm(P, ζ) =
1

2

√
N(N + 1)

‖P̂‖L2(dσ)

P̂ζ(ζ̂)
,

where dσ is the sphere surface measure, normalized to satisfy σ(S2) = 1 (note that
in [19, Proposition 2] the sphere is the Riemann sphere which has radius 1/2; we
present the result here adapted to the unit sphere S2). In other words, we have

(7) µnorm(P ) =
1

2

√
N(N + 1) max

1≤i≤N

(∫
S2
∏N
j=1 |p− ẑj |2dσ(p)

)1/2

∏
j 6=i |ẑi − ẑj |

.

Now we describe the main result in [19]. For a set of points ẑ1, . . . , ẑN in the unit
sphere S2 ⊆ R3, we define the logarithmic energy of these points as

E(ẑ1, . . . , ẑN ) =
∑
i6=j

log
1

|ẑi − ẑj |

(note that in [19] the sum is taken over i < j instead of i 6= j, which is equivalent to
dividing E by 2. Here we follow the notation in most of the current works in the
area). Let

EN = min
ẑ1,...,ẑN∈S2

E(ẑ1, . . . , ẑN ).

Theorem 1.4 (Main result of [19]). Let ẑ1, . . . , ẑN ∈ S2 be such that

E(ẑ1, . . . , ẑN ) ≤ EN + c logN,

for some constant c independent of N. Let z1, . . . , zN be points in C that are the
image by the inverse stereographic projection of ẑ1, . . . , ẑN . Then, the polynomial

P (z) =
∏N
i=1(z − zi) with zeros z1, . . . , zN satisfies µnorm(P ) ≤

√
N1+c(N + 1).

Theorem 1.4 shows that if one can find N points in the sphere such that their
logarithmic potential is very close to the minimum then one can construct a solution
to (the polynomial version of) Problem 1.2. Actually, this fact is the reason for the
exact form of the problem posed by Shub and Smale that is nowadays known as
Problem number 7 in Smale’s list [20]:

Problem 1.5 (Smale’s 7th problem). Can one find ẑ1, . . . , ẑN ∈ S2 such that
E(ẑ1, . . . , ẑN ) ≤ EN + c logN for some universal constant c?
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The value of EN is not sufficiently well understood. Upper and lower bounds
were given in [6, 10,15,21], and the last word is [4] where this value is related to the
minimum renormalized energy introduced in [16] proving the existence of a term
Clog N in the assymptotic expansion. The current knowledge is

(8) EN = κN2 − 1

2
N logN + Clog N + o(N),

where Clog is a constant and

(9) κ =

∫
S2

∫
S2

log |x− y|−1 dσ(x)dσ(y) =
1

2
− log 2 < 0

is the continuous energy. Combining [10] with [4] it is known that

−0.2232823526 . . . ≤ Clog ≤ 2 log 2 +
1

2
log

2

3
+ 3 log

√
π

Γ(1/3)
= −0.0556053 . . . ,

and indeed the upper bound for Clog has been conjectured to be an equality using
two different approaches [4, 7].

Throughout the paper we denote by C a constant that may be different in each
instance that appears. By f . g we mean that there is a universal constant C > 0
(i.e. independent of N) such that f ≤ Cg and we write f h g if there is a universal
constant C > 0 such that C−1f ≤ g ≤ Cf .

1.4. Main result. Smale’s 7th problem seems to be more difficult than Problem
1.5. The main result in this paper is a complete solution to the latter.

We construct the polynomials PN , solving Problem 1.2, by specifying their N
zeros. A detailed account of the construction of the zeros will be given in Section 4
but an sketch is as follows. First, we choose parallels, symmetric with respect to the
equator, and associated to each parallel we define a band centered at the parallel.
The number of zeros per band should be equal to N times the area of the band.
Due to technical reasons, basically the use of Simpson rule, we split the zeros in
each band in three parallels corresponding to the bottom, middle and top parallel
of the band. More precisely, we place the integer division of the number of zeros of
each band by six equispaced at the bottom parallel and we do the same with the
top parallel. Finally, we place all the other zeros equispaced in the middle parallel.
Our construction has some similarities, and also some crucial differences, with that
of Section 2 in [21].

In the following definition N will correspond to the total number of zeros, 2M − 1
to the number of parallels and rj to the number of zeros in the jth band.

Definition 1.1. For all N ≥ 1, the positive integers M(N), r1(N), . . . , rM (N) form
an admissible set if there exist constants C1, C2 > 0, independent of N, such that

• N = rM (N) + 2(r1(N) + · · ·+ rM−1(N)), and
• C1j ≤ rj(N) ≤ C2j for 1 ≤ j ≤M(N),

for all N ≥ 1. To simplify the notation we will drop the dependence on N and say
that M, r1, . . . , rM is an admissible set. Note the role of the constants C1 and C2:
once they are fixed they must be valid for all N . We could fix them now for the rest
of the paper, say C1 = 1 and C2 = 16, but we prefer to keep our results as general
as possible.

For a given N , there exist in general many choices of M and r1, . . . , rM satisfying
the conditions above, for example the one provided by the following lemma. For
t ∈ (0,∞), by btc we denote the largest integer that is less than or equal to t.

Lemma 1.6. Let N ≥ 16. Then, the integers M, r1, . . . , rM defined by

• M = b
√
N/4c ≥ 2.
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• rj = 4j − 1 for 1 ≤ j ≤M − 1.
• rM = N − 2(r1 + · · ·+ rM−1) = N − 4M2 + 6M − 2.

form an admissible set.

Proof. The only item to be checked is that, for example, M ≤ rM ≤ 16M . This is
trivially implied by the choice of M that guarantees 4M2 ≤ N ≤ 4M2 +8M +4. �

We can now state our solution to Problem 1.2.

Theorem 1.7. For all N ≥ 1 let M, r1, . . . , rM be an admissible set of integers.
Define the the parallel heights

hj = 1− 2

N

j−1∑
k=1

rk −
rj
N
, Hj = hj −

rj
N
,

for 1 ≤ j ≤ M − 1, and let rj = 6sj + remj with remj ∈ {0, . . . , 5} for 2 ≤
j ≤ M. Then there exist a constant C > 0 such that the polynomials PN (z) =

P
(1)
N (z)P

(2)
N (z)P

(3)
N (z)P

(4)
N (z) with

P
(1)
N (z) =(z4sM+remM − 1) (zr1 − ρ(h1)r1) (zr1 − 1/ρ(h1)r1) ,

P
(2)
N (z) = (zs2 − ρ(H1)s2) (zs2 − 1/ρ(H1)s2) ,

P
(3)
N (z) =

M−1∏
j=2

(
z4sj+remj − ρ(hj)

4sj+remj
) (
z4sj+remj − 1/ρ(hj)

4sj+remj
)
,

P
(4)
N (z) =

M−1∏
j=2

(
zsj+sj+1 − ρ(Hj)

sj+sj+1
) (
zsj+sj+1 − 1/ρ(Hj)

sj+sj+1
)
,

where if s2 = 0 or if sj + sj+1 = 0 the corresponding term is removed from the

product and ρ(x) =
√

(1− x)/(1 + x) satisfy

µnorm(PN ) ≤ C
√
N.

