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impacted whole-kidney transcriptomics outputs.  Cell type-specific differential
expression analysis identified proximal tubule (PT) cells as the key vulnerable cell type.
Through unbiased cell trajectory analyses, we show that PT cell differentiation is
altered in kidney disease. Metabolism (fatty acid oxidation and oxidative
phosphorylation) in PT cells showed the strongest and most reproducible association
with PT cell differentiation and disease. Coupling of cell differentiation and metabolism
was established by nuclear receptors (ESRRA and PPARA) that directly control
metabolic and PT cell-specific gene expression in mice and patient samples, while
protecting from kidney disease in the mouse model.
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Metabolic regulators define proximal tubule cell differentiation and protect from kidney 
disease 

The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and 
differentiation 
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Abstract 

Kidney disease is poorly understood due to the organ’s large cellular diversity. We 

used single cell RNA-sequencing not only to resolve differences in injured kidney 

tissue cellular composition but also in cell type-specific gene expression in mouse 

models of kidney disease.  

This analysis highlighted major changes in cellular diversity in disease, which 

markedly impacted whole-kidney transcriptomics outputs. Cell type-specific differential 

expression analysis identified proximal tubule (PT) cells as the key vulnerable cell type. 

Through unbiased cell trajectory analyses, we show that PT cell differentiation is 

altered in kidney disease. Metabolism (fatty acid oxidation and oxidative 

phosphorylation) in PT cells showed the strongest and most reproducible association 

with PT cell differentiation and disease. Coupling of cell differentiation and metabolism 

was established by nuclear receptors (ESRRA and PPARA) that directly control 

metabolic and PT cell-specific gene expression in mice and patient samples, while 

protecting from kidney disease in the mouse model. 
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Introduction 

Kidney disease is becoming a major health issue in modern society. Chronic kidney 

disease (CKD) is the tenth leading cause of death worldwide with a steadily increasing 

incidence affecting eight hundred million people globally (Levin et al., 2017). The large 

number of people affected by CKD is of concern because some will progress to end-

stage renal disease (ESRD), severely affecting quality of life. In addition, kidney 

disease is a massive personal and societal economic burden (Breyer and Susztak, 

2016; Kovesdy et al., 2013). 

Genetic studies examining the heritability of kidney function, such as integration of 

genome wide association studies (GWASs) (Wuttke et al., 2019) and functional 

genomic studies, highlighted the role of proximal tubule-specific genes in kidney 

function (Hellwege et al., 2019; Park et al., 2018; Qiu et al., 2018). PT cells are highly 

susceptible to toxic and hypoxic injury, representing the primary cause of acute kidney 

injury (AKI) (Qiu et al., 2018). PT cell-specific injury observed in AKI probably has the 

most rapid effect on kidney function. CKD, which is defined by more than 40% decline 

in GFR for more than 3 months, is characterized by PT cell atrophy almost 

independent of disease etiology. PT cell atrophy strongly correlates with kidney 

function in CKD (Chang-Panesso and Humphreys, 2017; Reidy et al., 2014) (Liu et 

al., 2014) (Kang et al., 2015; Li et al., 2012).  

Comprehensive genome-wide kidney tissue transcriptomics analysis has been used 

to define the molecular hallmarks of this complex process, both in patient samples and 

mouse models (Beckerman et al., 2017; Qiu et al., 2018; Woroniecka et al., 2011). 

These studies highlighted a correlation between a large number of transcripts and 

kidney fibrosis. Cellular metabolism, such as genes involved in lipid metabolism, fatty 

acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) showed strong 

correlation with disease state, both in patients and mouse CKD models (Chung et al., 

2019; Kang et al., 2015). Pharmacological or genetic approaches that enhance FAO 

and mitochondrial biogenesis improved kidney function; however, the exact 

mechanism is not fully understood (Gomez et al., 2015; Tran et al., 2011, Tran et al., 

2016; Zheng et al., 2019). Further, mitochondrial defects can lead to the leakage of 

the mitochondrial DNA into the cytoplasm resulting in the activation of the 
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cGAS/STING innate immune system pathway, cytokine release and influx of immune 

cells and downstream fibrosis development (Chung et al., 2019: Maekawa et al. 2019).  

Single-cell RNA-sequencing (scRNA-seq) analysis is transforming our understanding 

of complex diseases. In our previous study, we identified 21 distinct cell types, 

including 3 novel cell types in the kidney (Park et al., 2018). At the same time, we 

defined cell identity genes that can stably and reproducibly classify key kidney cell 

types in mice and humans (Young et al., 2018).  

Here we analyzed the transcriptome of different CKD mouse models, human kidney 

samples and human organoids. Prior studies mostly relied on single nuclear 

sequencing and did not properly capture the immune cell diversity (Lake et al., 2019; 

Wu et al., 2019). We identify several PT cell subgroups, and using cell trajectory 

analyses we show an alteration in the differentiation state of PT cells in diseased 

kidneys. Single-cell epigenetics and transcriptomics indicate the critical role of HNF4A, 

HNF1B (hepatocyte nuclear factor 4A and 1B), PPARA (peroxisomal proliferation-

activated receptor alpha) and ESRRA (estrogen related receptor alpha) in defining PT 

cell identity. Using mouse knock-out and human kidney transcriptomics data we further 

demonstrate the protective role of ESRRA, which links energy metabolism, proximal 

tubule differentiation and kidney function by directly binding to PT cell-specific genes 

and regulating their expression.  

 

Results 

The single-cell landscape shows increased cellular heterogeneity in fibrotic 

kidneys  

To unravel cellular changes associated with kidney fibrosis, first we analyzed the 

transcriptome of 65,091 individual cells from 6 mouse control kidneys and 2 folic acid-

induced fibrotic kidneys (folic acid nephropathy: FAN) (Figure 1A). This is a well- 

established kidney disease model presenting both with structural damage (fibrosis) 

and kidney function decline indicated by serum BUN level (Figure S1A-S1C). We 

observed that PT cells represented the majority of cell types in the dataset. To 
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accurately cluster smaller cell populations, we first focused on non-PT cells (Figure 

1B). Our unbiased clustering identified 30 cell populations, including kidney epithelial, 

immune and endothelial cells based on marker gene expression (Figure 1C and 

Figure S1D, Table S1). The proportion of cells were relatively stable in biological 

replicates but were substantially different between control and FA samples (Figure 

S1E). Gene sets previously used to define cell types (cell identity genes) showed  

conserved expression in disease state (Figure S1F). Immune cell diversity was 

markedly increased in the FAN mice (Figure S1D and S1E). Such as we identified 14 

immune cell clusters in our FAN model while we our previous study characterized 5 

immune clusters (Park et al., 2018). Amongst the newly identified, we observed 

granulocytes, macrophages, dendritic cells (DCs) and basophils. DCs were further 

subclustered into DC 11b+ (Cd209a and Cd11b), DC 11b- (Cd24a and Clec9a) and 

plasmacytoid DC clusters (Siglech and Cd300c) (Figure 1D and 1E). A large number 

of lymphoid cells were also identified, including B cells, T cells, and natural killer cells 

(Figure 1B and 1C). T lymphocytes were subclustered into CD4+ T, Treg, gamma 

delta T, NKT, and CD8+ effector cells (Figure 1F and 1G). We made this dataset 

publicly available on our interactive website (http://susztaklab.com/VisCello/).  

 

Bulk RNA-sequencing strongly influenced by cell fraction changes  

We next performed RNA-sequencing of whole-kidney (i.e. bulk tissue) samples, as 

single-cell sequencing may suffer from uneven cell drop-out. Differential expression 

analysis of bulk RNA-seq data indicated changes in expression of more than 4,000 

genes (2,776 with higher and 1,361 with lower expression, using FDR of 0.05 and fold 

change 2) (Figure 2A). Gene ontology analysis highlighted that expression of genes 

associated with the immune system and inflammation were higher in the FAN model 

(Figure 2A). Analysis of genes showing the highest increased expression in the bulk 

dataset indicated that most such genes were exclusively expressed by immune cells 

(Figure 2B). Genes whose levels were lower in the FAN model were enriched for 

metabolic processes, such as lipid metabolism, FAO and OXPHOS (Figure 2A). 

Genes with lower expression in the FAN model showed high enrichment for PT cell 

expression (Figure 2B), suggesting a strong role for PT cells and immune cells driving 

http://susztaklab.com/VisCello/
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transcriptional changes in bulk RNA sequencing data. In addition, we observed that 

highly expressed and top differentially expressed genes, including Lyz2, Cd52 and 

Tyrobp, in the bulk RNA-seq data showed similar expression patterns in control and 

FAN samples at a single-cell level (Figure S2A), suggesting that the majority of genes 

showing higher expression in disease were related to immune cell proportion changes 

rather than cell specific changes. 

Next, we determined cell proportion changes using single-cell and bulk RNA-seq data. 

We found marked differences in cell proportion, such as a distinct increase in myeloid 

and lymphoid cell proportion (e.g. macrophages (7.2-fold), granulocytes (2.9-fold), 

Tregs (27-fold) and CD8 effector cells (3.8-fold)), while the proportion of tubule 

epithelial cells (e.g., PT (0.55-fold) and distal convoluted tubule (0.23-fold)) was lower 

in the single-cell data of the FAN model (Figure 2C). On the other hand, consistent 

with prior observations, proportion of podocytes did not show clear changes in the 

FAN model (Figure 2C). We also performed in silico deconvolution of bulk RNA-seq 

data implemented in the CellCODE package. This analysis yielded results broadly 

consistent with the single-cell RNA sequencing data (Figure 2D), such as higher 

immune cell fractions and lower epithelial cell fractions. Finally, cell proportion 

changes in epithelial and immune cells were confirmed by histological analysis (Figure 

S1A).  

To further understand the contribution of cell type-specific and cell fraction changes in 

bulk RNA-seq results, we directly compared the single-cell with the bulk data. After 

adjusting the data to the observed cell fraction changes, the number of genes showing 

differential expression were markedly reduced. Among the 4,137 differentially 

expressed genes in bulk data, only 14, 2, 902 and 753 genes remained significant 

after adjustment by proximal convoluted tubule (PCT), proximal straight tubule (PST), 

myeloid or lymphoid cell fractions, respectively (Figure S2B).  

To unravel cell type-specific gene expression changes in the FAN model, we 

performed differential expression analysis in all identified cell types. Keeping in mind 

the limitation of this analysis, such as the complete confounding of the disease state 

and possible batch effect, we found that myeloid cells, such as macrophages, showed 

a large number of differentially expressed genes (Figure 2E). We found that amongst 
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the epithelial cells, PT cells showed the largest number of differentially expressed 

genes (Figure 2E, Table S2). Genes that showed lower expression levels in diseased 

PT cells are solute carrier (cell differentiation-related genes) such as Slc5a2 and 

Slc13a3, as well as genes involved in FAO and OXPHOS (e.g., Acsm1, Acsm2, Cpt1a, 

Acox3) (Figure 2F).  

Even though PT cells represented a large portion of the bulk dataset, only a small 

fraction of differentially expressed genes observed in PT cells was shared in the bulk 

RNA-seq data (Figure 2G) and correlation between PT cell-specific differentially 

expressed genes in single-cell and bulk data was weak. Less than 10% of PT cell-

specific differentially expressed genes showed direction-consistent and observable 

changes in the bulk gene expression data (Figure 2H).   

