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Abstract

Aging is the single most important risk factor for diseases that are currently the leading
causes of morbidity and mortality. However, there is considerable inter-individual var-
iability in risk for aging-related disease, and studies suggest that biological age can
be influenced by multiple factors, including exposure to psychosocial stress. Among
markers of biological age that can be affected by stress, the present article focuses
on the so-called measures of epigenetic aging: DNA methylation-based age predictors
that are measured in a range of tissues, including the brain, and can predict lifespan and
healthspan. We review evidence linking exposure to diverse types of psychosocial stress,
including early-life stress, cumulative stressful experiences, and low socioeconomic sta-
tus, with accelerated epigenetic aging as a putative mediator of the effects of psycho-
social environment on health and disease. The chapter also discusses methodological
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differences that may contribute to discordant findings across studies to date and
plausible mechanisms that may underlie the effects of stress on the aging epigenome.
Future studies examining the effects of adversity on epigenetic and other indicators
of biological weathering may provide important insights into the pathogenesis of
aging-related disease states.

1. Chronological versus biological age

Aging is the single most important risk factor for several disease states

that are currently the leading causes of morbidity and mortality (Niccoli &

Partridge, 2012). However, it is clear that health trajectories greatly differ

among individuals of the same age, and biological age is thought to reflect

weathering of the organism due to environmental exposures and disease

processes. Efforts to better capture biological aging have led to the develop-

ment of a wide range of biological measures, including telomere length,

transcriptomic profiles, immunoglobulin G glycosylation patterns, blood

serum metabolites, structural neuroimaging, and epigenomic profiles

(Cole et al., 2018; Jylh€av€a, Pedersen, & H€agg, 2017). Among these mea-

sures, this chapter will focus on epigenetic markers, which are the most

robust predictors of age developed to date (Horvath & Raj, 2018).

Epigenetics refers to any heritable chemical modification that affects

gene expression without altering the genetic sequence itself. Epigenetic

modifications are involved in several physiological processes such as the

establishment and maintenance of cell lineages, X chromosome inactivation,

and imprinting (Hackett & Azim Surani, 2013; Lee & Bartolomei, 2013).

Furthermore, epigenetic mechanisms have been described to be involved in

several complex disease states known to be influenced by gene–environment

interactions (GxE). One of the most widely studied epigenetic modifications is

DNAmethylation, which comprises the addition of a methyl group to a cyto-

sine residue and in humans most commonly occurs in the context of cytosine-

guanine dinucleotides (CpG). DNA methylation changes can influence gene

expression (Siegfried& Simon, 2010), thereby affecting gene and cell function.

Studies over the last years examining the role of age on epigenetic pat-

terns have further led to the development of highly accurate epigenetic pre-

dictors of age or so-called epigenetic clocks. Table 1 summarizes the main

characteristics of the four most widely used epigenetic clocks. Among the

first ones and most widely used are those developed by Horvath (2013)

and Hannum et al. (2013) in samples encompassing wide age ranges
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(up to 100 years old). Both these clocks are characterized by their high

accuracy (0.91–0.96 correlation between estimated and observed age),

but Horvath’s clock predicts age more accurately than Hannum’s in samples

of younger individuals. Furthermore, Horvath’s clock can be used in differ-

ent tissues and cell types since it was trained in 51 different tissues, including

blood, saliva and different brain areas, whereas Hannum’s clock was devel-

oped using blood samples only.

Interestingly, the estimation of epigenetic age allows the calculation

of the so-called epigenetic age acceleration, which reflects an increase

in biological age in comparison to chronological age of the individual.

This acceleration has been associated with several physiological processes,

pathologies, and environmental factors, including puberty (Binder et al.,

2018), menopause (Levine et al., 2016), Alzheimer’s disease (Levine, Lu,

Bennett, & Horvath, 2015), and lifestyle (Quach et al., 2017), among sev-

eral others (Gassen, Chrousos, Binder, & Zannas, 2016; Horvath & Raj,

2018). Exploration of the performance of the epigenetic clock in several

tissues from the same subjects revealed that the cerebellum ages slowly

Table 1 Characteristics of DNA methylation-based predictors of age.
Horvath’s
DNAm Age

Hannum’s
DNAm Age

PhenoAge
(Levine et al.)

