
Report

Human soluble ACE2 improves the effect of
remdesivir in SARS-CoV-2 infection
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Abstract

There is a critical need for safe and effective drugs for COVID-19.
Only remdesivir has received authorization for COVID-19 and has
been shown to improve outcomes but not decrease mortality.
However, the dose of remdesivir is limited by hepatic and kidney
toxicity. ACE2 is the critical cell surface receptor for SARS-CoV-2.
Here, we investigated additive effect of combination therapy using
remdesivir with recombinant soluble ACE2 (high/low dose) on Vero
E6 and kidney organoids, targeting two different modalities of
SARS-CoV-2 life cycle: cell entry via its receptor ACE2 and intracel-
lular viral RNA replication. This combination treatment markedly
improved their therapeutic windows against SARS-CoV-2 in both
models. By using single amino-acid resolution screening in haploid
ES cells, we report a singular critical pathway required for remde-
sivir toxicity, namely, Adenylate Kinase 2. The data provided here
demonstrate that combining two therapeutic modalities with dif-
ferent targets, common strategy in HIV treatment, exhibit strong
additive effects at sub-toxic concentrations. Our data lay the
groundwork for the study of combinatorial regimens in future
COVID-19 clinical trials.
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Introduction

In December of 2019, a novel coronavirus (SARS-CoV-2) crossed

species barriers to infect humans and was effectively transmitted

from person to person, leading to a pneumonia outbreak first

reported in Wuhan, China (Jiang et al, 2020; Zhou et al, 2020). This

virus causes coronavirus disease-19 (COVID-19) with influenza like

symptoms ranging from mild disease to severe lung failure and

multi-organ damage, eventually leading to death, especially in older

patients with other co-morbidities. SARS-CoV-2 shares multiple

similarities with the original SARS-CoV (Lu et al, 2020; Zhu et al,

2020). The receptor binding domain (RBD) of SARS-CoV-2 is similar

to the SARS-CoV RBD, suggesting a possible common host cell

receptor. The SARS-CoV receptor Angiotensin-converting enzyme 2

(ACE2) was indeed rapidly identified to also function as the critical

cell surface receptor for SARS-CoV-2 (Walls et al, 2020; Wan et al,

2020; Wrapp et al, 2020).

We were the first to shown that ACE2 counterbalances the effects

of Angiotensin (Ang) II in vivo and thereby protects the heart,

kidney, and, importantly, the lung via its enzymatic RAS activity

(Crackower et al, 2002; Imai et al, 2005). Moreover, we showed that

ACE2 is the critical SARS-CoV receptor in vivo using ACE2 mutant

mouse experiments and that SARS-CoV infections and even purified

Spike as well as a minimal Spike domain (RBD) can lead to ACE2

downregulation (Kuba et al, 2005), explaining why SARS-CoV, and

now SARS-CoV-2 infections cause severe lung failure: ACE2 is the

receptor for both viruses and downregulation of ACE2 via virus

binding results in loss of RAS tissue homeostasis which then drives

disease severity. Moreover, ACE2 expression and its regulation

in cardiovascular disease, gender being encoded on the X
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chromosome, or aging can explain and contributes to progression

and tissue distribution of COVID-19 as a multi-organ disease (Imai

et al, 2010). Recently, we reported that human recombinant

soluble ACE2 (hrsACE2; APN01) can significantly block early

SARS-CoV-2 infections by a factor of 1,000–5,000 (Monteil et al,

2020). HrsACE2 entered several clinical trials (Haschke et al, 2013;

Khan et al, 2017). Moreover, we recently described the first named

patient treatment with hrsACE2 of a patient with severe COVID-19

(Zoufaly et al, 2020). HrsACE2 has entered a placebo controlled,

double-blind, phase 2b trial in severe COVID-19 patients (www.c

linicaltrials.gov, NCT04335136), acting as a molecular decoy to

block virus entry, and as a regulator of the renin–angiotensin

system.