 

Altered differentiation drives proximal tubule response during fibrosis  

To better understand cell state changes in PT cells, we performed sub-clustering and 

cell trajectory analysis of healthy and diseased samples from CKD mouse models. In 

healthy controls, we identified several PT cells subtypes, including PST cells 

expressing Slc22a30, and several subgroups of PCT expressing Slc5a2 and Slc5a12 

(Figure 3A, Table S3). RNA velocity analysis has opened up new ways of studying 

cellular differentiation (La Manno et al., 2018) by predicting the future state of 

individual cells. Our analysis indicated that in control kidneys, PT cells differentiated 

into 2 major cell types: PCT and PST segments (Figure 3B and 3C). Interestingly, the 

analysis highlighted that PT cells originated from a common precursor-like cell, 

expressing higher levels of Med28 and Cycs (Figure 3D). Importantly, our analysis 

also suggested that PT cell differentiation did not necessitate cell proliferation, as we 

did not observe changes in the expression of proliferation markers (Figure 3D). 

PT cells from FAN samples subclustered into 9 groups. Using anchor genes to identify 

key cell types such as PCT and PST segments, we were able to recognize more 

heterogeneous cell populations, including proliferating cells, immune marker (Cd74)-

expressing cells, transitional cells and precursor cells expressing higher Igfbp7 

(Figure 3E, Table S3). In diseased samples, we also identified a prominent 
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proliferating (i.e., Ki67-positive) cell population and it appeared that cells entered and 

exited this Ki67-positive state. These data are consistent with a facultative progenitor 

model in kidney tubule cells (Angelotti et al., 2012; Kang et al., 2016) (Figure 3F). 

Notably, we identified a cell population expressing Notch2 and Lgr4, previously 

identified as progenitor and transit amplifying cells in the kidney and other organs (de 

Lau et al., 2011; Zhang et al., 2019). We observed that PCT cells co-expressed PST 

markers, suggesting that under disease conditions PCT cells may endure 

transcriptomic changes impacting on their phenotypic signature. Similar to our 

observation in control samples (Figure 3B), FAN samples showed a differentiation 

trajectory toward PCT and PST segments (Figure 3G and 3H) but followed a less 

organized differentiation path than healthy PT cells (Figure 3G). On the other hand, 

we failed to observe a clear reversal of differentiation of cells already expressing 

terminal differentiation markers such as Slc5a2 or Slc22a30, indicating that a failure 

of differentiation rather than dedifferentiation is the reason for the identified cell-state 

changes.  

 

Differentiation defects in fibrotic proximal tubules track with changes in lipid 

metabolism 

Next, we opted to take advantage of the continuous cell trajectory analysis using the 

Monocle package by combining all samples under healthy and disease states 

(Trapnell et al., 2014). Initial exploration showed a clear branching of PT cells into PCT 

and PST segments (Figure 4A, 4B and Figure S3A), which was mostly consistent 

with the RNA velocity analysis. To identify genes whose expression changed along 

the trajectory, we first performed trajectory analysis for the PST segment, as this 

segment is highly susceptible to injury (Figure 4C, 4D and Figure S3B). Cells from 

control and diseased kidneys seemed to follow a similar linear trajectory towards PST 

segment differentiation (i.e., no major branching) but FAN samples were significantly 

depleted from terminally differentiated PT cells (two sample proportion test, between 

cells in red and blue area, p-value < 2.2e-16) (Figure 4C and 4E). Trajectory analysis 

of PCT segment cells showed similar pattern (Figure S3C and S3D). These data are 
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consistent with prior observations indicating lower levels of terminally differentiated 

markers in FAN samples (Figure 3G).  

When we interrogated genes and pathways that underlie the PT cell differentiation 

state, we found that the expression genes associated with terminal differentiation, 

such as those with ion transport function (i.e., SLC solute careers) increased along the 

differentiation trajectory (Figure 4F). In addition to ion transport, lipid metabolism 

showed a positive correlation with cellular differentiation (Figure 4F-4H and Figure 

S3E). Moreover, we observed changes in FAO genes along the differentiation path 

from precursor to PT cells in both healthy controls and FAN samples (Figure 4I-4L). 

We also generated scRNA-seq data from the unilateral ureteral obstruction (UUO) 

model of kidney fibrosis and compared cell trajectories in the UUO and the FAN 

models. Continuous cell trajectory analysis showed selective lack of terminally 

differentiated PT cells in UUO kidneys, recapitulating the results obtained from the 

FAN model (Figure S3F-S3H). In addition, when examining pathways associated with 

differentiation of PT cells along the cell trajectory, we found enrichment for FAO, 

OXPHOS and ion transport (Figure S3I and S3J). There was a strong (>50%) overlap 

of gene expression changes along the respective differentiation trajectories in the 

UUO and FAN models (Figure S3K). 

Partial epithelial-mesenchymal transition (EMT) has been used to describe the 

aberrantly differentiated PT cells (Grande et al., 2015; Lovisa et al., 2015; Zeisberg 

and Duffield, 2010). We found that EMT markers tended to be lower upon PT cell 

differentiation (Figure S3L), we failed to observe significant expression of Zeb, Twist 

and Snai in the different PT cell subclusters in fibrotic samples (Table S4). We also 
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failed to observe cells exhibiting classic senescence markers (SASP; senescence 

associated secretory phenotype) (Table S4).  

 

Proximal tubule differentiation in kidney organoids correlates with metabolic 

changes  

To distinguish whether lipid metabolism and OXPHOS only enhance PT cell-specific 

genes expression or they are true drivers of PT cell maturation, we tested the role of 

FAO and OXPHOS in tubule cell differentiation of developing kidney organoids. 

Previously, we showed three-dimensional (3D) culture systems that recapitulate 

architectural and functional features of the human developing kidney; so-called kidney 

organoids generated from human pluripotent stem cells (hPSCs) (Garreta et al., 2019). 

We generated hPSCs-kidney organoids in free-floating conditions by assembling 

nephron progenitor cells (NPCs) derived from hPSCs (Figure 5A). Bulk gene 

expression analysis of differentiating organoids indicated an increase in expression of 

PPARGC1A on days 16 and 21. The increase in PPARGC1A expression in organoids 

correlated with the expression of PT cell markers, such as SLC27A2, SLC3A1, 

SLC5A12 (Figure 5B). As bulk RNA expression data cannot provide a faithful read-

out for proximal tubule differentiation, we performed unbiased scRNA-seq analysis 

(Figure 5C). Clustering analysis based on cell type-specific marker gene expression 

indicated, that in addition to mesenchymal clusters we could also identify a variety of 

kidney cell types resembling those of collecting duct, actively cycling cells, endothelial 

cells, podocytes, loop of Henle and PT cells (Figure 5C and 5D). Next, we specifically 

examined the differentiation trajectory of organoid PT cells. Cells differentiated from a 

SIX1 positive progenitor and gained PT cell marker SLC3A1 expression (Figure 5E). 

Next, we analyzed genes whose expression changed along this trajectory and found 

that the expression of differentiation markers such as solute carriers increased along 

the trajectory and their expression strongly correlated with genes in FAO, including 

PPARA (Figure 5F). Finally, to confirm that FAO is a driver of cellular differentiation, 

we cultured kidney organoids in glycolytic (EGM) or OXPHOS promoting (REGM) 

media. We found higher expression of PPARGC1A mRNA and lipid metabolic genes 

such as ACOX2, ACOT12, and CPT1A, when organoids were cultured in REGM 
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media for 4 days versus EGM media (Figure 5G). We further assessed the protein 

levels of mitochondrial OXPHOS proteins in organoids exposed to both REGM and 

EGM culture media (Figure 5H and Figure S4A, S4B). Concomitantly to these 

metabolic changes, we observed that an REGM lead to an increase in the expression 

of PT cell markers such as SLC34A1, SLC27A2, SLC5A12, SLC6A19 and SLC3A1 

compared to EGM media (Figure 5G). These results run in parallel with our in vitro 

observations of cultured PT cells from mice (Figure S4C and S4D). In addition, 

organoids exhibited a visibly higher number of proximal tubules as observed by 

immunofluorescence (IF) analysis for LTL labeling (Figure 5I and 5J).  

 

ESRRA drives proximal tubule differentiation in mouse models and couples 

metabolism with differentiation 

In order to define the key transcriptional regulatory organization of PT cells, we 

analyzed mouse kidney single cell open chromatin data (scATACseq) (Cao et al., 

2018). Using a computation motif search algorithm, we found that the most enriched 

open binding motifs were HNF4A, HNF1B, PPARA and ESRRA in PCT and PST cells 

(Figure 6A). Our single cell gene expression analysis confirmed transcript enrichment 

for these 4 transcription factors in PT cells (Figure S5A). Next, we defined putative 

PPARA and ESRRA target genes by intersecting PCT- or PST-specific open 

chromatin region at promoters (transcription start site ± 5kb) or gene body regions 

chromatin regions that contained PPARA- or ESRRA-binding motifs. Gene set 

enrichment analysis showed enrichment for PPARA- and ESRRA-target genes (Table 

S5) in differentiated PST and PCT cells (Figure 6B and Figure S5B). PT-specific 

PPARA and ESRRA target genes were enriched for kidney development, lipid 

metabolism and epithelial transport functions (Figure 6C and Figure S5C).  

To functionally confirm the role of ESRRA in cellular differentiation, we treated LTL+ 

PT cells with Esrra siRNA or XCT790, a pharmacological inhibitor (inverse agonist) of 

ESRRA. We observed that reduced Esrra activity led to compromised mitochondrial 

function, as assessed by oxygen consumption rate (OCR) and OXPHOS proteins 

levels as well as decreased mitochondrial DNA content. In addition, reduced Esrra led 
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to lower expression of PT differentiation genes (Figure 6D-6G and Figure S6A-S6D). 

We next transfected LTL+ PT cells with ESRRA, PPARA or all four TFs (ESRRA, 

PPARA, HNF4A and HNF1B) plasmids. ESRRA overexpression in PT cells not only 

improved mitochondrial function and mtDNA copy number but also led to an increase 

in expression SLC genes (Figure 6D-6G and Figure S6D-S6F). We found that 

overexpression of PPARA, HNF1B and HNF4A had a synergistic effect as evident by 

the strong additive effect on cellular differentiation, such as SLCs expression (Figure 

S6E and S6F). To establish the role of ESRRA in human proximal tubule cell 

differentiation, we treated human primary renal proximal tubule epithelial cells (HPTCs) 

and kidney organoids cultured in REGM media with XCT790 for 48 hours. Kidney 

organoids and HPTCs treated with XCT790 showed impaired FAO (Figure S6G and 

S6I) and reduced expression of SLCs genes such as SLC3A1, SLC27A2, SLC34A1, 

SLC6A19, and ATP11A (Figure S6G and S6I). Overall, we found that ESRRA 

inhibition negatively affected PT differentiation as shown by decreased LTL 

fluorescence intensity (Figure S6H).  

Finally, to distinguish whether ESRRA directly (via binding of the promoter) or 

indirectly (via improving metabolism) regulates PT cell differentiation, we performed 

chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time 

PCR (ChIP-qPCR) to study ESRRA transcription factor binding to DNA in PT cells. 

We found enrichment for multiple PT-specific genes, such as Slc5a11, Slc6a13, 

Slc6a19, Slc13a3, Slc7a13, Slc22a6 and Slc22a28, and metabolic genes, such as 

Adipor2 and Acadm (Figure 6H).  

To define the role of Esrra in kidney disease, we challenged Esrra knock-out mice with 

FA (Figure 6I). We found that the expression of Esrra was lower in FAN and UUO 

model of fibrosis when compared to controls (Figure 6I and Figure S6J). We 

observed that Esrra knock-out mice showed increased susceptibility to FA-induced 

kidney injury compared to wild-type littermates as detected by histological analysis 

(Figure S6K). Levels of pro-fibrotic markers such as Col1a1 and Col3a1 were higher 

in FA-treated Esrra knock-out mice (Figure S6L) compared to wild-type counterparts. 