For a given N , there exist many choices of allowable integers M, r1, . . . , rM and,
for all these choices, the corresponding polynomial satisfies µnorm(PN ) ≤ C

√
N . As

an illustration, in Figure 1 the normalized condition number of the polynomials
compared to

√
N corresponding to Lemma 1.6 is approximated numerically. In

particular, it is easy to write down different choices with desired properties. For
example, one can choose to produce polynomials with rational coefficients or search
for the choice that gives, for fixed N , the smallest value of µnorm.

Figure 1. Numerical approximation of µnorm(pN )/
√
N for pN as

in Lemma 1.6 up to degree 595. The peaks correspond to changes
in the value of M as N increases.
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Remark 1.8. Theorem 1.7 shows much more than asked in Problem 1.2 since we get
sublinear growth of the condition number. The presence of the (uncomputed) constant

C is not an issue since for sufficiently large N we will have C
√
N ≤ N and hence

from Remark 1.3 our Theorem 1.7 fully answers Problem 1.2 above. However, our
construction allows explicit computation of the constants in sacrifize of generality of
the results. Some particular choices of sequences with explicit constants are currently
being investigated by the first author and Fátima Lizarte.

Remark 1.9. From Lemma 1.1, the condition number of our sequence of polynomials
can at most be improved by some constant factor.

1.5. Atomization of the logarithmic potential. Theorem 1.7 will be proved by
atomizing the surface measure in S2 and approximating the logarithmic potential of
the continuous surface measure by a potential generated by a measure consisting of
equal-weighted atoms. This atomization is a well-known technique in non-harmonic
Fourier analysis [13,14].

The heuristic argument is that if one places the atoms evenly distributed acording
to the surface measure, the discrete potential will mimic the continuous potential
which is constant on the sphere and therefore the numerator and the denominator
in (7) will both be very similar. Then, the polynomial whose zeros are the inverse
stereographic projection of this point set will be well conditioned.

Theorem 1.10. Let PN be the set of N points in S2 defined in as Section 4. Let
dist(p,PN ) be the distance from p ∈ S2 to PN and κ = 1/2 − log 2. Then, for all

p ∈ S2 we have
√
N dist(p,PN ) . 1 and moreover

(10)

N∑
i=1

log |p− pi|+ κN − log
(√

N dist(p,PN )
)

= O(1).

Equivalently,

(11)

∏N
i=1 |p− pi|2

e−2κNN dist2(p,PN )
h 1, ∀p ∈ S2, ∀N.

Remark 1.11. In the case that p = pi for some i ∈ {1, . . . , N}, (11) reads∏N
j 6=i |pi − pj |2

e−2κNN
h 1.

Proof of Theorem 1.7. Our main theorem follows immediately from Theorem
1.10 and (7). Indeed, we take the polynomial PN in Theorem 1.7 to be the one
whose zeros correspond, under the stereographic projection, to the spherical points
PN in Theorem 1.10, as defined in Section 4, when the points distributed in each
parallel of latitude t are rotated to contain the point (

√
1− t2, 0, t). As a result,

from (7) and Remark 1.11

µnorm(PN ) .
√
N(N + 1)

√
Ne−κN

(∫
S2 dist2(p,PN )dσ(p)

)1/2
√
Ne−κN

.
√
N.

�

2. Organization of the paper

In Section 3 we prove a sharp lower bound for the condition number of any
polynomial, Lemma 1.1. In Section 4 we construct the set of points PN in S2 used in
Theorem 1.10 and which give the zeros of the polynomials PN in Theorem 1.7. We
study also the separation properties of PN . In Section 5 we prove some preliminary
results comparing the discrete and the continuous potential in a parallel and the
potential in three parallels with the potential in a band. Finally we prove Theorem
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1.10 at the end of Section 6 as a consequence of the comparison between the discrete
potential, the potential in parallels and the continuous potential.

3. Lower bound for the condition number

In this section we prove Lemma 1.1

Proof. Recall that from (7)

µnorm(P ) =
1

2

√
N(N + 1)

R

S
,

with

R =

(∫
S2

N∏
i=1

|p− ẑi|2 dσ(p)

)1/2

, S = min
i=1...N

∏
j 6=i

|ẑi − ẑj |.

Here, P (z) =
∏N
i=1(z − zi) and ẑi are the associated points in the unit sphere. We

bound separately R and S. Using Jensen’s inequality we have

logR =
1

2
log

∫
S2

N∏
i=1

|p− ẑi|2 dσ(p) ≥ 1

2

∫
S2

log

N∏
i=1

|p− ẑi|2 dσ(p) =

N∑
i=1

∫
S2

log |p− ẑi| dσ(p) = −κN,

and hence R ≥ e−κN , where κ is as in (9) due to rotational invariance. For bounding
S, note that from (8)

−
N∑

i,j=1

i 6=j

log |ẑi − ẑj | ≥ κN2 − N

2
logN − CN,

for some C > 0. On the other hand,

−
N∑

i,j=1

i 6=j

log |ẑi − ẑj | = − log

 N∏
i=1

∏
j 6=i

|ẑi − ẑj |

 ≤ − log(SN ) = −N logS.

From

− log(SN ) ≥ κN2 − N

2
logN − CN,

we get

S . e−κN
√
N,

proving R/S & 1/
√
N. The lemma follows. �

4. Construction of the point set PN
In this section, we define the set of points PN = {p1, . . . , pN} ⊂ S2 appearing

in Theorem 1.10. The images of these points through the stereographic projection
are the zeros of the polynomials in Theorem 1.7. The set PN will be a union of
equidistributed points in symmetric parallels with respect to the xy plane. The
construction is similar to the one in [2].

For all N ≥ 1, let M, r1, . . . , rM be an admissible set of integers as in Definition
1.1, i.e.

N = 2(r1 + . . .+ rM−1) + rM ,

and

C1j ≤ rj ≤ C2j,
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for all 1 ≤ j ≤M, for some fixed constants C1, C2 > 0. Symmetrically, define

rM+1 = rM−1, . . . , r2M−1 = r1.