As the only drug, remdesivir has received FDA approval for

the treatment of COVID-19 (U.S. Food and Drug Administration,

2020). Remdesivir is a RNA polymerase inhibitor, which acts as

an adenosine analog, incorporating into nascent viral RNA chains,

thus leading to their premature termination (Gordon et al, 2020a;

Gordon et al, 2020b). Initially developed to block replication of

Ebola and Marburg viruses, remdesivir shows also anti-viral activ-

ity against coronaviruses including MERS, SARS-CoV, and SARS-

CoV-2 (Malin et al, 2020; Simonis et al, 2020). However, its effi-

cacy on viral load and mortality in severe COVID-19 patients is

still unclear (Wang et al, 2020b). Moreover, it has been reported

that remdesivir can exert hepatic and kidney toxicity (Grein et al,

2020; Wang et al, 2020b). In this study, we report a single amino

resolution screen on remdesivir toxicity uncovering a specific

mechanism of remdesivir intracellular activation required for cyto-

toxity. Importantly, combining two different modalities of virus

control, blocking entry via hrsACE2 and blocking intracellular

viral RNA replication via remdesivir, results in additive effects in

SARS-CoV-2-infected cells and human stem cell-derived kidney

organoids, reducing the doses of both hrsACE2 and remdesivir to

much lower and safer levels.

Results and Discussion

We hypothesized that combining two different modalities of anti-viral

activity using remdesivir (Gordon et al, 2020b) and targeting SARS-

CoV-2 entry into cells by hrsACE2 (Monteil et al, 2020) might show

additive effects. We first used Vero E6 cells as a commonly used and

robust model of SARS-CoV-2 infection (Monteil et al, 2020). In Vero E6

cells, infected with SARS-CoV-2 at a MOI of 20, both remdesivir and

hrsACE2 as single agents significantly reduced virus load in a dose-

dependent manner (Fig 1A and B), confirming previous data (Monteil

et al, 2020; Wang et al, 2020a). Based on the above dose responses, we

determined the IC50 and IC90 values for both remdesivir and hrsACE2

(Table 1). Of note, previous studies have reported different IC50/IC90

values for remdesivir, which is probably due to the different cell types

used, different MOI of infections, different SARS-CoV-2 sub-strains,

and/or measurements at different time points post-infection (Fredian-

syah et al, 2020; Jeon et al, 2020; Pizzorno et al, 2020; Wang et al,

2020a). Taken together, performing careful side-by-side comparisons in

Vero E6 cells, hrsACE2 and remdesivir exhibit comparable efficacy to

reduce SARS-CoV-2 infections.

In remdesivir-treated patients, an elevation of enzymes ALT

and AST and creatinine have been reported (Mulangu et al, 2019;

Grein et al, 2020), indicative of liver and kidney toxicity. To

investigate this phenomenon, we have investigated the toxicity

of remdisivir in more relevant and advanced in vitro model. Our

complex kidney organoids can be readily infected with SARS-

CoV-2 (Monteil et al, 2020) and are an established model to

study various aspects of kidney physiology and pathology (Gar-

reta et al, 2019). Liver spheroids of primary human hepatocytes

recapitulate the molecular profiles of human liver at the

proteomic, transcriptomic, and metabolomics level for multiple

weeks in culture (Bell et al, 2016; Bell et al, 2017; Vorrink et al,

2017). Consequently, they outperform other hepatic cell models

(Bell et al, 2017) and culture paradigms (Bell et al, 2018) in

multi-center trials and a large toxicity screen using 123 hepato-

toxic and non-toxic control drugs found this spheroid system to

be the most predictive model for drug-induced liver injury (Vor-

rink et al, 2018). To evaluate cytotoxicity of remdesivir and

hrsACE2, we exposed Vero E6 cells, kidney organoids, and liver

spheroids to different concentrations of remdesivir alone or in

combination with hrsACE2 and assessed cell viability. Remde-

sivir exhibited significant toxicity in kidney organoids and liver

spheroids at doses similar or lower than the effective dose to

block SARS-CoV-2 replication (Table 2), in line with clinical

findings of liver and kidney injury in patients (Grein et al, 2020;

Wang et al, 2020b). By contrast, CC50 values for hrsACE2 in

Vero E6 cells, kidney organoids, and liver spheroids were mark-

edly lower that the effective dose to inhibit the SARS-CoV-2 viral

load (Tables 1 and 2). These data show that remdesivir, but not

hrsACE2, exhibits liver and kidney toxicity, as determine by

engineered human tissues, at doses that are required to effec-

tively control the SARS-CoV-2 infection.