Animals showed increased collagen accumulation on Sirius red stain (Figure S6M) 

and increased cell proliferation by Ki67 staining (Figure S6N). We further confirmed 

the decrease in SLCs proteins (SLC6A13 and SLC34A1) and increase in pro-fibrotic 
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proteins (SMA and FN) in Esrra KO mice upon FAN injury (Figure 6J and Figure 

S6O). Further, we found that genetic deletion of ESRRA in PT cells was associated 

with impaired mitochondrial function despite the compensatory increase in other 

nuclear receptors, such as Esrrg and Ppara, (Figure S6P-S6Q) that improved by re-

expression of ESRRA. Similar to prior results, we found that PPARA also regulated 

PT metabolism and cellular differentiation both in vitro and in vivo (Figure S4C and 

S5D) (Kang et al., 2015) indicating a likely complex interaction between the different 

nuclear receptors in PT cells.  

 

ESRRA driven metabolic changes correlates with kidney disease severity in 

patient samples 

Finally, we wanted to ascertain whether ESRRA-driven metabolism and PT cell 

differentiation that appears to drive disease development in mouse kidney disease 

models can also be recapitulated in patients with CKD. We analyzed 91 

microdissected human kidney tubule samples obtained from healthy subjects and from 

patients with diabetic and hypertensive kidney disease (Table S7). First, we examined 

the expression of genes involved in FAO and found a group of genes, which strongly 

correlated with kidney fibrosis (Figure 7A). These genes included ADIPOR2, PPARA, 

ACSM2A, ACSM3, and APOE, for which we had previously demonstrated an increase 

along the proximal tubule differentiation trajectory (Figure 4J). Correlation analysis 

revealed that the expression of lipid metabolism genes showed positive correlation 

with the expression of PT cell differentiation and negative correlation with fibrosis 

(Figure 7B). In silico deconvolution of bulk transcriptome data from 91 human samples 

showed that PCT and PST cell proportions were decreased in fibrotic tissues (Figure 

7C). Next, we assessed the effect of cell proportion changes on gene expression 

changes observed in bulk gene profiling data (Figure 7C). Expression of a total of 

1,980 genes significantly correlated with fibrosis scores in 91 human kidney samples 

analyzed by linear regression using age, gender, race and diabetes and hypertension 

status as covariates (FDR < 0.05). Next, we performed in silico deconvolution analysis 

of the data using CellCODE. Adjusting the model to the 4 cell lineages (PCT, PST, 

myeloid and lymphoid cells) reduced the number of differentially expressed genes 
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(DEGs) from 1,980 to 22 genes, indicating the key role of cell heterogeneity driving 

bulk gene expression changes (Figure S7A).  

Lastly, we examined the expression of ESRRA and its target genes in 431 

microdissected human kidneys (Table S7). Expression of ESRRA was lower in 

disease samples and strongly correlated both with eGFR and kidney fibrosis (Figure 

S7B). Protein expression of ESRRA was mostly localized to the nuclei of proximal 

tubules and it was markedly lower in human CKD samples (Figure S7C). Expression 

of ESRRA in human kidney tubule samples correlated with lipid metabolism and 

proximal tubule markers as well as with membrane transporter genes that are ESRRA 

targets (Figure 7D). These results confirm the relationship between proximal tubule 

(differentiation) state and metabolism via ESRRA and PPARA. 

 

Discussion 

Here we present a comprehensive analysis using mouse single-cell RNA and 

epigenome analysis, cultured cells, mouse models, patient samples and kidney 

organoids to demonstrate that PT cells exist in different differentiation states in health 

and disease conditions. Our results highlight PT cellular metabolism as one of the 

main drivers of PT cell differentiation identifying ESRRA as a central key player in 

coupling metabolism and differentiation by directly binding and regulating expression 

of PT genes. Furthermore, our observations describe how ESRRA together with 

HNF1B, HNF4A, PPARA likely form a complex network regulating PT metabolism and 

differentiation. ESRRA-driven PT metabolism and differentiation plays a critical role 

protecting kidney from injury and correlates with kidney disease severity in patient 

samples.  

We show that gene expression changes observed in bulk RNA-seq analysis mostly 

reflected cell heterogeneity of diseased mouse and human kidney samples. For 

example, proximal tubule-specific genes had lower expression levels in bulk RNA-seq 

analysis; however, many of these genes showed no clear change at a single-cell level. 

Genes that showed higher expression in disease samples were mostly genes 

exclusively expressed in immune cells, however, they didn’t show marked changes in 
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the single-cell data when control and disease samples were compared. There was a 

marked increase in cell diversity of healthy and diseased samples, mostly related to 

the increase in the diversity of immune cells.  

We provide a high-resolution comprehensive analysis of cell type-specific changes in 

two different mouse kidney fibrosis models. We identified different PT cell subtypes in 

healthy and disease states. In addition, to the known PCT and PST segments, we also 

identified precursor-like cells. Cell heterogeneity was significantly higher in diseased 

PT cells as we identified proliferating cells, immune marker expressing cells and 

transitional cells (such as PCT and PST intermediate cells), and PT cell and LOH 

intermediate cells. Future studies will determine the role of these cells in disease 

development. Important to note that these cell populations represented a continuum 

between the established PCT and PST cells rather than true discrete groups. Using 

trajectory and clustering methods we identified cell state differences amongst PT cells. 

We identified precursor cells that expressed high levels of Igfbp7, but lower levels of 

differentiated PT cell markers. IGFBP7 is one of the best-known biomarkers of AKI 

(Meersch et al., 2014; Vijayan et al., 2016). Further studies shall examine the 

connection between kidney and urinary IGFBP7 expression levels and renal injury as 

well as outcome.  

We found that in diseased kidneys fewer cells were in the terminal differentiation state. 

Increased death of differentiated cells could have contributed to this finding, however, 

only minimal changes in cell death is observed at the stages examined (Bielesz et al., 

2010). Consistent with prior reports, Wnt expression correlated with cell differentiation 

in one but not in the second kidney fibrosis model (Edeling et al., 2016; He et al., 2009; 

Kato et al., 2011; Rinkevich et al., 2014). Changes in lipid metabolism, FAO and 

OXPHOS were consistent in both models. This might be consistent with earlier reports 

that such developmental pathways regulate metabolic changes in diseased kidneys 

(Huang et al., 2018). Overall, our results indicate that kidney PT cells exist in different 

states where higher expression of cell function genes (e.g., SLCs) strongly correlates 

with higher expression of FAO and OXPHOS genes.  

Biologically, coupling of metabolism and cell state makes perfect sense as it 

harmoniously couples energy production and utilization with cellular function. Indeed, 
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coupling of cell state and metabolism have been best demonstrated in the field of 

immunometabolism. For example, effector T cells exhibit high glycolysis, whereas 

regulatory cells have higher FAO and mTORC1 activation, which in turn drives effector 

differentiation while suppressing regulatory generation (Angelin et al., 2017; Delgoffe 

et al., 2009; Michalek et al., 2011). Dysregulated metabolism contributes to disease 

development, as T cells from systemic lupus erythematosus patients exhibit increased 

glycolysis and OXPHOS, whereas increased fatty acid biosynthesis and reduced ROS 

levels are associated with rheumatoid arthritis (Shen et al., 2017; Yang et al., 2013; 

Yin et al., 2015). Recently, sodium glucose cotransporter 2 inhibitors have shown 

remarkable success in improving kidney function decline  (Barnett et al., 2014), it is 

possible that reducing the cellular energy requirement is part of their mechanism of 

action.  

Our results for the first time define the key role of several nuclear receptors, such as 

PPARA, ESRRA in driving PT cell differentiation. ESRRA is a critical transcription 

factor that regulates mitochondrial biogenesis and FAO (Singh et al., 2018, Soriano et 

al., 2006). ESRRA remains an underappreciated nuclear receptor and metabolic target 

due to its diverse role in multiple cellular signaling pathways and its function as a co-

regulator of metabolism. Here, we show that ESRRA not only transcriptionally 

regulates mitochondrial and metabolic genes but also directly binds to genes 

associated with PT differentiation such as a variety of SLCs. ESRRA target gene 

expression shows consistent changes in PT cell differentiation in vivo in mice and in 

patients supporting the key role of ESRRA in driving cell state. ESRRA overexpression 

not only improved metabolism and mitochondrial function but also PT differentiation 

and its inhibition resulted in impaired FAO and OXPHOS with altered differentiation 

state. We found that other transcription factors such as ESRRG, PPARA levels 

increased in the absence of ESRRA which might be responsible for the lack of 

phenotypic changes at baseline, however this compensation was insufficient to protect 

Esrra KO mice during kidney injury (Zhao et al., 2018, Marable et al., 2020). Previous 

studies showed the role of Esrrg in kidney tubules (Zhao et al., 2018).   

It has been difficult to induce PT cell differentiation in cultured organoids (Combes et 

al., 2019; Wu et al., 2018). Using human kidney organoids, we show that FAO and 
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OXPHOS directly drive differentiation of PT cells. Our data indicates that increasing 

the activity of Esrra (and Ppara) could be beneficial for PT cell differentiation. 

In summary, we show the continuum of PT cell states in health and disease and the 

key role of metabolism in driving PT cell state. ESRRA couples cell differentiation state 

and metabolism by not only regulating the expression of cellular metabolism but also 

the expression of key cell type–specific genes. The work provides new opportunities 

to manipulate cell fate, PT cell differentiation and metabolism based on their reliance 

on nuclear receptors such as ESRRA. 

 

Limitations of Study 

There are several limitations of our study and future studies shall carefully examine 

changes observed in non-PT cells in the context of kidney fibrosis and in patients with 

kidney disease. Follow-up studies should examine the large number of genes and cell 

type changes identified by single-cell analysis. Future studies are needed to study the 

detailed ESRRA regulatory network in the kidney and its interaction with other key PT 

transcription factors, such as PPARA, HNF1B and HNF4A. 
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Figure Legends  

Figure 1. The cellular diversity of diseased kidney samples.  

(A) A schematic diagram illustrating the experimental procedure involving the digestion 

of whole-kidney tissue from 6 control and 2 FAN mice followed by sequencing using a 

10x Genomics protocol. and transcriptomic analysis of 65,091 individual cells.  

(B) Left, the UMAP of 29 distinct cell types identified by unsupervised clustering after 

excluding the proximal tubule cells. Right, the tSNE plot for the entire dataset including 

proximal tubule cells. Assigned cell types are summarized in right panel. GEC: 

glomerular endothelial cells, Endo: endothelial, Podo: podocyte, PT: proximal tubule, 

DLOH: descending loop of Henle, ALOH: ascending loop of Henle, DCT: distal 

convoluted tubule, CNT: connecting tubule, CD-PC: collecting duct principal cell, A-

IC: alpha intercalated cell, B-IC: beta intercalated cell, CD-Trans: collecting duct 

transitional cell, Granul: granulocyte, Macro: macrophage, DC 11b+: CD11b+ dendritic 

cell, pDC: plasmacytoid DC, Baso: Basophile B: B lymphocyte, Treg: regulatory T cell, 

Tgd: gamma delta T cell, NK: natural killer cell. 

(C) Bubble plots of cell cluster marker genes identified in control and FAN samples 

(size of the dot indicates the % positive cells, color indicates relative expression).  

(D) Heatmap showing expression pattern of myeloid lineage markers.  

(E) Gene expression feature plots of myeloid lineage cells projected onto the UMAP. 

Msrb1 (Methionine Sulfoxide Reductase B1): Granul, C1qa (Complement C1q A 

Chain): Macro, Cd209a (CD209 antigen-like protein A): DC 11b+, Cd24a (CD24a 

antigen): DC 11b-, Itgam (Integrin Subunit Alpha M): DC 11b+, and Fcer1a (Fc 

Fragment Of IgE Receptor Ia): Baso. 

(F) Heatmap showing expression pattern of lymphoid lineage markers.  

(G) Gene expression feature plots of lymphoid lineage cells projected onto the UMAP. 