We denote the parallels in S2 by

Qh = {(x, y, z) ∈ S2 : z = h}, −1 ≤ h ≤ 1.

We choose parallel heights 1 = H0 > H1 > · · · > HM−1 > 0 and symmetrically
HM+j = −HM−(j+1) for j = 0, . . . ,M − 1. For 1 ≤ j ≤ 2M − 1 we define the bands

Bj = {(x, y, z) ∈ S2 Hj ≤ z ≤ Hj−1},

where B1, B2M−1 are spherical caps. Then S2 =
⋃2M−1
j=1 Bj and if we define

Hj = 1− 2

N

j∑
k=1

rk 0 ≤ j ≤ 2M − 1,

we have that

σ(Bj) =
Hj−1 −Hj

2
=
rj
N
, 1 ≤ j ≤ 2M − 1,

where recall that σ is the sphere surface measure with σ(S2) = 1. We consider also
parallels with heights

hj =
Hj−1 +Hj

2
= Hj−1 −

rj
N

= Hj +
rj
N

= 1− 2

N

j−1∑
k=1

rk −
rj
N
,

for 1 ≤ j ≤ 2M − 1, and observe that hM = 0 and hM+j = −hM−j for j =
1, . . . ,M − 1.

Observe that for 1 ≤ j ≤M

(12) 1− C2j
2

N
≤ hj ≤ 1− C1j

2

N
, 1− C2j(j + 1)

N
≤ Hj ≤ 1− C1j(j + 1)

N

and
(13)

−1+
C1j

2

N
≤ h2M−j ≤ −1+

C2j
2

N
, −1+

C1j(j − 1)

N
≤ H2M−j ≤ −1+

C2j(j − 1)

N
.

Note that we have

C1M
2 = C1M + 2

M−1∑
j=1

C1j ≤ N ≤ C2M + 2

M−1∑
j=1

C2j ≤ C2M
2.

Now we describe the construction of the points in PN . The main idea in the
construction is to be able to compare the discrete potential with the potential in
parallels and this, in turn, with the potential in a band. To be able to match the
potentials we take rj points of PN in the band Bj , which has area rj/N . Then, on
each band we place the points equispaced in parallels. As we use Simpson rule (see
Lemma A.1) to control the error between the potential in bands and in parallels,
we consider three parallels on each band QHj−1 , Qhj , QHj and split the rj points
as the weights in Simpson rule (1/6, 4/6, 1/6) with the corresponding correction in
case rj is not a multiple of 6.

More specifically, given the points rj above, we define r̃1 = r̃2M−1 = 0 and
rj = r̃j + remj for 2 ≤ j ≤ 2M − 2 where r̃j is a multiple of 6 and 0 ≤ remj ≤ 5.
Note that in Theorem 1.7 we denote r̃j = 6sj . Then finally

• we take r1 points equidistributed in Qh1
, and similarly r2M−1 = r1 points

equidistributed in Qh2M−1
= Q−h1

.
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• For 2 ≤ j ≤ 2M − 1, we take
4r̃j
6 + remj points equidistributed at Qhj ,

r̃j−1+r̃j
6 points equidistributed in the upper boundary parallel QHj−1 and

for 1 ≤ j ≤ 2M − 2 we take
r̃j+r̃j+1

6 points equidistributed in the lower
boundary parallel QHj .

4.1. Geometric properties of the set PN . From the results in this section it
follows that the points in PN are uniformly separated i.e. for each p, q ∈ PN distinct

dist(p, q) & 1/
√
N,

and they are relatively dense i.e. for all p ∈ S2 we have that

dist(p,PN ) . 1/
√
N,

and therefore the first statement in Theorem 1.10. Indeed, in the following three
lemmas we prove that the distance between two neighboring points of PN in the
same parallel, and the distance between consecutive parallels, are both of order
1/
√
N.

Lemma 4.1. For h, c ∈ (−1, 1) with |h| ≤ |c| and |h− c| ≤ 1/4 we have

dist(Qc, Qh) h
|h− c|√
1− h2

.
|h− c|√
1− c2

.

Proof. Note that dist(Qc, Qh) ≤ 1 and we can write also

dist(Qc, Qh) = 2 sin
ϕ

2
,

where ϕ is the angular distance from Qc to Qh. Moreover,

ϕ = 2 arcsin
dist(Qc, Qh)

2
≤ 2 arcsin

1

2
=
π

3
.

We first prove the lower bound. Note that for ϕ ∈ [0, π/3]

dist(Qc, Qh) = 2 sin
ϕ

2
≥ ϕ

2
& | arcsin(h)− arcsin(c)| = |h− c|√

1− ζ2

for some ζ in the interval with endpoints c and h. Now, if c and h have both the same

sign then
√

1− ζ2 ≤
√

1− h2 and we are done. Moreover, if |h| ≤ 1/2 then |c| ≤ 3/4

and
√

1− ζ2 h 1 h
√

1− h2. These are all the cases to cover since |h − c| ≤ 1/4

excludes other situations. We have proved that dist(Qc, Qh) & |h− c|/
√

1− h2.
For the upper bound, again using the same argument we can assume that

1/2 ≤ h ≤ c ≤ 1. Then,

2 sin
ϕ

2
. sinϕ = | sin(arcsin(h)− arcsin(c))| = |h

√
1− c2 − c

√
1− h2| =

c2 − h2

h
√

1− c2 + c
√

1− h2
.

c− h√
1− h2

.

�

Lemma 4.2. The distance between two neighboring points of PN in the same
parallel is of order 1/

√
N , i.e.√

1− h2
j

rj
h

1√
N
,

√
1−H2

j

rj
h

1√
N

where the first claim is valid for 1 ≤ j ≤ 2M − 1, and the second one is valid for
1 ≤ j ≤ 2M − 2. In particular, this implies

1− h2
j

1−H2
j

h 1, 1 ≤ j ≤ 2M − 2
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and similarly
1− h2

j

1−H2
j−1

h 1, 2 ≤ j ≤ 2M − 1.

Proof. By symmetry we can assume that j ≤M . Then, hj ≥ 0 and hence
√

1− h2
j h√

1− hj , which from (12) yields√
1− h2

j

rj
h
√

1− hj
j

h
1√
N
.

The inequality for Hj is proved in a similar way. �

Lemma 4.3. The distance between consecutive parallels is of order 1/
√
N , i.e.

dist(QHj−1
, Qhj ) h

1√
N
, dist(QHj , Qhj ) h

1√
N
.