To identify the critical intracellular pathways and interactions

that are required for remdesivir cytotoxicity, we performed an unbi-

ased chemical mutagenesis screen in mouse haploid stem cells

under strong remdesivir selection (50 µM, Fig 2A). This approach

allows to uncover the entire spectrum of mutations resulting in

resistance to remdesivir cytotoxicity: loss-of-function, gain-of-

function, or neomorph alleles (Horn et al, 2018). After ENU

A B

Figure 1. Blocking entry and replication of SARS-CoV-2 infections.

A, B (A) Remdesivir and (B) hrsACE2 inhibition of SARS-CoV-2 infections of
Vero E6 cells. Both drugs, and murine recombinant soluble ACE2
(mrsACE2, control treatment), were used at the indicated concentrations.
Viral RNA level was determined by qRT–PCR 15 h after inoculation of
SARS-CoV-2 (Swedish isolate, 106 PFU).

Data information: Error bars show mean � SD from biological triplicate. n = 3,
*P < 0.05; **P < 0.01; one-way ANOVA followed by Student’s t-test between
internal groups. P-values are listed in Appendix Table S1.
Source data are available online for this figure.
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mutagenesis and remdesivir selection of more than 15 million cells,

numerous colonies emerged, whereof the resistance of the five most

viable clones was validated (Fig 2B). Whole exome sequencing

revealed that all five clones resistant to remdesivir harbor a point

mutation in the same unique gene, namely, the Ak2 gene (Fig 2C).

Ak2 encodes Adenylate kinase 2, an enzyme localized in the mito-

chondrial intermembrane space that maintains adenine nucleotide

homeostasis by catalyzing the reversible reaction AMP + ATP =

2ADP (Noma, 2005). While only one essential isoform is present in

bacteria and lower eukaryotes, the genomes of higher vertebrates

encode multiple isoforms, suggesting functional redundancy (Liu

et al, 2019). AK2 is extremely well conserved from mice to

humans including conversation of all residues that are mutated in

the resistant clones (Fig 2D). One of the four independent AK2

mutations identified resides in a splice acceptor region indicating

a loss of function on the protein level. Using molecular modeling,

the other three mutations directly or indirectly affect nucleotide

binding sites (Fig 2E), pointing to a loss or reduction of AK2 cata-

lytic activity. Given that nucleoside analogs like remdesivir

require intracellular enzymatic activation (Eastman et al, 2020),

our data indicate that remdesivir gets specifically activated by

AK2 in the mitochondrial intermembrane space (Fig 2F). Thus,

not excluding additional molecules and pathways, our screen has

identified a critical enzyme that is required for remdesivir cyto-

toxicity.

Based on remdesivir toxicity in organoids, we speculated that

combining hrsACE2 and remdesivir could enhance their respective

anti-viral efficacies and thereby, importantly, reduce the concen-

trations required for therapeutic effects to doses below the toxic

range in our organotypic assays. In healthy volunteers, Cmax of

remdesivir was found to be around 7.3 µM after a 225 mg dose

(Humeniuk et al, 2020), which is in line with loading doses and

pharmacokinetics (PK) in critically ill COVID-19 patients (Tem-

pestilli et al, 2020). Taking into account these data and our

measured IC50 value of remdesivir (Table 1), we used a dose of

remdesivir of 4 µM for combination assays. Combinatorial treat-

ment of Vero E6 cells with hrsACE2 (200 µg/ml) and low dose

remdesivir (4 µM) indeed reduced the viral load by 60%

compared to hrsACE2 alone (Fig 3A). Importantly, we observed

similar findings in SARS-CoV-2 infected kidney organoids

(Fig 3B). However, at the dose used, hrsACE2 (200 µg/ml) alone

already strongly inhibited viral load and additive effects were not

statistically significant. Strikingly, however, low doses of hrsACE2

doses (5 and 10 µg/ml) showed additive effects in combination

with low dose remdesivir, resulting in strong and highly signifi-

cant reduction of SARS-CoV-2 infectivity in Vero E6 cells (Fig 3C)