Ccr7 (Chemokine C-C motif receptor 7): CD4 T, Foxp3 (Forkhead box P3): Treg, Il17re 

(Interleukin 17 receptor E): Tgd, Cxcr6 (Chemokine C-X-C motif receptor 6): NKT, 

Cd8a (CD8 antigen, alpha chain): CD8 effector, Klrb1c (Killer cell lectin-like receptor 
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subfamily B member 1C): NK1-2, Cd7 (CD7 antigen): NK1 and Irf8 (Interferon 

regulatory factor 8): NK2 

 

Figure 2. Cell composition and cell type specific changes in kidney fibrosis.  

(A) Differentially expressed genes (DEGs) in whole kidneys of control and FAN mice. 

Volcano plot, the x-axis indicates log2 fold change and Y-axis indicates statistical 
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significance adjusted p –log10. Gene ontology analysis of genes showing higher (red) 

and lower (blue) in FAN kidneys. 

(B) Cell type-specific expression of top DEGs identified in bulk RNA-seq analysis in 

the single-cell dataset. Mean expression values of the genes were calculated in each 

cluster. The color scheme is based on z-score distribution.  

(C) Cell proportion changes in control and FAN kidneys revealed by single cell RNA-

sequencing. * indicates significant changes by proportion test. 

(D) Cell proportion changes revealed by in silico deconvolution of bulk RNA 

sequencing data. 

(E) The numbers of cell type-specific differentially expressed genes identified in control 

FAN kidneys in the 30 cell clusters.  

(F) Volcano plot for differentially expressed genes (DEGs) between control and FAN 

proximal tubules identified in the single cell data. X-axis is log2 fold change and Y-axis 

is statistical significance adjusted p –log10. 

(G) Venn diagrams showing the overlaps between the identified differentially 

expressed genes in PT cell by scRNA-seq data and bulk RNA-seq data in control vs 

FAN kidneys (Up arrow: upregulated genes and down arrow : downregulated genes).  

(H) Scatter plot showing the correlation of DEGs identified in PT cell and bulk data. X-

axis shows the fold change expression in PT cells in the single cell data, Y-axis shows 

the fold change expression in whole kidney (bulk) samples. 

 

Figure 3. Heterogeneous proximal tubule cell populations in fibrotic kidneys  

(A) Sub-clustering of PT cells into 5 sub-populations in control kidneys. Feature plots 

showing expression of key PCT (Slc5a2 and Slc5a12) and PST (Slc22a30) segment 

markers.  

(B) RNA velocity analysis of control PT cells. Each dot is one cell and each arrow 

represent the time derivative of the gene expression state. 
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(C) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) 

segment markers in control.  

(D) Violin plots showing the expression patterns of markers across the PT cell sub-

clusters in control. The y-axis shows the log-scale normalized read count.  

(E) Sub-clustering of PT cells into 9 sub-populations in FAN kidneys. Feature plots 

showing expression of key PCT (Slc5a12) and PST (Slc22a30), Igfbp7 (precursor) and 

Cd74 (immune) PT cell state markers.  

(F) Violin plots showing the expression patterns of markers across the PT cell sub-

clusters in FAN. The y axis shows the log-scale normalized read count. 

(G) RNA velocity analysis of FAN PT cells. Each dot is one cell and each arrow 

represent the time derivative of the gene expression state. 

(H) Feature plots showing expression of key PCT (Slc5a12) and PST (Slc22a30) and 

proliferating (MKi67) PT cell markers.  

 

Figure 4. Cell trajectory analysis identifies differentiation defect in proximal 

tubule in fibrosis  

(A) Trajectory analysis of PT cells (including proliferating cells) using Monocle, 

including all control and FAN samples.  

(B) Feature plots showing expression levels of key cell state markers (Mki67: 

proliferating cell, Slc5a2:PCT, Slc13a3:PST) on the cell trajectory.  

(C) Cell trajectory analysis narrowed for PST cluster (cells under red circle in panel A). 

Batches 1-6 represent healthy kidneys, while batches 7-8 were obtained from FAN 

samples.  

(D) Feature plots showing expression levels of key cell state markers (Mki67: 

proliferating cell, Slc22a30:PST, Slc13a3:PST) on the cell trajectory. 
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(E) Distributions of cells along the pseudo-time trajectory. Note the shift of Normal 

(blue) and FAN samples (yellow).  

(F) Functional annotation (gene ontology) analysis of genes showing changes along 

the trajectory (cells highlighted by red and blue circles on panel C).  

(G) Average expression levels of the highly variable genes that are involved in lipid 

metabolism along the cell trajectory.  

(H) Feature plots showing expression levels of the lipid metabolism genes (Acsm3, 

Mogat1, Ppara) along the cell trajectory.  

(I) Cell trajectory analysis for PST and precursor clusters identified in control kidneys 

(Figure 3A).  

(J) Heatmap showing the expression changes of highly variable FAO genes along the 

cell trajectory in control kidneys.  

(K) Cell trajectory analysis for PST and precursor clusters identified in FAN samples 

(Figure 3E).  

(L) Heatmap showing the expression changes of highly variable FAO genes along the 

cell trajectory in FAN samples. 

 

Figure 5. FAO and OXPHOS drives proximal tubule differentiation in human 

kidney organoid.  

(A) Experimental scheme for the generation of human kidney organoid. Briefly, hPSCs 

were first differentiated into posterior primitive streak (PPS) fate then to intermediate 

mesoderm (IM). Cells were aggregated (day 0, D0) and further differentiated in 3D 

culture into renal vesicle (RV) and nephron stage. At D20 of differentiated kidney 

organoids were stained for podocalyxin (PODXL: podocyte marker, yellow), Wilm’s 
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tumor 1 (WT1, red), and Lotus tetragonolobus  Lectin (LTL: PT marker, green). Scale 

Bar=200µM. 

(B) Transcript expression levels (in bulk organoids) of PPARGC1A, SLC3A1, 

SLC5A12 and SLC27A2 on day 4, 8, 12, 16 and 20 of organoid differentiation. Data 

are represented as mean ± SEM. n = 2 independent experimental replicates analyzed 

from a pool of 12 organoids/group. 

(C) Single-cell RNA-seq analysis of human kidney organoid. UMAP showing 9 distinct 

cell types identified by unsupervised clustering. Mesench: mesenchymal cells, CD: 

collecting duct, Endo: endothelial cells, cycling: cell cycling cells, Podo: podocytes, 

LOH: loop of Henle and PT: proximal tubule. 

(D) Feature plots of key cell type markers (DES, COL21A1, GATA3; mesenchyme, 

NPHS1; podocytes, SLC3A1;PT cell, SLC12A1;LOH, PCNA, CCNA2;proliferating 

cells, PECAM11;endothelial cells).  

(E) Expression SIX1 (nephron progenitor marker), MKI67 (proliferation maker) and 

SLC3A1 (PT cell marker) along the differentiation trajectory. 

(F) Heatmap showing the expression changes of highly variable genes involved in 

FAO identified (Figure 4J, 4L) along the organoid cell differentiation trajectory.  

(G) Expression level of genes associated with FAO (PPARGC1A, ACOX2, and 

CPT1A), and PT cell markers (ATP11A, ACOX12, SLC27A2, SLC34A1, SLC3A1, 

SLC5A2, and SLC6A19) in kidney organoids cultured in EGM and REGM media. The 

data are represented as mean ± SEM. n ≥ 2 independent experimental replicates 

from a pool of 12 organoids/group; *P < 0.05, **P < 0.01 ***P < 0.001 and ****P < 

0.0001 paired Student’s t-test. 

(H) Quantification of changes in the protein expression OXPHOS proteins in organoids 

cultured in EGM or REGM. Tubulin is used as loading control. The data are 

represented as mean ± SEM. n = 3 independent experimental replicates from a pool 
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of 16 organoids/group; *P < 0.05, **P < 0.01 ***P < 0.001 and ****P < 0.0001 two-way 

ANOVA, followed by Bonferroni post-test.  

(I) Representative immunofluorescence staining of LTL (green) and PODXL (red) in 

kidney organoids cultured in EGM and REGM. Scale Bar=400µM (EGM) and 500µM 

(REGM). 

(J) Quantification of LTL positive cells in kidney organoids cultured in EGM or REGM. 

Y-axis represent relative fluorescence. The data are presented as mean ± SEM. n = 3 

organoids/group. 

 

Figure 6. ESRRA drives the PT differentiation state and protects from kidney 

disease 

(A) Top transcription factor-binding motifs significantly enriched in PT cell-specific 

open chromatin regions that are identified from mouse single cell ATAC-sequencing. 

P-values and percent of target sequences among all open chromatin regions are 

shown in the table on right. 

(B) Gene Set Enrichment Analysis (GSEA) enrichment plot of ESRRA target genes 

along PST cell differentiation. 

(C) Heatmap showing the expression changes of ESRRA target genes along the PST 

differentiation trajectory (ordered from Figure 4C) grouped by functional annotation 

(kidney development, transmembrane transport and lipid metabolism). 

(D) Oxygen consumption rate (OCR) (pmol/min/μg of protein) and mtDNA copy 

number (ratio of mtDNA to nuclear DNA) in LTL+ PT cells transfected with non-target 
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siRNA (siNT: black) and ESRRA siRNA (siEsrra: Red) for 2 days. * P < 0.05, ** P < 

0.01, *** P < 0.001 vs. siNT. 

(E) OCR and mtDNA copy no. in LTL+ PT cells transfected with vector alone (black) 

and ESRRA expressing vector (ESSRA OE: Blue) for 48 hours. * P < 0.05, ** P < 0.01, 

*** P < 0.001 vs. vector. 

(F) Protein levels of OXPHOS, ESRRA, SLC6A13, and SLC34A1 in LTL+ PT cells 

transfected with siEsrra (upper panel) or ESRRA OE (lower panel) shown by Western 

Blot. β-actin was used as loading control. 

(G) Relative mRNA levels of Esrra and variety of SLCs markers (Slc7a13, Slc6a13, 

Slc22a6, Slc5a11, Slc27a2, and Slc34a1) in LTL+ PT cells transfected with siNT, 

siEsrra (red) and ESRRA OE plasmid (blue). * P < 0.05, ** P < 0.01, *** P < 0.001 vs. 

siNT/vector. 

(H) ChIP-qPCR of ESRRA showed enrichment in genes including SLCs markers 

(Slc7a13, Slc6a13, Slc22a28, Slc5a11, Slc6a19, and Slc13a3) and metabolic genes 

(Adipor2 and Acadm) in LTL+ PT cells compared to IgG control. 

(I) Relative gene expression of Esrra measured by qRT-PCR in kidneys of wild type, 

Esrra knock-out mice, sham or FAN treated mice. * P < 0.05, ** P < 0.01, *** P < 0.001 

vs. WT. 

(J) Protein levels of SLC6A13, SLC34A1, FN, SMA, and ESRRA in kidneys of wild 

type, Esrra knock-out mice, sham or FAN treated mice were analyzed by Western Blot. 

GAPDH was used as loading control.  

 

Figure 7. ESRRA-driven metabolic changes correlate with kidney disease 

severity in patient samples 

(A) Relative expression levels of the highly variable lipid metabolism genes that were 

identified along the mouse PT cell differentiation trajectory (Figure 4) in 91 
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microdissected human tubules. The human kidney samples were ordered based on 

the degree of fibrosis.  

(B) Heatmap showing Pearson’s correlation coefficient between lipid metabolism 

genes, PT cell markers and fibrosis markers in the human samples (yellow positive 

correlation, purple negative correlation, intensity indicates the strength of correlation).  

(C) Heatmap showing the relative cell fraction changes, calculated by in silico 

deconvolution (CellCODE) of the 91 human kidney RNA profiling data. The human 

kidney samples were ordered based on their fibrosis scores.  