Proof. By symmetry, we can assume that hj ≥ 0, that implies |hj | ≤ |Hj−1|. From
Lemmas 4.1 and 4.2 we have

dist(QHj−1
, Qhj ) h

rj/N√
1− h2

j

h
1√
N
.

The other inequality is proved in a similar way. �

5. Comparison of discrete potentials, parallels and bands

For −1 ≤ h ≤ 1 and p ∈ S2 we denote

fp(h) =

∫ 2π

0

log |p− γh(θ)| dθ
2π
,

where γh(θ) = (
√

1− h2 cos θ,
√

1− h2 sin θ, h). In words, fp(h) is the mean value
of log |p− q| when q lies in the parallel Qh. For −1 ≤ c, z ≤ 1 we denote

R(c, z) = 6
√

1− c2(1− z2) + 8(1− z2)3/2.

Lemma 5.1. Let γh(θ) = (
√

1− h2 cos θ,
√

1− h2 sin θ, h), θ ∈ [0, 2π] be a parame-
trization of Qh, and let p = (a, b, c) ∈ S2 \Qh. Then,∣∣∣∣ d3

dθ3
log |p− γh(θ)|

∣∣∣∣ ≤ √
1− h2

|p− γh(θ)|
+

R(c, h)

|p− γh(θ)|3
.

Proof. We can assume that p = (
√

1− c2, 0, c) and denote γh = γ. Let F (θ) =
log |p− γ(θ)| and note that, as 〈γ′(θ), γ(θ)〉 = 0

F ′(θ) = −〈p− γ(θ), γ′(θ)〉
|p− γ(θ)|2

= − 〈p, γ
′(θ)〉

|p− γ(θ)|2
,

(14) F ′′(θ) = − 〈p, γ
′′(θ)〉

|p− γ(θ)|2
− 2〈p, γ′(θ)〉2

|p− γ(θ)|4
,

and

F ′′′(θ) = − 〈p, γ
′′′(θ)〉

|p− γ(θ)|2
− 6〈p, γ′′(θ)〉〈p, γ′(θ)〉

|p− γ(θ)|4
− 8〈p, γ′(θ)〉3

|p− γ(θ)|6
.

Now,

|〈p, γ′(θ)〉| = |〈p− 〈p, γ(θ)〉γ(θ), γ′(θ)〉|

≤
√

1− 〈p, γ(θ)〉2|γ′(θ)| ≤ |p− γ(θ)|
√

1− h2,(15)
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and since γ′′′ = −γ′ the same bound holds changing γ′ to γ′′′. Finally, note that

(16) |〈p, γ′′(θ)〉| ≤
√

1− c2
√

1− h2,

and the lemma follows. �

Lemma 5.2 (Comparison of the finite sum with the integral along the parallel).

Assume that for some h > 0 and A ≥ 1 integer dist(p,Qh) &
√

1− h2/A. Let
qi ∈ Qh for i = 1, . . . , A be points at angular distance 2π/A. Then∣∣ A∑

i=1

log |p− qi| −Afp(h)
∣∣(17)

.
1

A2

(√
1− h2

∫ 2π

0

1

|p− γh(θ)|
dθ +R(c, h)

∫ 2π

0

1

|p− γh(θ)|3
dθ

)
.

Moreover, if B ⊇ Qh is a band of height ε . (1 − h2)/A and such that d(p,B) &√
1−h2

A then ∫ 2π

0

1

|p− γh(θ)|
dθ h

1

σ(B)

∫
B

1

|p− q|
dσ(q)

and ∫ 2π

0

1

|p− γh(θ)|3
dθ h

1

σ(B)

∫
B

1

|p− q|3
dσ(q),

where the constants are independent of h and A.

Proof. Without loss of generality, we can assume that h ≥ 0 and qi = γh(θi) with
θi = (2i− 1)π/A. Define the periodic function φ(θ) = log |p− γh(θ)|. Since φ′(θ) is
also periodic (17) equals∣∣∣∣∣

A∑
i=1

φ(θi)−A
∫ 2π

0

φ(θ)
dθ

2π
+

π

12A

∫ 2π

0

φ′′(θ) dθ

∣∣∣∣∣
≤

A∑
i=1

∣∣∣∣φ(θi)−
A

2π

∫
Ii

φ(θ) dθ +
π

12A

∫
Ii

φ′′(θ) dθ

∣∣∣∣
.

1

A3

A∑
i=1

sup
θ∈Ii
|φ′′′(θ)| ≤ 1

A3

A∑
i=1

sup
θ∈Ii

( √
1− h2

|p− γh(θ)|
+

R(c, h)

|p− γh(θ)|3

)
by Lemma A.2 and Lemma 5.1 where Ii = [θi − π/A, θi + π/A]. Let θ, θ′ ∈ Ii be
two points were |p− γh(·)| attains respectively its minimum and its maximum value.
Then,

|p− γh(θ′)| ≤|p− γh(θ)|+ |γh(θ)− γh(θ′)| ≤ |p− γh(θ)|+ 2π
√

1− h2

A
.|p− γh(θ)|+ dist(p,Qh) . |p− γh(θ)|,

so
max
θ∈Ii
|p− γh(θ)| h min

θ∈Ii
|p− γh(θ)|

and

max
θ∈Ii

( √
1− h2

|p− γh(θ)|
+

R(c, h)

|p− γh(θ)|3

)
. A

(∫
Ii

√
1− h2

|p− γh(θ)|
dθ +

∫
Ii

R(c, h)

|p− γh(θ)|3
dθ

)
.

Now we prove the second part of the lemma. Assume that the band B is the set
contained between Qh0 and Qh0+2ε. For q ∈ B let q′ ∈ Qh be the closest point to q

in Qh. Then, from Lemma 4.1 we have that |q − q′| . ε/
√

1− h2 and hence

|p− q| ≤ |p− q′|+ |q′ − q| . |p− q′|+
√

1− h2

A
. |p− q′|,
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and similarly

|p− q′| ≤ |p− q|+ |q′ − q| . |p− q|+
√

1− h2

A
. |p− q|.

In other words, we have |p− q| h |p− q′| and therefore∫
B

1

|p− q|
dσ(q) =

1

4π

∫ h0+2ε

h0

∫ 2π

0

1

|p− γt(θ)|
dθdt h ε

∫ 2π

0

1

|p− γh(θ)|
dθ,

and we conclude the result after an identical reasoning for the integral of |p− q|−3.
�

Lemma 5.3 (Computation of the integral along one parallel). Let p = (a, b, c) ∈ S2.
Then,

fp(h) =
1

2
log(1− hc+ |h− c|) =


1
2 (log(1 + h) + log(1− c)) if h ≥ c,

1
2 (log(1− h) + log(1 + c)) if h < c.