and kidney organoids (Fig 3D). Haschke et al have previously

reported the pharmacokinetic of hrsACE2, the same molecule we

use for our current study, in healthy volunteers in a phase 1 clini-

cal trial (Haschke et al, 2013). The human pharmacokinetic data

indicate that a concentration of 5–10 µg/ml of hrsACE2 is reached

in plasma between 2 and 8 h post-administration by administrat-

ing 800 µg/kg. Although one has to await the pharmacokinetic

data for hrsACE2 in the phase 2b clinical trial in severe COVID-19

patients, combining hrsACE2 with a viral RNA polymerase inhi-

bitor such as remdesivir should allow to reduce the dose of both

drugs and for hrsACE2 to reach an effective in vivo anti-viral

concentrations, at the doses currently administered to the

patients.

Finally, we tested whether this combination treatment would

reduce the yield of infectious progeny virus. Intriguingly, treatment

with low dose hrsACE2 significantly reduced the yield of progeny

virus at 15 hpi to a much larger extent than it inhibited viral RNA

(Fig 3E). This effect in the reduction of viral progeny was even more

pronounced 48 hpi (Fig 3F). By contrast, low dose remdesivir had

only minor effects on the generation of infectious progeny virus at

early as well as later time points (Fig 3E and F). Importantly,

combining both drugs at low dose resulted in a significantly reduced

yield of viral progeny (Fig 3E and F). These data indicate that

combination therapies targeting two different critical paths of SARS-

CoV-2 infection, namely, viral entry and replication, can enhance

the therapeutic effects on viral load and, most importantly, viral

progeny.

Previously, we provided the first genetic evidence that ACE2

functions as a negative regulator of the renin–angiotensin system

(RAS) in multiple tissues such as the cardiovascular system

(Crackower et al, 2002). We also showed in genetic experiments

that ACE2 is the critical receptor for SARS-CoV in vivo and that

ACE2 protects the lung from injury, providing a molecular expla-

nation for the severe lung failure and death due to SARS-CoV

infections (Imai et al, 2005; Kuba et al, 2005). The data provided

here significantly extend these findings demonstrating that

combining two therapeutic modalities with different targets,

exhibit strong additive effects at sub-toxic concentrations. The

possibility of combining neutralizing antibodies targeting SARS-

CoV-2 spike protein with remdesivir has also to be considered and

investigated as a therapeutic strategy. These findings are reminis-

cent of the breakthrough in HIV therapeutics that was bought

about by simultaneous targeting of multiple distinct pathways in

the viral replication cycle (Gulick et al, 1997; Hammer et al,

1997). 2D-cellular models (like Vero/Vero E6 cells) are an impor-

tant piece of data to initiate clinical studies and are a system

commonly used for drug screening but most of the drugs tested

fail in clinical trial, highlighting the limitation of the system. Using

human organoid model for drugs testing might lead to a better

selection of drugs that could pass the clinical trial. Even if it does

not assure a success in clinical trial, our data lay the groundwork

for the study of combinatorial regimens in future COVID-19 clini-

cal trials.

Table 2. CC50 data for remdesivir and hrsACE2 in Vero E6 cells, liver
spheroids, and kidney organoids

Compound Vero Liver Kidney

hrsACE2 6,259 µg/ml 633 µg/ml >800 µg/ml

Remdesivir 98.26 µM 6.77 µM 10.5 µM

Table 1. IC50/IC90 data for remdesivir and hrsACE2 in Vero E6 cells

Compound Cells MOI
Time post-
infection

IC50
(µM)

IC90
(µM)

Remdesivir Vero
E6

20 15 h 4.02 5.85

hrsACE2 Vero
E6

20 15 h 6.08 18.29
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Figure 2. Forward mutagenesis approach identifies remdesivir genetic interactions.