(D) Heatmap showing correlation coefficients between lipid metabolism genes, PT cell 

markers and transmembrane transport genes that contain ESRRA binding motifs in 

their promoter or gene body and fibrosis markers in the human samples (yellow 

positive correlation, purple negative correlation, intensity indicates the strength of 

correlation). 

 

Supplementary Tables  

 

Supplementary table 1(Related to Figure 1). List of single cell cluster markers 

Supplementary table 2 (Related to Figure 2). List of differential expressed genes in 

control and FAN mice samples  

Supplementary table 3 (Related to Figure 3). List of PT subcluster markers in control 

and FAN samples 

Supplementary table 4 (Related to Figure 4). The percent of cells that express EMT 

and SASP markers across the PT cell sub-clusters in FAN kidneys and all the cell 

clusters 

Supplementary table 5 (Related to Figure 6). List of predicted ESRRA target genes 

in PT cells. 

Supplementary table 6 (Related to Key Resource Table). List of primers used in 

this study. 

Supplementary table 7 (Related to Figure 7 and S7). Demographic and clinical of 

human kidney samples. 
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STAR METHODS 

RESOURCE AVAILABILITY  

Lead contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the lead contact: Katalin Susztak. Email: 

ksusztak@pennmedicine.upenn.edu 

Materials Availability 

This study did not generate new unique reagents. 

Data and Code Availability 

Processed and raw data can be downloaded from NCBI GEO (GSE156686 and 

GSE152765). Furthermore, the data is available via an interactive web browser at 

http://susztaklab.com/VisCello/.  

 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Mouse Models 

Animal studies were approved by the Institutional Animal Care and Use Committee 

(IACUC) of the University of Pennsylvania. Mice were housed in the Institute pathogen 

free animal house (12 h dark/light cycle) in a temperature- and humidity-controlled 

mailto:ksusztak@pennmedicine.upenn.edu
http://susztaklab.com/VisCello/
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environment (23 ± 1°C) and fed with standard mouse diet and water ad libitum. 5- to 

8-week-old male C57BL/6 wild type mice were used in the study. Esrra KO mice were 

kindly provided by Dr. Liming Pei (University of Pennsylvania) and littermates were 

used from in-house matings. All animals were pathogen free and healthy prior to the 

beginning of experiments. For all the mice experiments, mice were randomly assigned 

to experimental groups, unless stated otherwise. 

For fenofibrate experiment, the PPARA agonist fenofibrate (50 mg/kg for 3 days and 

100 mg/kg for 5 days) was administered by oral gavage starting one day before the 

folic acid (FA) injection. Mice were injected with FA (250 mg/kg once, dissolved in 300 

mM NaHCO3) intraperitoneally and sacrificed on day 7. For the unilateral ureteral 

obstruction (UUO) model, mice underwent ligation of the left ureter and were sacrificed 

on day 7. 

 

Isolation and culture of LTL+ PT cells 

Primary mouse proximal tubule epithelial cells were isolated from kidneys of 4 weeks 

old wild type mice and LTL+ cells fractions were purified from single cell suspension of 

PT cells by using biotinylated lotus tetragonolobus lectin antibody (LTL) (L-132; Vector 

Laboratories) and anti-biotin microbeads (MACS Miltenyi Biotec). LTL+ cells were 

grown in primary cell culture media (RPMI 1640 supplemented with 10% FBS, 20 ng 

ml−1 EGF, 20 ng ml−1 bFGF and 1% penicillin-streptomycin). 

 

Kidney organoids differentiation  

ES[4] human embryonic stem cells were grown on vitronectin coated plates (1001-

015, Life Technologies). Cells were incubated in 0.5mM EDTA (Merck) at 37°C for 3 

minutes for disaggregation. To avoid the separation of the stem cell clusters, cells 

were then carefully collected into 12 ml supplemented Essential 8 Basal medium. For 

cell counting, 1 mL cell suspension was centrifuged for 4 minutes at 400 g and the 

pellet was resuspended in 200 μl of AccumaxTM (StemCell Technologies) to obtain 

single cells. Cells were incubated in AccumaxTM at 37°C for 3 minutes and next, 800 

μL of FBS were added to stop the disaggregation. After cell counting (Countess ® 

Automated Cell Counter), 100,000 cells/well were plated on a 24 multi-well plate 

coated with 5μl/ml vitronectin. Cells were incubated in supplemented Essential 8 Basal 

medium at 37°C overnight. The next day (day 0), the differentiation was initiated by 
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treating the cells with 8 μM CHIR (Merck) in Advanced RPMI 1640 basal medium 

(ThermoFisher) supplemented with 1% Penicillin-Streptomycin and 1% of 

GlutaMAXTM (ThermoFisher) for 3 days and changing the medium every day. On day 

3, CHIR treatment was removed and cells were cultured in 200 ng·ml-1 FGF9 

(Peprotech), 1 μg·ml-1 heparin (Merck) and 10 ng·ml-1 activin A (Act A) (Vitro) in 

supplemented Advanced RPMI for 1 day. On day 4, spheroid organoids were 

generated. Cells were rinsed twice with PBS, collected using supplemented Advanced 

RPMI and plated at 100,000 cells/well on a V-shape 96 multi-well plate. They were 

treated with 5 μM CHIR, 200ng·ml-1 FGF9 and 1 μg·ml-1 Heparin in supplemented 

Advanced RPMI. Organoids were incubated for 1hour at 37°C, CHIR induction was 

removed and they were incubated in 200 ng·ml-1 FGF9 and 1 μg·ml-1 Heparin in 

supplemented Advanced RPMI for 7 days with medium change every other day. From 

day 11, factors were eliminated, and cells were incubated only in supplemented 

Advanced RPMI for 5 days, medium was changed every other day. 

 

METHOD DETAILS 

Preparation of single-cell suspension 

Euthanized mice were perfused with chilled 1x PBS via the left ventricle. Kidneys were 

harvested, minced into approximately 1 mm3 cubes and digested using Multi Tissue 

dissociation kit (Miltenyi, 130-110-201). The tissue was homogenized using 21G and 

26 1/2G syringes. Up to 0.25 g of the tissue was digested with 50ul of Enzyme D, 25 

ul of Enzyme R and 6.75 μl of Enzyme A in 1 ml of RPMI and incubated for 30mins at 

37°C. Reaction was deactivated by 10% FBS. The solution was then passed through 

a 40 µm cell strainer. After centrifugation at 400 g for 5mins, cell pellet was incubated 

with 1ml of RBC lysis buffer on ice for 3 mins. Cell number and viability were analyzed 

using Countess AutoCounter (Invitrogen, C10227). This method generated single cell 

suspension with greater than 80% viability. 

 

Single-cell RNA sequencing 

Single cell RNA sequencing was performed as described in our previous study (Park 

et al., 2018). Briefly, the single cell suspension was loaded onto a well of a 10x 

Chromium Single Cell instrument (10x Genomics). Barcoding and cDNA synthesis 

were performed according to the manufacturer's instructions. Qualitative analysis was 
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performed using the Agilent Bioanalyzer High Sensitivity assay. The cDNA libraries 

were constructed using the 10x ChromiumTM Single cell 3’ Library Kit according to the 

manufacturer’s original protocol. Libraries were sequenced on an Illumina HiSeq or 

NextSeq 2x150 paired-end kits using the following read length: 26bp Read1 for cell 

barcode and UMI, 8bp I7 index for sample index and 98bp Read2 for transcript. 

 

Alignment and generation of data matrix 

Cell Ranger 2.0 (http://10xgenomics.com) was used to process Chromium single cell 

3’ RNA-seq output. First, “cellranger count” aligned the Read2 to the mouse reference 

genome (mm10) and exons of protein coding genes (Ensembl GTFs GRCm38.p4). 

Sequencing reads that were marked by multiple mapping were removed by adjusting 

the cellranger to unique mapping (marked MM:i:1 in the bam files). Third, the fastq 

files extracted from bam files of the first run were used again for “cellranger count” to 

generate data matrix. Finally, the output files for 6 normal and 2 FAN samples were 

aggregated into one gene-cell matrix using “cellranger aggr” with read depth 

normalization by total number of mapped reads. 

 

Data quality control, preprocessing and dimension reduction 

Seurat R package (version 2.3.4) was used for data QC, preprocessing and dimension 

reduction analysis. Once the gene-cell data matrix was generated, poor quality cells 

were excluded, such as cells with < 200 or > 3,000 expressed genes. Genes that were 

expressed in less than 10 cells, mitochondrial genes, ribosomal protein genes and 

HLA genes, that were reported to induce unwanted batch effects, were removed for 

further analysis (Smillie et al., 2019). Cells were also discarded if their mitochondrial 

gene percentages were over 50%. The data were natural log transformed and 

normalized for scaling the sequencing depth to a total of 10,000 molecules per cell, 

followed by regressing-out the number of UMI and genes. Batch effect was corrected 

by using removeBatchEffect function of edgeR. The expression values after batch 

correction were only used for PCA, t-Distributed Stochastic Neighbor Embedding 

(tSNE) visualization and clustering, and the original expression values before batch 

correction were used for all downstream analyses such as identification of marker 

genes and differentially expressed genes. For the dimension reduction, highly variable 

genes across the single cells were identified using 0.0125 low cutoff and 0.3 high cutoff. 
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PCA was performed using the variable genes as input and top 20 PCs were used for 

initial tSNE projection. 

 

Removal of doublet-like cells 

Doublet-like cells were identified using DoubletFinder which is a computational doublet 

detection tool with following parameters: proportion.artificial = 0.25 and proportion.NN 

= 0.01(McGinnis et al., 2019). Then, the number of expected doublets were calculated 

for each sample based on expected rates of doublets, which are provided by 10x 

Genomics. After removing the doublet-like cells, all steps including normalization, 

regressing out variables, batch effect removal, and dimension reduction were 

performed again. 

 

Cell clustering analysis 

Density-based spatial clustering algorithm, DBSCAN, was used to identify cell clusters 

on the tSNE plot with the eps value 0.4. Clusters were removed if their number of cells 

was less than 20. Proximal tubule clusters expressing a proximal tubule marker, 

Slc27a2, were separated from the rest of cell clusters in order to identify subgroups. 

PCA and UMAP (Uniform Manifold Approximation and Projection) were performed 

only for the remaining cells. DBSCAN was used to identify cell clusters on the UMAP 

plot with initial setting for the eps value 0.5. Each of the resulting clusters was 

subjected to sub-clustering by a shared nearest neighbor (SNN) modularity 

optimization-based clustering algorithm, which is implemented in Seurat package. 

Resolution 0.5 was used for sub-clustering of the clusters except T lymphocytes which 

required higher resolution (0.7) to identify T lymphocyte subgroups. Post-hoc 

differential expression analysis was performed for every pair of sub-clusters. Sub-

clusters were merged when they had 15 or less than 15 (10 differential genes for T 

lymphocytes) differentially expressed genes (average expression difference > 1 

natural log with an FDR corrected p<0.01). This clustering analysis resulted in 30 cell 

clusters. PT cell clusters were also subjected to sub-clustering. With same procedure 

used for other clusters, PT cells from control and FAN samples were subclustered into 

5 and 9 sub-cell types, respectively. 

 

Mouse bulk RNA-sequencing analysis 
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Total RNAs were isolated using the RNeasy mini kit (Qiagen). Sequencing libraries 

were constructed using the Illumina TruSeq RNA Preparation Kit. High-throughput 

sequencing was performed using Illumina HiSeq4000 with 100bp single-end 

according to the manufacturer’s instruction. Adaptor and lower-quality bases were 

trimmed with Trim-galore. Reads were aligned to the Gencode mouse genome 

(GRCm38) using STAR-2.4.1d. The aligned reads were mapped to the genes 

(GRCm38, version 7 Ensembl 82) using HTSeq-0.6.1. Differentially expressed genes 

between control and disease groups were identified using DESeq2 version 1.10.1. To 

examine the enrichment of the differentially expressed genes in single cell clusters, a 

z-score of normalized expression value was first obtained for every single cell. Then, 

we calculated the mean z-scores for individual cells in the same cluster, resulting in 

30 values for each gene. The z-scores were visualized by heatmap showing the 

enrichment patterns of the genes across the cell types.  