Proof. See [11, 4.224.9]. �

Lemma 5.4. Let p = (a, b, c) ∈ S2. The following equality holds∫ 2π

0

1

|p− γh(θ)|2
dθ

2π
=

1

2|h− c|
.

Proof. From [11, 3.661.4] we have∫ 2π

0

1

|p− γh(θ)|2
dθ

2π
=

∫ π

0

1

2− 2ch− 2
√

1− h2
√

1− c2 cos θ

dθ

π

=
1√

(2− 2ch)
2 −

(
2
√

1− h2
√

1− c2
)2 ,

and the lemma follows after expanding the denominator. �

Lemma 5.5 (Comparison of integrals on parallels and bands). Let B be the band
containing Qh given by B = {q ∈ S2 : 〈q, e3〉 ∈ [h − ε, h + ε]} where e3 = (0, 0, 1).
Assume that h− ε, h+ ε ∈ (−1, 1) and let p ∈ S2 \B. Then∣∣∣∣fp(h)− 1

ε

∫
B

log |p− w| dσ(w)

∣∣∣∣ . ε2

(1−max(|h− ε|, |h+ ε|)2)2
,(18)

and

(19)

∣∣∣∣fp(h− ε) + 4fp(h) + fp(h+ ε)

6
− 1

ε

∫
B

log |p− w| dσ(w)

∣∣∣∣
.

ε4

(1−max(|h− ε|, |h+ ε|)2)4
.

Proof. Using that

1

ε

∫
B

log |p− w| dσ(w) =
1

2ε

∫ h+ε

h−ε
fp(t)dt,

and Lemma 5.3, the results follows from the error estimation for the midpoint
integral rule and for the Simpson rule, see Lemma A.1. Note that we are also using

1−max(|h− ε|, |h+ ε|) h 1−max(|h− ε|, |h+ ε|)2.

�
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Lemma 5.6 (Comparison of the integrals on the parallel and the band: the case
that the band contains the point p = (a, b, c)). Let B be the band containing Qh
given by B = {q ∈ S2 : 〈q, e3〉 ∈ [h − ε, h + ε]}. Here, we are assuming that
h− ε, h+ ε ∈ (−1, 1). Then, if h− ε ≤ c ≤ h+ ε and p ∈ B,∣∣∣∣fp(h)− 1

ε

∫
B

log |p− w| dσ(w)

∣∣∣∣ . ε

1− c2
,(20)

and ∣∣∣∣16 (fp(h− ε) + 4fp(h) + fp(h+ ε))− 1

ε

∫
B

log |p− w| dσ(w)

∣∣∣∣ . ε

1− c2
.(21)

Proof. As in the proof of Lemma 5.5, note that

1

ε

∫
B

log |p− w|dσ(w) =
1

2ε

∫ h+ε

h−ε
fp(t)dt = fp(h) +

1

2ε

∫ h+ε

h−ε
(fp(t)− fp(h)) dt.

Then, the quantity in (20) can be bounded by 2ε times the Lipschitz constant Lfp
of fp. By Lemma 5.3

Lfp . max

{
sup

t∈[h−ε,c]

1

1− t
, sup
t∈[c,h+ε]

1

1 + t

}
.

1

1− c
+

1

1 + c

and (20) follows.
In (21) we decompose the Simpson’s rule in the midpoint and the trapezoidal

rules. For the midpoint we do as before. For the trapezoidal rule let `(t) the line
through (h− ε, f(h− ε)) and (h+ ε, f(h+ ε)). To estimate

1

2ε

∫ h+ε

h−ε
(`(t)− fp(t))dt,

we use that for h− ε ≤ t ≤ h+ ε

|`(t)− fp(t)| . (L` + Lf )ε

and clearly L` ≤ Lf . �

6. The proof of Theorem 1.10

The strategy to prove Theorem 1.10 will follow two steps. First we approximate
the potential generated by the surface measure in S2 by a potential generated by a
multiple of the length-measure supported in several chosen parallels Qhj and QHj .
Then, we compare the potential in parallels with the discrete potential given by the
points in PN . We follow the notation from Section 4.

6.1. From bands to parallels. We show that, given p ∈ S2, the mean value of
N log |p − q| for q ∈ S2 is comparable to the weighted sum of the mean values in
different parallels Qhj , QHj where the weights are given by the number of points
that we have placed in each parallel.

Proposition 6.1. Let p = (a, b, c) ∈ S2 and let PN be a collection of N points as
defined in Section 4. Let

SN = r1(fp(h1) + fp(h2M−1)) +

2M−2∑
j=2

(
4r̃j
6

+ remj

)
fp(hj)

+

2M−2∑
j=1

(
r̃j + r̃j+1

6

)
fp(Hj)
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Then, ∣∣∣∣SN −N ∫
S2

log |p− q| dσ(q)

∣∣∣∣ . 1.

Proof. Assume that p ∈ B` and ` 6= 1, 2M − 1. Then we can write the difference
above as

2M−2∑
j=2

j 6=`

[
r̃j
6

(fp(Hj−1) + 4fp(hj) + fp(Hj))−
r̃j

σ(Bj)

∫
Bj

log |p− q|dσ(q)

]
(22)

+

2M−2∑
j=2

j 6=`

[
remjfp(hj)−

remj

σ(Bj)

∫
Bj

log |p− q|dσ(q)

]
(23)

+ rem`fp(h`)−
rem`

σ(B`)

∫
B`

log |p− q|dσ(q)(24)

+
r̃`
6

(fp(H`−1) + 4fp(h`) + fp(H`))−
r̃`

σ(B`)

∫
B`

log |p− q|dσ(q)(25)

+ r1(fp(h1) + fp(−h1))− r1

σ(B1)

∫
B1∪B2M−1

log |p− q|dσ(q).(26)

For the first sum (22) we use (19) with ε = rj/N and using from Lemma 4.2 that
j2 h r2

j h N(1−H2
j ) h N(1− h2

j ) h N(1−H2
j−1) we get

(22) .
2M−2∑
j=2

r5
j

N4(1− h2
j )

4
.
∞∑
j=1

1

j3
h 1.

For (23) we apply (18) with ε = rj/N and Lemma 4.2 again. Using also that
remj < 6 and j2 h r2

j h N(1− h2
j ) we get

(23) .
2M−2∑
j=2

r2
j

N2(1− h2
j )

2
.
∞∑
j=1

1

j2
h 1.