A Schematic of the chemical mutagenesis approach.
B Cell viability of isolated cell clones and WT AN3–12 cells following 72 h remdesivir treatment with the indicated doses. Mean � SEM of 2–4 biological replicates is

displayed.
C Ak2 mutations identified in the resistant clones analyzed in (B).
D Protein sequence alignment of mouse and human AK2. Black stars indicate residues involved in nucleotide binding. Black boxes mark sites mutated in the identified

cell clones with alternative residues indicated above.
E Structure of human AK2 in complex with bis(adenosine)-5’-tetraphosphate (pdb:2c9y). Ak2 mutations identified in the remdesivir resistance screen are highlighted in

magenta.
F Schematic of remdesivir cellular uptake and intracellular activation. Modified from Eastman et al (2020).
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Material and Methods

Virus

SARS-CoV-2 was isolated on Vero-E6 cells, from a nasopharyngeal

sample of a patient in Sweden (Monteil et al, 2020). Virus titers

were determined using a plaque assay as previously described

(Becker et al, 2008) with fixation of cells 72 h post-infection. The

SARS-CoV-2 isolate was sequenced by Next-Generation Sequencing

(Genbank accession number MT093571).

Preparation of soluble recombinant human

Clinical-grade human recombinant soluble ACE2 (hrsACE2, APN01,

amino acids 1–740) was produced by Polymun Scientific (contract

manufacturer) from CHO cells according to Good Manufacturing

A B C

D E F

Figure 3. Combined effect of remdesivir and hrsACE2 in blocking entry and replication of SARS-CoV-2 infections.

A Treatment of SARS-CoV-2 (106 PFU) infected Vero-E6 cells with human recombinant soluble ACE 2 (hrsACE2) (200 µg/ml) and remdesivir (Remd. 4 µM). Viral RNA
level was determined at 15 h after virus inoculation.

B Treatment of SARS-CoV-2 (106 PFU) infected human kidney organoids with hrsACE2 (200 µg/ml) and/or remdesivir (Remd. 4 µM). Viral RNA was determined by
qRT–PCR 72 h after the inoculation of 106 PFU of SARS-CoV-2.

C Treatment of SARS-CoV-2 (106 PFU) infected Vero-E6 cells with clinical doses of hrsACE2 (5 and 10 µg/ml) and remdesivir (Remd. 4 µM).
D Treatment of SARS-CoV-2 (106 PFU) infected kidney organoids with hrsACE2 (10 µg/ml) and remdesivir (4 µM).
E, F Progeny virus released from untreated Vero-E6 cells or Vero-E6 cells treated with clinical doses of hrsACE2 (5 and 10 µg/ml) and remdesivir (Remd. 4 µM). Progeny

was determined (E) 15 h and (F) 48 h post-infection (hpi).

Data information: Error bars show mean � SD from biological triplicate. n = 3, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; one-way ANOVA followed by
Students t-test between internal groups. P-values are listed in Appendix Table S1.
Source data are available online for this figure.
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Practice guidelines and formulated as a physiologic aqueous solu-

tion (Haschke et al, 2013; Monteil et al, 2020).

Liver and kidney cytotoxicity assays

To determine whether hrsACE2 or remdesivir at effective anti-viral

doses are toxic to liver and kidney cells, we treated primary human

liver spheroids (Bell et al, 2016; Stebbing et al, 2020) and human

stem cell-derived kidney organoids (Garreta et al, 2019) with several

concentration of hrsACE2 (50–800 µg/ml) or remdesivir (4–80 µM)

in triplicate for 24 h. Three days post-treatment (for kidney orga-

noids) and 15 h post-treatment (for liver spheroids) cytotoxicity

(CC50) was determined using the CellTiter-Glo� Luminescent cell

viability assay (Promega) following manufacturer’s protocol using

50 µl of CellTiter-Glo� Reagent per well. Cytotoxicity of remdesivir

in AN3–12 mouse embryonic stem cells was also assessed using the

CellTiter-Glo� viability assay after 72 h incubation with the indi-

cated remdesivir doses.

Treatments of Vero E6 cells with hrsACE2 and remdesivir

Vero E6 cells were seeded in 48-well plates (5.104 cells per well)

(Sarstedt) in DMEM containing 10% FBS. Twenty four hours

post-seeding, dilution of remdesivir was prepared in DMEM 5%

FBS in a final volume of 100 µl per well. Cells were treated with

remdesivir or mock-treated for one hour. During this incubation

time, hrsACE2 was mixed with the virus (1:1) in a final volume

of 100 µl per well in DMEM (5% FBS) at 37°C for 30 min; then,

remdesivir was added (or not) to the mixes before infection.