 

Estimation of cell proportions 

From single cell datasets, the numbers of cells in each cluster were enumerated and 

normalized by total number of cells for each condition (6 control and 2 disease 

samples). Since a number of PT cells in FAN samples showed higher expression of 

apoptosis markers, we removed the cells that express Bax, Bad or Dap from all 

samples only for the cell proportion test. Deconvolution of bulk RNA sequencing data 

was performed to validate the cell proportion changes that were detected in single cell 

data. CellCODE package was used for deconvolution using 30 cell type-specific 

marker genes (Chikina et al., 2015).   

 

Identification of marker genes and differentially expressed genes 

Conserved marker genes between control and UUO samples were identified using 

FindConservedMakers function of Seurat with default options. Average expression 

difference > 0.5 natural log and FDR corrected p value < 0.01 were applied. Cell type-

specific differentially expressed genes were identified using MAST, which is 

implemented in Seurat package with log fold change threshold = 0.2, minimum percent 

of cells expressing the genes=0.05 and adjusted p value < 0.05. 

 

Cell trajectory analysis 
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RNA Velocity: To calculate RNA velocity, Velocyto.R package was used as instructed 

(La Manno et al., 2018). We used Velocyto to impute the single-cell 

trajectory/directionality using the spliced and the unspliced reads. Resulting loom files 

were merged and loaded into R following the instructions. Furthermore, RNA velocity 

was estimated using gene-relative model with k-nearest neighbor cell pooling (k = 25). 

To visualize RNA velocity, we performed Principle Component Analysis and used the 

top 20 principle components to calculate UMAP embedding. The parameter n was set 

at 200, when visualizing RNA velocity on the UMAP embedding. 

 

Monocle2: To construct single cell pseudotime trajectory and to identify genes that 

change as the cells undergo transition, Monocle2 (version 2.4.0) algorithm was applied 

to the cells from proximal tubules and proliferating proximal tubules (Trapnell et al., 

2014). To show the cell trajectory from the small cell population (proliferating proximal 

tubules) to predominant cell type (proximal tubules), 6,000 randomly selected PT cells 

and proliferating proximal tubules were used for Monocle analysis. Genes for cell 

ordering were selected if they were expressed in ≥ 10 cells, their mean expression 

value was ≥ 0.05 and dispersion empirical value was ≥ 2. Highly variable genes 

along the pseudotime were identified using differential GeneTest function of Monocle2 

with q-value < 0.01. The trajectory analysis was also performed for precursors and 

PST cells from the control and FAN samples separately. DAVID GO term analysis was 

performed for the highly variable genes along the control and FAN trajectory, and then 

genes in the lipid metabolism GO term were visualized by heatmap. 

 

Single cell ATAC sequencing analysis 

Data matrix for PCT and PST cells-specific open chromatin regions was downloaded 

(Cao et al., 2018). HOMER package was used to identify known transcription factor 

binding motifs that are highly enriched in the PCT and PST-specific open chromatin 

regions. GSEA package was used to determine the enrichment patterns of ESRRA 

binding genes in differentiated PT cells and to identify core enrichment genes. 

 

Human bulk gene profiling data analysis 
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Kidney samples were collected from nephrectomies. Samples were permanently 

deidentified and clinical information was collected by an honest broker, therefore the 

study was deemed exempt by the institutional review board (IRB) of the University of 

Pennsylvania. Two datasets were used, one dataset included 91 human kidney 

samples and gene expression analysis was performed using Affymetrix U133A arrays 

(E-MTAB-2502) (Table S7) Raw expression levels of microarray data sets were 

normalized using the RMA algorithm and log transformed. The identified marker genes 

were used as an input for CellCODE deconvolution analysis to estimate the cell 

proportion changes in human patient kidney samples. To assess the effect of cell 

proportions changes on the correlation between gene expression and fibrosis score, 

we implemented linear regression models using age, gender, race and diabetes and 

hypertension status as covariates with and without cell proportions of PCT, PST, 

myeloid and lymphoid cells. The second dataset included 431 samples and gene 

expression was analyzed using RNAseq (Table S7). 

 

Single Cell Suspension from Kidney organoid 

Day 20 mature kidney organoids were washed twice with PBS and incubated first with 

AccumaxTM for 10 min at 37°C, followed by Trypsin-EDTA 0.25% incubation in order 

to dissociate into single cells. Cells were spun down at 400 g for 5 min resuspended 

in ADV RPMI and checked for viability using Countess Automated Cell Counter. 

 

Mitotracker Green FM Flow Cytometric Analysis  

Developing kidney organoids on day 14 of differentiation were cultured in EGM or 

REGM media for 4 additional days. In order to assess mitochondrial mass, organoids 

were stained with MitoTracker Green FM (100 nM), a mitochondrial specific 

fluorescent dye at 37°C for 30 min. After incubation, kidney organoids were washed 

twice with PBS and disaggregated into single cell suspension using AccumaxTM for 

10 minutes followed by Trypsin-EDTA 0.25% (ThermoFisher) incubation for at least 

10 minutes at 37°C. Once cells dissociated, FACS buffer (PBS supplemented with 5% 

of FBS) was added to cease the trypsin activity and samples were centrifuged for 5 

minutes at 1800 rpm. After removing the supernatant, the pellet was resuspended in 

300 μl of FACS buffer and the suspension was filtered into FACS tubes. Nuclei were 
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stained with DAPI (ThermoFisher). Cells were counted using FACS Aria Fusion 

Instrument (BD Biosciences). FlowJo software version 10 was used for data analysis. 

 

Protein extraction and western blot analysis in kidney organoids 

Protein was extracted from kidney organoids cultured in EGM or REGM media for 4 

days using RIPA buffer (Thermofisher) supplemented with complete protease inhibitor 

cocktail (Thermofisher), and centrifuged at 13,000 g for 15 mins at 4°C. The 

supernatant was collected, and protein concentration was measured using a 

bicinchoninic acid (BCA) protein quantification kit (Thermo Scientific). For western blot 

analyses, 25 ug of protein were separated in 10% sodium dodecyl sulphate-

polyacrylamide gel (SDS-PAGE) and blotted onto nitrocellulose membranes. 

Membranes were blocked at room temperature for 1 hour with TBS 1X- 5% BSA. 

Membranes were then incubated in primary antibody (dilution 1:1000) Total OXPHOS 

cocktail (Abcam) overnight at 4°C. The membranes were then washed with PBST 

(PBS1X + 0.05% Tween20; Merck) for 5 minutes three times and incubated with anti-

mouse secondary antibody (dilution 1:10,000) (IRDye®680RD Goat anti-Mouse; LI-

COR). After washing with PBST for 5 minutes twice and with PBS for 5 minutes once, 

membrane-bound antibodies were detected by fluorescence with the Odyssey ® Fc 

Imaging System. Alpha-tubulin (1:5000; Sigma) was used as a loading control for 

normalization and quantification. Images were analyzed with Image Studio Lite 

Version 5.2 software. 

 

Immunofluorescence 

Kidney organoids were cultured in EGM or REGM media were transferred to 96 well 

plates. Fixation was performed with paraformaldehide 4% (ThermoFisher) for 20 

minutes followed by 10 minutes washing in three changes PBS. Kidney organoids 

were incubated in Streptavidin/Biotin Blocking Kit (Vector Laboratories) and TBS – 1% 

triton + 6% donkey serum for 2 h at room temperature. Podocalyxin (PODXL, Dilution 

1:250) and LTL (Dilution 1:200) antibodies were diluted in TBS-0.5% Triton + 1% BSA. 

Kidney organoids were then treated overnight at 4°C with primary antibodies. The next 

day, organoids were washed with TBS-0.5% triton + 1% BSA for 5 minutes three times 

and incubated with secondary antibody (Dilution 1:500) in TBS-0.5% Triton + 1% BSA 

at room temperature for 2 hours. Subsequently, organoids were washed with TBS 
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twice for 5 minutes and nuclei were stained with DAPI (Dilution 1:5000) for 10 minutes. 

Organoids were collected with special wide-end tips, and placed on slides and 

mounted with Fluoromount-G (Southern Biotech). Confocal images were acquired 

using Leica SP5 microscope and LTL positive cells were analyzed using Image J.  

 

Mitochondrial DNA analysis 

MtDNA copy number is represented by the ratio of mitochondrial DNA to nuclear DNA 

(mtDNA/nDNA). Total DNA was isolated from LTL+ PT cells 48 hours after transfection 

using DNeasy Blood & Tissue Kit. The mtDNA/nDNA ratio was determined by 

quantifying two mitochondrial genes (16S rRNA and ND1) and two nuclear genes 

(HK2 or 18S rRNA) using qPCR (Quiros et al., 2017). The primer sequences are listed 

in Table S6. 

 

PT Cell transfection 

PT cells were transfected with Non-targeted (NT) siRNA or siEsrra (purchased from 

Dharmacon) and pcDNA3.0 (vector) or pAd-Track-Esrra/pcDNA3.1-Ppara/pcDNA3.1-

HNF1A/pAd-track-HNF4A (overexpression constructs) (kind gift from Dr. Liming Pei, 

University of Pennsylvania). siRNA and plasmid transfections were performed using 

Lipofectamine 3000. For transfection, cells were seeded in 6-well plates, grown for 

overnight until 60–70% confluent, and then transfected with 100nM (final concentration) 

siRNA/siEsrra and 5μg of vector/ESRRA/PPARA/HNF1B/HNF4A overexpression 

plasmids. Transfection efficiency was determined under fluorescence microscope by 

the presence of Cy3 transfection control (data not shown). Cells were harvested and 

scraped off 48 hours post transfection under different condition. 

 

Oxygen consumption rate (OCR) 

The measurement of OCR in PT cells transfected with siEsrra or ESRRA plasmid were 

performed using XFe96 extracellular flux analyzer (Seahorse Bioscience) as 

previously described (Kang et al., 2015). Briefly, PT cells were plated at density of 

10,000 cells/well in a Seahorse cell culture microplate and transfected with 

siEsrra/ESRRA OE. Cellular OCR was measured 48 hours post-transfection and 

normalized to protein quantity in each well. The final concentration for oligomycin, 

FCCP, rotenone and antimycin used was 2 μM, 1 μM, 1 μM and 1 μM, respectively. 
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Chromatin immunoprecipitation qPCR 

ChIP was performed to evaluate enrichment of ESRRA binding regions in targets 

SLCs genes in PT cells following the manufacturer’s instructions (492024, Invitrogen). 

Briefly, 107 PT cells were cross-linked with 1% formaldehyde for 10 min at room 

temperature. Then the reaction was stopped by adding glycine (final concentration, 

0.125M). The cells were sonicated in lysis buffer to achieve a chromatin size of 100–

500 bp. The sonicated chromatin was diluted by using dilution buffer. 5 μg antibody 

was coupled with Dynabead protein A and G (1:1 mixed), the mixture was incubated 

with chromatin lysates overnight at 4 °C with rotation. Immune complexes were 

washed with IP buffers. Antibody-bound chromatin was reverse-cross-linked, and the 

CHIP DNA samples were purified for PCR reaction. Primers used for CHIP-qPCR are 

shown in Table S6. 

 

Fenofibrate treatment 

LTL+ PT cells isolated from mouse kidneys were cultured in either presence of 1μM 

fenofibrate (PPARA agonist) to activate PPARA or DMSO in primary culture media 

from Day 0. Cells were harvested for RNA and protein isolation for Western Blot on 

Day 7. 