For (24) and (25) we use (20) and (21). This, together with Lemma 4.2 yields

(24) + (25) .
r̃`

N(1− c2)
+

r̃2
`

N(1− c2)
.

1

`
+ 1 h 1.

Finally, (26)h 1 as follows from Lemma 6.2.
If ` = 1 or ` = 2M − 1 one can deal with the whole sum in (22) and (23) as

before, without the terms (24) and (25). The bound for the last term (26) follows
also from next Lemma 6.2. �

Lemma 6.2. For any p ∈ S2 we have∣∣∣∣fp(h1)− 1

σ(B1)

∫
B1

log |p− q|dσ(q)

∣∣∣∣ . 1.

Proof. This follows from a direct computation. If p 6∈ B1 then the quantity in the
lemma is∣∣∣∣12 log(1 + h1)− N

2
log 2 +

N

2
log

(
2− 2r1

N

)
+

1

2
log

(
2− 2r1

N

)∣∣∣∣ . 1,

since log
(
2− 2r1

N

)
− log 2 = log

(
1− 2r1

N

)
h 1/N . If p ∈ B1 it is a little longer

computation. One must write∫
B1

log |p− q|dσ(q) =
1

2

∫ 1

1−2r1/N

fp(t) dt,
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and consider two subintervals depending on t < 〈p, e3〉 or t > 〈p, e3〉. Then, from
Lemma 5.3 this quantity can be computed exactly and the lemma follows after some
elementary manipulations. �

6.2. From points to parallels. In this section we prove Theorem 1.10. Recall
that the sum for all parallels SN was defined in Proposition 6.1. Then,∑

pi∈PN

log |p− pi| − SN

=
∑

pi∈Qh1∪Qh2M−1

log |p− pi| − r1(fp(h1) + fp(h2M−1))

+

2M−2∑
j=2

 ∑
pi∈Qhj

log |p− pi| −
(

4r̃j
6

+ remj

)
fp(hj)


+

2M−2∑
j=1

 ∑
pi∈QHj

log |p− pi| −
(
r̃j + r̃j+1

6

)
fp(Hj)

 .
We will bound in a different way the terms corresponding to three situations:

that the parallel (Qhj or QHj ) is very close to p, moderately close to p and far away
from p.

6.2.1. The closest parallel. We will bound the term corresponding to the parallel
containing the closest point to p using the following lemma. If there is more than
one parallel with this property, we can apply the lemma to any of them.

Lemma 6.3. Let p ∈ S2 and let pi0 ∈ PN be the closest point to p. Assume that
pi0 ∈ Qh` . Then∣∣∣∣∣∣∣∣

∑
pi∈Qh`
i6=i0

log |p− pi| −
(

4r̃`
6

+ rem`

)
fp(h`)− log

√
N

∣∣∣∣∣∣∣∣ . 1.

Similarly, if pi0 ∈ QH` , then∣∣∣∣∣∣∣∣
∑

pi∈QH`
i6=i0

log |p− pi| −
(
r̃` + r̃`+1

6

)
fp(H`)− log

√
N

∣∣∣∣∣∣∣∣ . 1.

Proof. Since the proof of both inequalities is the same, we just prove the first one
and we use the notation Q` = Qh` , γ` = γh` and c` = 4r̃`/6 + rem` h `. We rename
PN ∩ Q` = {q1, . . . , qc`} and we call q1 the closest point to p, with the former
notation, pi0 = q1. We split the parallel Q` in arcs γ`(Ij) centered on each qj with

angle 2π
c`

. With this notation, the sum in the lemma –without the log
√
N term– is

∑
pi∈Q`
i 6=i0

log |p− pi| − c`fp(h`) =

c∑̀
j=2

log |p− qj | −
c`
2π

c∑̀
j=2

∫
Ij

log |p− γ`(θ)|dθ

− c`
2π

∫
I1

log |p− γ`(θ)|dθ.

First we estimate this last integral. By a rotation we assume that γ`(I1) is

centered at the point q̃1 = (
√

1− h2
` , 0, h`) and we denote the rotated arc by I. By
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this rotation the point p goes to some other point p̃. Observe that to estimate the
integral

− c`
2π

∫
I

log |p̃− γ`(θ)|dθ,

from above, we can replace p̃ by the point q̃1. Indeed,

∆u(log |u− q|) = 2πδq − 2πdσ,

where ∆u is the Laplace-Beltrami operator with respect to the variable u and δu is
Dirac’s delta. Therefore, out of q ∈ γ`(I), the function − log |r − q| is subharmonic
and satisfies the maximum principle

sup
u∈S2\I

∫
I

log
1

|u− γ`(θ)|
dθ ≤ sup

u∈I

∫
I

log
1

|u− γ`(θ)|
dθ.

Clearly, this last integral is smaller that∫
I

log
1

|q̃1 − γ`(θ)|
dθ.

Using this observation we get for some constant C > 0 (whose value may vary in
each appearance)

− c`
2π

∫
I

log |p̃− γ`(θ)|dθ ≤ −
c`
2π

∫
I

log |q̃1 − γ`(θ)|dθ = − c`
4π

∫ π
c`

− π
c`

log(1− cos θ)dθ

− 1

2
log(1− h2

`) + C ≤ −c`
π

∫ π
c`

0

log θdθ − log(1− h2
`)

2
+ C

≤ log
c`√

1− h2
`

+ C ≤ log
√
N + C,

where we use that − log(1 − cos θ) ≤ log(4/θ2) in the range θ ∈ [−π/2, π/2] and
Lemma 4.2. We also have a similar lower bound coming from the fact that |p −
γ`(θ)| . 1/

√
N for θ ∈ I1

− c`
2π

∫
I

log |p̃− γ`(θ)|dθ ≥
c`
2π

∫
I

log
√
Ndθ − C = log

√
N − C.

In other words, we have proved that

(27)

∣∣∣∣− c`2π

∫
I1

log |p− γ`(θ)|dθ − log
√
N

∣∣∣∣ . 1.

Now for those j 6= 1 such dist(p, γ`(Ij)) ≤ 1/
√
N we have

√
N |p − qj | h 1 and

therefore∣∣∣∣∣− c`2π

∫
Ij

log |p− γ`(θ)|dθ + log |p− qj |

∣∣∣∣∣
≤
∣∣∣∣− c`2π

∫
I1

log |p̃− γ`(θ)|dθ − log
√
N

∣∣∣∣+
∣∣∣log
√
N + log |p− qj |

∣∣∣ . 1,

where p̃ is the image of p by the rotation sending Ij to I1, and we apply the same
bound as in (27).