Vero E6 were infected either with mixes containing hrsACE2/

SARS-CoV-2, remdesivir/SARS-CoV-2, or hrsACE2/remdesivir/

SARS-CoV-2 for 1 h. After 1 h, cells were washed three times

with PBS and 200 µl of DMEM 5%FBS containing remdesivir

4 µM, hrsACE2 5 µg/ml or 10 µg/ml or combinations were added

to the cells for 15 and 48 h. Fifteen hours post-infection, super-

natants were removed and saved for titration, and cells were

washed three times with PBS and then lysed using TrizolTM

(Thermofisher) before analysis by qRT–PCR for viral RNA detec-

tion. Forty eight hours post-infection, supernatants were removed

and saved for titration. Infectious progeny virus in supernatants

was titered using a plaque assay with fixation of cells 72 h post-

infection.

Treatments of kidney organoids with hrsACE2 and remdesivir

The kidney organoid model for SARS-CoV-2 infection has been

described recently (Monteil et al, 2020). Dilution of remdesivir

was prepared in DMEM 5% FBS in a final volume of 100 µl per

well. Kidneys were treated with remdesivir or mock-treated for

one hour. During this incubation time, hrsACE2 (10 or 200 µg/

ml) was mixed with 10^6 PFU of virus (1:1) in a final volume

of 100 µl per well in Advanced RPMI medium (Thermo Fisher)

at 37°C for 30 min; then, remdesivir was added or not to mixes

before infection. Kidney supernatants were then removed, and

kidneys were infected either with mixes containing hrsACE2/

SARS-CoV-2, remdesivir/SARS-CoV-2, or hrsACE2/remdesivir/

SARS-CoV-2 for 3 days. Three days post-infection, supernatants

were removed, and kidneys were washed three times with PBS

and then lysed using TrizolTM (Thermofisher) before analysis by

qRT–PCR for viral RNA detection.

Mutagenesis screen, exome sequencing, and analysis

The screening procedure and the data analysis were extensively

described previously (Horn et al, 2018). In brief, AN3–12 mouse

embryonic haploid stem cells were cultured in DMEM high glucose

(Sigma-Aldrich) supplemented with glutamine, fetal bovine serum

(15%), streptomycin, penicillin, non-essential amino acids, sodium

pyruvate, b-mercaptoethanol, and LIF. Cells were mutagenized

with 0.1 mg/ml Ethylnitrosourea for two hours at room tempera-

ture 24 h prior to selection with 50 µM remdesivir. Two weeks

later, resistant clones were isolated and subjected to remdesivir

cytotoxicity assays and gDNA extraction using the Gentra Puregene

Tissue Kit (Qiagen). Paired end, 150 bp whole exome sequencing

was performed on an Illumina Novaseq 6000 instrument after

precapture-barcoding and exome capture with the Agilent SureS-

elect Mouse All Exon kit. For data analysis, raw reads were aligned

to the reference genome mm9. Variants were identified and anno-

tated using GATK (v.3.4.46) and snpEff (v.4.2). Remdesivir resis-

tance causing alterations were identified by allelism only

considering variants with moderate or high effect on protein and a

read coverage > 20.

qRT–PCR

Samples were extracted using Direct-zol RNA MiniPrep kit

(Zymo Research). qRT–PCR was performed using E-gene SARS-

CoV-2 primers/probe following guidelines by the World Health

Organization (https://www.who.int/docs/default-source/corona

viruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111

902.pdf).

Forward primer: 5´-ACAGGTACGTTAATAGTTAATAGCGT-3’

Reverse primer: 5´-ATATTGCAGCAGTACGCACACA-3’

Probe: FAM-ACACTAGCCATCCTTACTGCGCTTCG-MGB

RNase P was used as an endogenous gene control to normalize the

levels of intracellular viral RNA.

Forward primer: AGATTTGGACCTGCGAGCG

Reverse primer GAGCGGCTGTCTCCACAAGT

probe: FAM-TTCTGACCTGAAGGCTCTGCGCG-MGB

Statistics

Statistical analyses were conducted using GraphPad Prism 8

(GraphPad), and significance was determined by one-way ANOVA

followed by Student’s t-test for internal groups. Error bars show

mean � SD from biological triplicate.

Data availability

All source data of this study are available online. Other data that

support the findings of this study are available from the correspond-

ing authors upon request.

Expanded View for this article is available online.
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