 

XCT790 treatment  

Kidney organoids cultured in REGM media for 7 days were treated with 10µM of 

XCT790 for 48 hours followed by Immunostaining or RNA isolation. Human proximal 

tubule cells (HPTC) and LTL+ mouse PT cells were cultured in REGM media and 

treated with 10 µM of XCT790 or DMSO for 48 hours and 24 hours respectively.  

 

qRT-PCR 

RNA was isolated from cells, kidney organoids and kidneys tissue using Trizol 

(Invitrogen). 2 µg RNA was reverse transcribed using the cDNA archival kit (Life 

Technology), and qRT-PCR was run in the ViiA 7 System (Life Technology) machine 

using SYBRGreen Master Mix (Applied Biosystem) and gene-specific primers. The 

data were normalized and analyzed using the ∆∆Ct method. The primers sequences 

used are shown in Table S6. 
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Western Blot 

Cells were lysed in radioimmunoprecipitation assay buffer (RIPA; Cell Signaling 

Technology) and protein was quantified by BCA method (Thermo Fisher Scientific). 

Protein samples (10 to 30 μg) were separated by SDS-PAGE and then transferred to 

PVDF membranes. After blocking, for 30 min with 5% milk in TBST and three times 

washing, membranes were incubated overnight with primary antibody (COX IV 1:1000, 

OXPHOS 1:250, GAPDH 1:2000, PGC1a 1:500, SLC6A13 1:1000, SMA 1:1000, FN 

1:1000, ESRRA 1:2000, β-actin 1:20,000) in TBST (see KST). After three washes for 

5 min, membranes were incubated for 45 min at RT to 1 hour with secondary HRP-

conjugated antibody (1:20,000) in TBS-T. The signal was developed with Immobilon 

forte western HRP substrate (Milipore) and measured using Odyssey®Fc Imaging 

System (LICOR) equipment and software. The following antibodies were used in this 

study are listed in key resource table. 

 

Histological Analysis 

Kidneys samples were fixed in 10% neutral formalin and paraffin-embedded sections 

were stained Periodic acid–Schiff (PAS) and hematoxylin and eosin (H&E) to analyze 

the histology of samples. Sirius-red staining (Boekel Scientific, #147122) was 

performed to determine the degree of fibrosis. We performed immunocyto- and -

histochemistry on paraformaldehyde fixed cells and formalin- fixed, paraffin-

embedded kidney sections. We used the following primary antibodies: (ESRRA 

(1:200), SLC6A13 (1:100), SLC34A1 (1:100), and SLC7A13 (1:100). Staining was 

visualized using peroxidase-conjugated antibodies to mouse immunoglobulin using 

the Vectastain Elite kit and 3,3-diaminobenzidine (DAB) (Vector Labs). For cell 

proliferation, we used Ki67 (1:150) primary antibody and Alexa Fluor 555 as secondary 

antibody, and nuclei was stained by Hoechst dye. 

 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data Representation and Statistical Analysis 

Student’s t-test was used to analyze differences between two groups, and One-way 

or Two-way ANOVA was used to analyze intergroup differences (tukey's multiple 



 

40 

 

comparisons test). P-values less than 0.05 were considered statistically significant. 

The analysis was performed using GraphPad Prism 5 (GraphPad software). 

Densitometry results of Western Blots were quantified using ImageJ software. All data 

are presented as mean ± SEM and other details such as the number of replicates and 

the level of significance is mentioned in figure legends and supplementary tables. For 

mice experiments, animals were randomly allocated to different groups prior the 

experiments. No samples or animals were excluded from analysis. Sample size 

estimation was not performed, and sample size was determined based on the number 

of available age and gender matched animals in the colony. For single-cell data 

analysis, statistical details are provided in designated method section. All samples 

were processed in blinded fashion. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Primary antibodies for Immunoblots 

Anti-COX IV antibody Abcam Cat#Ab16056 

Total OXPHOS Rodent WB Antibody Cocktail Abcam Cat#ab110413 

GAPDH CST(14C10) Cat#2118 

PGC1a Calbiochem Cat#KP9803 

SLC6A13 Invitrogen  Cat#PA5-68331 

α-Tubulin Sigma Cat# T9026 

SMA Sigma  Cat# A5228 

FN Abcam Cat#Ab2413 

ESRRA CST Cat#CS 13826 

β-actin Millipore Cat#A3854 

Secondary antibodies for Immunoblots 

Anti-mouse IgG, HRP-linked Antibody CST Cat#CS 7076S 

Anti-rabbit IgG, HRP-linked Antibody CST Cat# CS 7074S 

Antibodies for Immunohistochemistry (IHC) 

ESRRA  CST Cat#CS 13826 

SLC34A1 Novus Biologicals Cat#NBP2-

42216 

SLC7A13 Creative 

Diagnostics 

Cat#CABT-

BL3359 

SLC6A13  Invitrogen   Cat#PA5-68331 

Antibodies for Immunofluorescence (IF) 

LTL Vector laboratories  Cat#FL-1321-2 

PODXL Thermofischer Cat# 39-3800 

Key Resource Table



IRDye®680RD LI-COR Cat# 926-68070 

Ki67 CST Cat# CS12202 

A555 Life technology

  

Cat# A31572 

Antibodies for FACS 

LTL Vector laboratories  Cat#B-1325 

Biological Samples 

Human kidney samples Chung et al., 2019 N/A 

Chemicals, Peptides, and Recombinant Proteins 

MitoTracker Green Life Technology Cat#M7514 

Collagenase IV Life Technologies Cat#17104019 

Trypan blue solution Sigma Cat#T8154 

Protease inhibitor cocktail Roche Cat#1183615300

1 

EDTA solution Life Technologies Cat#15575-038 

Accumax Stem Cell 

Technologies 

Cat#07921 

Phosphate buffered saline (PBS) pH 7.4 (1x)  Life Technologies Cat#1001–015 

Essential 8 medium  Life Technologies Cat#A1517001 

Vitronectin Life Technologies Cat#A14700 

Fenofibrate Sigma CAS#49562-28-9 

RPMI 1640 Gibco  Cat#21875-034 

EGM media Lonza Cat#CC-3162 

REGM media Lonza Cat#CC-4127 

RIPA buffer Cell signaling Cat#9806 

SYBR Green PCR Master Mix Applied Biosystem Cat#KK4605 

Fluoromount-G  Southern Biotech Cat# 0100-01 

XCT790 Tocris  Cat#3928 



Folic Acid Fisher Scientific Cat#AC2166305

00 

Lipofectamine 3000  ThermoFisher Cat#11668027 

CHIR99021 Merck Cat#SML1046; 

CAS: 252917-06-

9 

Recombinant human FGF9  PeproTech Cat#100-23 

Heparin Merck Cat#H3149; 

CAS: 9041-08-1 

Activin A Vitro Cat#338-AC-050 

Dimethyl Sulfoxide (DMSO) Merck Cat#D2650; 

CAS: 67-68-5 

Cell culture grade distilled water  Life Technologies Cat#15230-089 

Paraformaldehyde solution 4% in PBS Santa Cruz Cat#sc-281692 

Hoechst   Molecular probes Cat# H-1399 

Critical Commercial Assays 

BCA Protein Assay Kit Thermo Scientific Cat#23225 

Multi Tissue dissociation kit  Miltenyi Cat#130-110-201 

Anti-Biotin microbeads Miltenyi Cat#130-090-485 

cDNA Reverse Transcription Kit Applied 

Biosystems 

Cat#4368813 

Rneasy Mini Kit Qiagen Cat#74106 

MAGnify™ ChIP Kit Thermo Scientific Cat# 492024 

DNeasy Blood & Tissue Kits Qiagen Cat#69506 

Seahorse XF Cell Mito Stress Test kit Agilent 

Technologies  

Cat#103708-100 

Seahorse XFe96 FluxPak mini  Agilent 

Technologies  

Cat#102601-100 

 

VECTASTAIN® Elite ABC-HRP Kit  Vector laboratories  Cat# PK-6100  

Streptavidin/Biotin blocking kit Vector laboratories  Cat#SP-2002 



Deposited Data 

scATAC seq data (Cao et al., 2018) GSE117089 

scRNA-seq of FAN kidneys of mice GEO GSE156686 

scRNA seq data kidney organoids GEO GSE152765 

Experimental Models: Organisms/Strains 

ESRRA Knock-out Dr. Vincent 

Giguère Research 

Lab 

McGill University 

Oligonucleotides 

Primers for qPCR, mtDNA copy no., and ChIP-

qPCR, see Table S6 

This paper N/A 

Recombinant DNA 

pAd-track-Esrra Dr. Liming Pei lab University of 

Pennsylvania 

pcDNA3.1-Ppara Dr. Liming Pei lab University of 

Pennsylvania 

pc-DNA3.1-HNF1B Dr. Liming Pei lab University of 

Pennsylvania 

pAd-track-HNF4A Dr. Liming Pei lab University of 

Pennsylvania 

Experimental Models: Cell Lines   

ES[4] Human Embryonic Stem Cell line  

 

The National Bank 

of Stem Cells 

(ISCIII,Madrid)

  

https://www.isciii.

es/ 

Software and Algorithms 

ImageJ NIH https://imagej.nih

.gov/ij 

Prism 5 Graphpad 

Software 

https://www.grap

hpad.com/scientif

ic-software/prism 



Image Studio Lite Version 5.2 software LICOR https://www.licor.

com/bio/image-

studio-lite/d5 

FlowJo Software FlowJo N/A 

Cell Ranger 2.0 10x Genomics https://support.10

xgenomics.com/s

ingle-cell-gene-

expression/softw

are/downloads/la

test 

Seurat R package 2.3.4 open source https://satijalab.o

rg/seurat/ 

DoubletFinder open source https://github.co

m/chris-

mcginnis-

ucsf/DoubletFind

er 

STAR-2.4.1d open source https://github.co

m/alexdobin/STA

R 

HTSeq-0.6.1 open source https://htseq.read

thedocs.io/en/rel

ease_0.11.1/hist

ory.html#version-

0-6-1 

DESeq2 1.10.1 open source https://bioconduc

tor.org/packages/

release/bioc/html

/DESeq2.html 

CellCODE open source https://github.co

m/mchikina/CellC

ODE/ 

Velocyto open source https://github.co

m/velocyto-

team/velocyto.R 



 

Monocle2 2.4.0 open source http://cole-

trapnell-

lab.github.io/mon

ocle-release/ 

Other 



Figure S1 (Related to Figure 1)
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Figure S1 (Related to Figure 1). The cellular diversity of diseased kidney samples.

(A) Representative images of Periodic Schiff stained (PAS) kidney sections from control and FAN mice. Red star 

highlights casts and black star represent tubular dilation with loss of brush border. Red arrow indicates infiltrating 

immune cells. Scale bar=10µm.

(B) Blood urea nitrogen (BUN) levels in control (CTRL) and FAN mice.

(C) Quantification of Sirius red stained area in kidney sections of control (CTRL), FAN and unilateral ureteral

obstruction (UUO).

(D) Feature plots show expression of cell type markers identified by differential expression analysis.

(E) UMAP plot showing the distribution of cells from six different control and two different FAN kidneys.

(F) Expression of cell type markers identified in control samples (Park et al. 2018) in control (red) and FAN kidneys

(blue). Color intensity indicates expression level, circle size correlates with % of positive cells.



Figure S2 (Related to Figure 2)
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Figure S2 (Related to Figure 2). Cell composition and cell type specific changes in kidney fibrosis

(A) Half violin plots (control: gray and FAN: red) showing the expression the top differentially expressed genes in bulk

RNAseq across the single cell clusters. The y axis shows the log-scale normalized read count.