Finally we have to bound

(28)

∣∣∣∣∣∣
∑
j∈J

log |p− qj | −
c`
2π

∑
j∈J

∫
Ij

log |p− γ`(θ)|dθ

∣∣∣∣∣∣ ,
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where J is the set of indices j ∈ {1, . . . , c`} such that dist(p, γ`(Ij)) ≥ 1/
√
N . Now,

for such j we can apply the classical estimate for the midpoint rule in Lemma A.1
getting∣∣∣∣∣log |p− qj | −

c`
2π

∫
Ij

log |p− γ`(θ)|dθ

∣∣∣∣∣ . 1

c2`
sup
θ∈Ij

∣∣∣∣ d2

dθ2
(log |p− γ`(θ)|)

∣∣∣∣ .
This second derivative has been computed in (14) and can be bounded using (16)
and (15) thus proving that∣∣∣∣∣log |p− qj | −

c`
2π

∫
Ij

log |p− γ`(θ)|dθ

∣∣∣∣∣ . 1

c2`
sup
θ∈Ij

1− h2
` +

√
1− h2

`

√
1− c2

|p− γ`(θ)|2
.

But
√

1− c2 .
√

1− h2
` and since j ∈ J we have |p− γ`(θ)| h |p− qj | for all θ ∈ Ij ,

which yields ∣∣∣∣∣log |p− qj | −
c`
2π

∫
Ij

log |p− γ`(θ)|dθ

∣∣∣∣∣ . 1

c2`

1− h2
`

|p− qj |2
.

Recall that dist(p,PN ) = |p− p1| and the points pj in the parallel Q` are separated

by a constant times N−1/2 and hence

|p̃− q̃j | = |p− qj | &
j√
N
, 1 ≤ j ≤ c`

2
,

with a similar inequality for c`/2 ≤ j ≤ c`. We thus conclude that∣∣∣∣∣log |p− qj | −
c`
2π

∫
Ij

log |p− γ`(θ)|dθ

∣∣∣∣∣ . 1

c2`

N(1− h2
`)

j2
h

1

j2
,

the last from Lemma 4.2. We conclude that

(28) .
∑
j∈J

1

j2
. 1,

and thus the result. �

6.2.2. Parallels that are moderately close to p. If p ∈ B`, we will bound the terms
corresponding to the parallels in B`−1, B` and B`+1 (with the exception of the
closest parallel to p, that we have already dealt with) using the following lemma.

Lemma 6.4. Let p ∈ S2. Then, for any j = 1, . . . , 2M − 1 such that dist(p,Qhj ) &
1/
√
N then ∣∣∣∣∣∣

∑
pi∈Qhj

log |p− pi| −
(

4r̃j
6

+ remj

)
fp(hj)

∣∣∣∣∣∣ . 1.

Similarly, for any j = 1, . . . , 2M − 2 such that dist(p,QHj ) & 1/
√
N we have∣∣∣∣∣∣

∑
pi∈QHj

log |p− pi| −
(
r̃j + r̃j+1

6

)
fp(Hj)

∣∣∣∣∣∣ . 1.

Proof. We prove the first inequality since both follow from the same argument.

Observe that from Lemma 4.2
√
N
√

1− h2
j h rj h j, then from Lemma 5.2 with
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A = j and denoting p = (a, b, c) we just need to show that I1 + I2 + I3 . 1 where

I1 =

√
1− h2

j

j2

∫ 2π

0

1

|p− γhj (θ)|
dθ,

I2 =

√
1− c2(1− h2

j )

j2

∫ 2π

0

1

|p− γhj (θ)|3
dθ,

I3 =
(1− h2

j )
3/2

j2

∫ 2π

0

1

|p− γhj (θ)|3
dθ.

Now, from Lemmas 4.2, 5.4 and 4.1 and the hypotheses of the lemma we have

I1 .
1

j
√
N

∫ 2π

0

1

|p− γhj (θ)|
dθ .

1

j
. 1,

I2 .

√
1− c2√
N

∫ 2π

0

1

|p− γhj (θ)|2
dθ .

√
1− c2√

N |hj − c|
. 1,

I3 .

√
1− h2

j
√
N

∫ 2π

0

1

|p− γhj (θ)|2
dθ .

√
1− h2

j
√
N |hj − c|

. 1.

�

6.2.3. Parallels that are far from p. Finally, assuming that p ∈ B`, we bound the
terms corresponding to the parallels Qhj and QHj that do not touch B`−1, B` or
B`+1. We can therefore assume that we are under the hypotheses of Lemma 5.2,
that is, that for some constant C > 0 we have

dist(p,Bj) ≥
C√
N
≥
C
√

1− h2
j

rj
.

We now prove the following result.

Lemma 6.5. If p ∈ B` then

2M−2∑
j=2

j 6=`−1,`,`+1

 ∑
pi∈Qhj

log |p− pi| −
(

4r̃j
6

+ remj

)
fp(hj)

 . 1.

Similarly,

2M−2∑
j=1

j 6=`−1,`,`+1

 ∑
pi∈QHj

log |p− pi| −
(
r̃j + r̃j+1

6

)
fp(Hj)

 . 1.

Proof. We just prove the first assertion, since the second one is proved the same
way. Lemma 5.2 yields

2M−2∑
j=2

j 6=`−1,`,`+1

 ∑
pi∈Qhj

log |p− pi| −
(

4r̃j
6

+ remj

)
fp(hj)

 .
2M−1∑
j=2

j 6=`−1,`,`+1

1

j

 1√
1− h2

j

∫
Bj

1

|p− q|
dσ(q) +

R(c, hj)

1− h2
j

∫
Bj

1

|p− q|3
dσ(q)

 .
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We split this last sum in three parts

T1 =
∑

j 6=`−1,`,`+1

1

j
√

1− h2
j

∫
Bj

1

|p− q|
dσ(q),

T2 =
∑

j 6=`−1,`,`+1

√
1− c2
j

∫
Bj

1

|p− q|3
dσ(q),

T3 =
∑

j 6=`−1,`,`+1

√
1− h2

j

j

∫
Bj

1

|p− q|3
dσ(q).

The easiest one is T3, since from Lemma 4.2 we have:

(29) T3 .
1√
N

∑
j 6=`−1,`,`+1

∫
Bj

1

|p− q|3
dσ(q)

.
1√
N

∫
S2\B(p,C/

√
N)

1

|p− q|3
dσ(q) =

1√
N

∫ 1−C2/(2N)

−1

1

(1− t)3/2
dt . 1,

where, recall, B(p, C/
√
N) is a spherical cap around p of radius C/

√
N .