GrimAge
(Lu et al.)

CpG sites 353 71 513 1030

Platforma 27K (450K) 450K 27K (450K,

EPIC)

450K (EPIC)

Training dataset (n) 3931 482 456 2356

Test dataset (n) 3211 174 9164 6935

Correlation with

chronological age in

testing dataset

0.96 0.91 0.62–0.89 0.82

Accuracyb 3.6 years 4.9 years NA NA

Tissue 51 different

tissues

Whole blood Whole blood Whole blood

Age range 0–101 19–101 21–100 46–78

aDNA methylation array used for estimation; when some of the samples included in the study were
assayed in larger platforms, they have been included inside parentheses to point out that actual CpG sites
included in the regression model are solely the ones common to all platforms assayed.
bAccuracy refers to median absolute error (MAE), i.e., the median absolute difference between predicted
epigenetic age and observed or chronological age.
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when compared to other brain regions suggesting that different brain

regions may be characterized by different rates of biological aging

(Horvath et al., 2015).

Nonetheless, an epigenetic clock that is highly accurate in its age estima-

tion might not be optimal for capturing inter-individual differences in epige-

netic age acceleration. Thus, more recently developed clocks incorporate

other parameters besides chronological age to better predict unfavorable out-

comes. PhenoAge (Levine et al., 2018) integrates in the regression model a

combination of clinical biomarkers such as blood concentration of albumin,

creatinine, glucose, and C-reactive protein, and blood cell count. GrimAge

(Lu et al., 2019) follows a similar approach by combining methylation levels

at CpG sites which independently predict chronological age but also nine

additional biomarkers including sex, leptin, cystatin C, and smoking pack

years. In contrast with Horvath’s and Hannum’s age predictors, PhenoAge

and GrimAge aim to predict healthspan rather than lifespan.

2. Epigenetic embedding of psychosocial stress

Because acceleration of epigenetic age has been repeatedly associated

with mortality (time-to-death) (Breitling et al., 2016; Chen, Marioni, et al.,

2016; Marioni et al., 2015; Perna et al., 2016), it is of interest to elucidate

which mechanisms might accelerate, or potentially decelerate, epigenetic

aging. Studies on monozygotic twins (MZ) suggest that environmental fac-

tors can contribute to DNAmethylation changes and cumulative epigenetic

differences along the lifespan (Fraga et al., 2005).While several environmen-

tal factors, such as lifestyle parameters and communicable diseases, have been

associated with epigenetic age acceleration (Kananen et al., 2015; Quach

et al., 2017; Rosen et al., 2018), this chapter focuses on the relationship

between psychosocial stress and epigenetic aging.

Psychosocial stress here refers to any situation or event that results in

emotional discomfort and/or is experienced as threatening by the exposed

subject. Childhood maltreatment, domestic violence, the death of a loved

one, migration, and low socioeconomic position (SEP) are among the most

studied stressors in the scientific literature. Experiencing any of those, par-

ticularly during the early stages of life (Marı́n, 2016), has been reliably

associated with an increased vulnerability for complex disorders, including

psychiatric phenotypes (Moya-Higueras et al., 2018; Teicher & Samson,

2013). Exposure to psychosocial stressors such as adverse childhood experi-

ences has been further associated with premature mortality; for example,

subjects exposed to six or more childhood adversities were found to die
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on average 18.5 years earlier than subjects not exposed to adversity (Brown

et al., 2009). Epigenetic mechanisms have been suggested as plausible

mediators of this association (Gassen et al., 2016; Zannas et al., 2019).

Unlike biological parameters, exposure to psychosocial stress is more sub-

jective and its assessment depends on memory recall. A recent meta-analysis

demonstrated overall low agreement between prospective and retrospective

measures of childhood maltreatment (Baldwin, Reuben, Newbury, &

Danese, 2019). In the same study, information collected through interviews

rather than questionnaires appeared to be more reliable. Likewise, different

types of stress are likely to differentially affect biological and clinical outcomes

depending on the frequency, type, severity, and timing of the particular event

(Miller, Chen, & Zhou, 2007; Schalinski et al., 2016). Most studies assessing

the effects of childhood trauma are conducted in adult populations by means

of retrospective instruments; the Childhood TraumaQuestionnaire (CTQ) is

one of the most used throughout the literature, though it does not distinguish

precise timing of the abuse (Bernstein et al., 1994).