(B) X-axis denoted -log(10)FDR adjusted by cell proportions (PCT, PST, myeloid or lymphoid cells), y-axis -log(10)

FDR in unadjusted bulk RNAseq data. Gray shows genes without significant change in expression, red shows

significant differences before, blue after cell proportion adjustment.



Figure S3 (Related to Figure 4)
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Figure S3 (Related to Figure 4). Cell trajectory analysis of fibrotic proximal tubules. 

(A) Cell trajectory analysis for PT cells (including proliferating PT cells) in control and FAN samples. On the right, 

feature plots showing the expression of the indicated markers along the cell trajectory (Slc6a19: PCT marker and 

Slc22a30: PST marker).

(B) Cell trajectory analysis of PST cells (cells circled in red Figure S3A) in control and FAN samples. On the right,

expression of PST markers such as Atp11a and Slc34a1 along the cell trajectory.

(C) Monocle-based cell trajectory (all control and FAN samples included) along PCT differentiation trajectory.

Batches 1-6 are healthy and 7 and 8 are from FAN kidneys. On the right, feature plots of proliferating (Mki67) and

PCT segment markers (Slc5a2) along the cell trajectory.

(D) Distributions of cells along the PCT pseudo-time trajectory. Note the difference between healthy (Blue) and FAN

samples (Yellow).

(E) Functional annotation analysis of genes showing differential expression along the differentiation trajectory (cells

under red and blue circles in Figure S3C).

(F) UMAP plot showing the distribution of cells from six different control and two different UUO kidneys. On the right,

feature plots showing the expression of the indicated markers projected onto the monocle cell trajectory.

(G) Cell trajectory analysis of PT cell including proliferating PT cell in control and UUO samples. Batches 7 and 8

correspond to UUO samples. On the right, feature plots showing the expression of the indicated markers on the cell

trajectory.

(H) Distributions of cells along the PST pseudo-time trajectory. Healthy samples are colored blue while UUO

samples are colored yellow. Note the differences of the cell distribution.

(I) Average expression levels of the highly variable genes that are involved in lipid metabolism on the cell trajectory.

(J) Functional annotation analysis of genes showing differential expression along the PT differentiation trajectory (red

circle and blue circle in Figure S3G compared).

(K) Venn diagrams showing overlaps of the differentially expressed along the PT differentiation trajectory in the FAN

and UUO models. Up arrow: upregulated genes and down arrow: downregulated genes.

(L) Heatmap showing the expression changes of EMT genes along the cell trajectory (Figure 4C).



Figure S4 (Related to Figure 5)
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Figure S4 (Related to Figure 5). Fatty acid oxidation and OXPHOS correlates with proximal tubule 

differentiation in human kidney organoids and LTL+ PT cells

(A) On the left, schematics of kidney organoids cultured in EGM or REGM. Disaggregated cells were stained with 

Mitotracker green and analyzed by flow cytometry. X-axis indicates Mitotracker green fluorescence (Blue laser 

530/30) while y-axis shows the cell number.

(B) Representative Western blot of mitochondrial OXPHOS proteins and beta tubulin as loading control of kidney

organoids cultured in EGM or REGM for 4 days.

(C) LTL+ PT cells cultured in presence or absence of fenofibrate (1µM) for 7 days. Western Blot showing expression

of mitochondrial OXPHOS complexes, COX IV, PGC1a, and SLC6A13 proteins. GAPDH was used as a loading

control. Relative mRNA level of genes associated the FAO (Ppargc1a, Ppara, Acox1, Acox2, Cpt1, and Cpt2) and

PT cell markers (Atp11a, Acot12, Adipor2, Pck1, Slc16a11, Slc27a2, and Slc22a30) (from left to right). * P < 0.05, **

P < 0.01, *** P< 0.001 vs. untreated.

(D) Representative Western Blot of mitochondrial OXPHOS, COX IV, PGC1a, SLC6A13, and GAPDH in isolated 

LTL+ PT cells cultured in EGM or REGM media for 7 days. GAPDH was used as loading control. Relative mRNA 

level of genes associated with FAO (Ppargc1a, Ppara, Acox1, Acox2, Cpt1, and Cpt2) and PT cell markers (Atp11a, 

Acot12, Adipor2, Pck1, Slc16a11, Slc27a2, and Slc22a30) in isolated PT cells cultured in EGM and REGM. * P < 

0.05, ** P < 0.01, *** P< 0.001 vs. EGM (from left to right).



Figure S5 (Related to Figure 6)
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Figure S5 (Related to Figure 6). ESRRA and PPARA binding dynamics along PT cell differentiation. 

(A) Expression of selected transcription factors in mouse kidney single cell dataset. Mean expression values of 

genes were calculated in each cluster. The color scheme is based on z-score distribution. * represents PT cell 

cluster.

(B) Gene Set Enrichment Analysis (GSEA) enrichment plot of PPARA target genes along PCT cell differentiation, 

PST cell differentiation. GSEA enrichment plot of ESRRA target genes along PCT cell differentiation (from left to 

right).

(C) Heatmap showing the expression changes of PPARA target genes along the PCT cell trajectory, PST cell

trajectory. Genes were grouped by functional clusters such as kidney development, transmembrane transport, and

lipid metabolism genes.

(D) Relative expression of PST marker genes (Atp11a, Acot12, Slc27a2, Slc22a30, Slc34a1, and Slc7a13) and

PCT marker genes (Slc5a2, Slc5a12, Slc6a19, Slc13a1, and Slc3a1) in kidneys of control (WT), FAN, fenofibrate

treated sham, and fenofibrate treated FA-injected mice. (n=4 in each group). * P < 0.05, ** P < 0.01, *** P< 0.001

vs. WT. # P < 0.01 vs. FAN mice.
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Figure S6 (Related to Figure 6). Reduced ESRRA expression leads to impaired mitochondrial function and 

PT differentiation defect. 

(A) Decrease in mtDNA content represented as mtDNA copy number in LTL+ PT cells (cultured in REGM media) 

treated with 10µM of ESRRA inhibitor XCT790 for 24 hours. *** P< 0.001 vs. DMSO.

(B) Relative transcript level of Esrra and PT marker genes (Slc22a30, Slc27a2, Slc7a13, Slc3a1, Slc6a19, Slc16a11,

and Slc34a1) in LTL+ PT cells treated with 10µM XCT790 or DMSO for 24 hours. * P < 0.05, ** P < 0.01, *** P< 0.001

vs. DMSO.

(C) Representative Western Blot of OXPHOS, COX IV, ESRRA, and SLC6A13 expression in LTL+ PT cells cultured

with 10µM of XCT790 for 24 hours. GAPDH is used as loading control.

(D) Basal respiration, maximal respiration capacity and ATP production in LTL+ PT cells transfected with non-target

siRNA (siNT: black), ESRRA siRNA (siEsrra: Red) or control vector (vector: black) and ESRRA expressing vector

(ESSRA OE: Blue). * P < 0.05, ** P < 0.01, *** P< 0.001 vs. siNT/vector.

(E) Representative Western Blot of mitochondrial OXPHOS proteins, ESRRA, PPARA and SLC6A13 in LTL+ PT

cells transfected with (1) Vector alone, (2) ESRRA OE plasmid, (3) PPARA OE plasmid, and (4) co-transfected all 4

TFs OE plasmids (ESRRA, PPARA, HNF1B, and HNF4A). β-actin was used as loading control.

(F) Relative mRNA levels of PT markers (Slc7a13, Slc6a13, Slc34a1, Slc6a19, Slc5a11, Adipor2, and Agpat2) in

LTL+ PT cells transfected with vector (black), ESRRA OE (red), PPARA (Blue), and all 4 TFs (green) for 2 days. * P <

0.05, ** P < 0.01, *** P< 0.001 vs. vector.

(G) Relative transcript level of genes associated with FAO (ESRRA, PPARGC1A, CPT1A, PPARA, and ACOX2) and

PT marker genes (SLC3A1, SLC27A2, SLC34A1, SLC6A19 and ATP11A) in kidney organoids post 48 hours

treatment of 10μM of XCT790 or DMSO. Data are represented as mean ± SEM. n= 2 independent experimental

replicates from a pool of 12 organoids/group.

(H) Representative immunofluorescence staining of LTL (green) and PODXL (red) in human kidney organoids

cultured in REGM media and treated with 10µM ESRRA inhibitor (XCT790) or DMSO for 48 hours. Quantification of

LTL positive cells in kidney organoids shown on right. Data are represented as mean ± SEM. n= 3 independent

experimental replicates from a pool of 3 organoids/group. * P < 0.05 vs REGM control (t-test paired). Scale

bar=200µm.

(I) Relative transcript level of genes associated with FAO (PPARGC1A, ACOX1, and ACOX2) and PT marker genes

(ATP11A, SLC27A2, and Adipor2) human PT cells treated with 10µM XCT790 or DMSO for 48 hours. Data are

represented as mean ± SEM. n= 2 independent experimental replicates.

(J) Relative transcript level of Esrra in sham or UUO mouse kidneys. *** P< 0.001 vs. sham (n=5, 9).

(K) Representative images of hematoxylin and eosin (H&E) stained kidneys sections from FA-injected wild type (WT)

and Esrra knock-out (KO) mice. The black star represents tubule dilation with loss of brush border and red star

represent cast formation surrounded by inflammatory cells in diseased tissue. Scale bar=20µm.

(L) Relative transcript level of fibrosis associated genes (Fn, Col1a1, and Col3a1) in wild type, Esrra KO mice, sham

or FAN treated kidneys (n= 4, 4, 6 and 8 respectively). * P < 0.05, ** P < 0.01, *** P< 0.001 vs. WT. # P < 0.05 vs

FAN.

(M) Fibrosis levels scored from picrosirius red stained kidney sections from WT, Esrra knock-out (KO), FAN, FA

treated Esrra KO and fenofibrate treated FA-injected mice and quantified using Image J. * P < 0.05, ** P < 0.01, ***

P< 0.001 vs. WT. # P < 0.01 vs. FAN mice.



(N) Representative immunofluorescence images showing Ki67 staining in kidneys section from WT+FAN and Esrra

KO+FAN mice. Scale bar=20µm.

(O) Immunohistochemical stain for ESRRA, SLC6A13, SLC34A1, and SLC7A13 of kidney sections of WT, Esrra KO,

FAN and FA treated Esrra KO mice. Scale bar=20 µm.

(P) Relative mRNA of Esrra, Ppara, and Esrrg in LTL+ WT PT cells and Esrra KO PT cells. * P < 0.05, ** P < 0.01, ***

P< 0.001 vs. WT.

(Q) Oxygen consumption rate (OCR) (pmol/min) in LTL+ WT PT cells and Esrra KO PT cells (on left), and ESRRA
transfected WT and Esrra KO PT cells (on right) for 2 days. * P < 0.05, ** P < 0.01, *** P< 0.001 vs. WT.
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Figure S7 (Related to Figure 7). Changes in ESRRA expression in kidneys of patients with kidney fibrosis

(A) The number of DEGs that were correlated with fibrosis scores in 91 human samples significantly reduced after

adjusting for cell fraction changes. X-axis represents significance of the correlation before adjusting to cell

proportions. Y-axis represents significance of the correlation after the adjustment by cell proportions.

(B) ESRRA expression in 431 microdissected human kidney tissue samples CTL (control), HTN (hypertension), DM

(diabetes), DKD (diabetic kidney disease) and CKD (chronic kidney disease). ESRRA transcript levels were

compared between groups by ANOVA and post hoc comparison, * P < 0.05, ** P < 0.01, *** P< 0.001). On the right,

correlation between ESRRA transcript level and eGFR or fibrosis in microdissected human kidney tissue samples

(Clinical information is available in Table S7).

(C) Representative immunostaining for ESRRA in healthy and CKD stage 5 human kidney samples. Scale bar=

10µm.
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