Now, for T2, for those j such that
√

1− c2 ≤
√

1− h2
j we apply the previous

argument. In other case, again from Lemma 4.2, we have

T2 .
1√
N

∑
j 6=`−1,`,`+1

√
1− c2√
1− h2

j

∫
Bj

1

|p− q|3
dσ(q)

=
1√
N

∑
j 6=`−1,`,`+1

|p− e3||p+ e3|
|qhj − e3||qhj + e3|

∫
Bj

1

|p− q|3
dσ(q)

where we are using that for any point qh ∈ Qh we have by the geometric mean
theorem √

1− h2 = |qh − e3||qh + e3|/2.
For any q ∈ Bj we have that

|qhj ± e3| & |q ± e3|.

And we thus conclude that

T2 .
1√
N

∑
j 6=`−1,`,`+1

∫
Bj

|p− e3||p+ e3|
|p− q|3|q − e3||q + e3|

dσ(q).

If |p− e3| ≤ |q − e3| then using |p− e3| ≤ |p− q|+ |q − e3| it suffices to bound

1√
N

∫
{q∈S2:|p−q|≥C/

√
N}

(
1

|p− q|2|q − e3|
+

1

|p− q|3

)
dσ(q),

for a certain constant C > 0, otherwise |p + e3| ≤ |q + e3| and by a symmetry
argument we are left with an similar integral. Following the same argument as the
one used for T3 it is enough to consider

1√
N

∫
{q∈S2:|p−q|≥C/

√
N}

1

|p− q|2|q − e3|
dσ(q) ≤

1√
N

∫
{q∈S2:|p−q|≥C/

√
N,|q−e3|≥1/

√
N}

1

|p− q|2|q − e3|
dσ(q)

+
1√
N

∫
{q∈S2:|p−q|≥C/

√
N,|q−e3|≤1/

√
N}

1

|p− q|2|q − e3|
dσ(q).
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The first of these two integrals is from Hölder’s inequality at most(∫
{q∈S2:|p−q|≥C/

√
N}

1

|p− q|3
dσ(q)

)2/3(∫
{q∈S2:|q−e3|≥1/

√
N}

1

|q − e3|3
dσ(q)

)1/3

,

which is bounded above again by a constant times
√
N as already seen in (29). We

bound the second integral as

N

∫
{q∈S2:|q−e3|≤1/

√
N}

1

|q − e3|
dσ(q) . N

∫ 1

1− 2
N

1√
1− t

dt .
√
N.

It remains to bound T1. Again from Lemma 4.2 we have

T1 .
1√
N

∑
j 6=`−1,`,`+1

1

1− h2
j

∫
Bj

1

|p− q|
dσ(q) .

√
N

∫
B1∪B2M−1

1

|p− q|
dσ(q)

+
1√
N

2M−2∑
j=2

j 6=`−1,`,`+1

1

1− h2
j

∫
Bj

1

|p− q|
dσ(q),

where we have used that 1− h2
j & 1/N . The first integral is easily bounded by∫

q∈B1∪B2M−1

1

|p− q|
dσ(q) ≤

∫
B1

1

|e3 − q|
dσ(q) +

∫
B2M−1

1

|e3 + q|
dσ(q) .

1√
N
.

Finally, from the same arguments as above we have to bound

1√
N

∫
{q∈S2:|p−q|≥C/

√
N,|q±e3|≥C′/

√
N}

1

|p− q||q − e3|2|q + e3|2
dσ(q),

where C,C ′ are positive constants and it is enough to check that∫
{q∈S2:|p−q|≥C/

√
N,|q−e3|≥C′/

√
N}

1

|p− q||q − e3|2
dσ(q),

∫
{q∈S2:|p−q|≥C/

√
N,|q+e3|≥C′/

√
N}

1

|p− q||q + e3|2
dσ(q),

are O(
√
N). This again follows from Hölder’s inequality. �

Proof of Theorem 1.10. We are now ready to finish the proof. Assume d(p,PN ) =
|p − pi0 | where pi0 ∈ Qh` , if pi0 belongs to one of the parallels QH` instead, the
computation is similar. Now, by Proposition 6.1

N∑
i=1

log |p− pi| =
N∑
i=1

i 6=i0

log |p− pi|+ log dist(p,PN ) = −κN + log
(√

N dist(p,PN )
)

+
∑

pi 6∈Qh`

log |p− pi| − SN (`) +
∑

pi∈Qh`
i 6=i0

log |p− pi| − c`fp(h`)−
1

2
logN +O(1),

where SN (`) is the sum SN without the part corresponding to the parallel Qh` and
c` h ` is the number of points in parallel Qh` . From Lemmas 6.3, 6.4 and 6.5 we
conclude that ∣∣∣∣∣

N∑
i=1

log |p− pi|+ κN − log
(√

N dist(p,PN )
)∣∣∣∣∣ . 1,

as wanted.
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Appendix A. The error of the mid-point rule for numerical
integration

Recall the following classical estimates for the midpoint and Simpson integration
rules.

Lemma A.1. Let f : [a, b]→ R be a C2 function. Then,∣∣∣∣∣
∫ b

a

f(x) dx− (b− a)f

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)3‖f (2)‖∞
24

.

Moreover, if f is C4 then,∣∣∣∣∣
∫ b

a

f(x) dx− b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)∣∣∣∣∣ ≤ (b− a)5‖f (4)‖∞
2880

.

We also need the following more sophisticated version of the midpoint rule.

Lemma A.2. Let f : [a, b]→ R be a C3 function. Then,∣∣∣∣∣
∫ b

a

f(x) dx− (b− a)f

(
a+ b

2

)
− (b− a)2

24

∫ b

a

f ′′(x) dx

∣∣∣∣∣ ≤ (b− a)4‖f (3)‖∞
64

.

Proof. We first assume that [a, b] = [−1, 1]. Expanding with Taylor series

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f (3)(ζx)x3.

f ′′(x) = f ′′(0) + f (3)(ηx)x,

then by the triangle inequality the quantity to be estimated is∣∣∣∣∫ 1

−1

(
1

2
f ′′(0)x2 +

1

6
f (3)(ζx)x3

)
dx− 2f ′′(0)

6
− 1

6

∫ 1

−1

f (3)(ηx)x dx

∣∣∣∣ ≤ ‖f (3)‖∞
4

.

For general [a, b] one can apply the previous result to g : [−1, 1] → R given by
g(t) = f((a+ b)/2 + t(b− a)/2). �
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