Being born into an environment of low socioeconomic status (SES) is a

risk factor for lifelong exposure to psychosocial stress (Lê-Scherban et al.,

2018), since it has been associated with poorer parenting (Odgers et al.,

2012) and increased exposure to stressful life events and violence (Lantz,

House, Mero, & Williams, 2005). Furthermore, the impact of low SES

has been suggested to moderate the effects of exposure to childhood

maltreatment, but the underlying mechanisms remain to be elucidated

(Goldberg et al., 2013). In this regard, lower SES is reliably associated with

worse general health, poorer cognitive performance, and higher proneness

for psychopathology (Aartsen et al., 2019; de Mestral & Stringhini, 2017;

Lund et al., 2010).

Epigenetic mechanisms have been proposed to mediate the pernicious

effects of the aforementioned environmental and sociodemographic risk

factors. Genome-wide DNA methylation studies have revealed epigenetic

patterns associated with socioeconomic status (Bush et al., 2018), insti-

tutionalization (Naumova et al., 2019), and altered stress reactivity after

exposure to childhood maltreatment (Houtepen et al., 2016).

In this context, the aim of this chapter is to review evidence on whether

psychosocial stress accelerates ticking of the epigenetic clock, potentially

mediating known effects of stress exposure on health and disease outcomes.

A comprehensive literature search yielded 15 scientific papers exam-

ining associations of DNA methylation-predicted age with exposure to

psychosocial stress; their main findings are summarized in Table 2 and

discussed in detail in the following sections.
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Table 2 Studies examining epigenetic age acceleration after exposure to stress or trauma.

Study
Sample
size

Mean age
(SD; range)

Female
sex (%)

Type of stress or trauma
(instrument)

Clock
used

Chronological/
biological age
correlation (r) Tissue assessed Main findings

Boks et al. (2015) 96 27.04

(9.15)

0 Traumatic stress (ETI) Horvath 0.99 Whole blood Higher exposure to

(recent) combat trauma

during deployment—but

not childhood trauma—

was associated with

accelerated epigenetic

aging

Zannas et al. (2015) 393 41.33

(12.85)

39.5

(14.14)

70.7

35.5

Childhood trauma

(CTQ)

Lifetime stress (SEQ)

Horvath 0.90

0.94

Whole blood Cumulative life stress—

but not current or

childhood stress—was

associated with accelerated

epigenetic aging

Brody, Yu, Chen,

Beach, and Miller

(2016)

399 20 55 Parental depression

(CES-D) and harsh

parenting (4-item

personalized interview)

Horvath NA PBMC Parental depression (at age

11) predicted higher

epigenetic age

acceleration at age 20

Brody, Miller, Yu,

Beach, and Chen

(2016)

616 20–22 60.2 Racial discrimination

during adolescence

(schedule of racist events)

Hannum NA PBMC In the absence of family

support, exposure to racial

discrimination is

associated with accelerated

epigenetic aging
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Chen, Miller, et al.

(2016)

330 19.3 (0.67) 53 SES (income, adequacy

of income,

unemployment, TANF

receipt, unmet material

needs, inability to make

ends meet)

Horvath

Hannum

NA PBMC Increased exposure to

economic hardship during

adolescence was associated

with accelerated

epigenetic aging in

subjects exposed to the

Great Recession

Simons et al.

(2016)

100 48.5 (9.2) 100 SES (income and

financial pressure)

Childhood trauma

(personalized 5-item

interview)

Lifestyle (smoking,

alcohol intake, exercise,

diet, BMI)

Hannum 0.82 PBMC Lower income and higher

financial pressure were

associated with accelerated

epigenetic aging.

Neither childhood trauma

nor lifestyle were

associated with epigenetic

age.

Jovanovic et al.

(2017)

93 9.73 (1.67;

6–13)
54.5 Exposure to violence

(VEX-R)

Horvath 0.46 Saliva Exposure to violence was

associated with accelerated

epigenetic aging; this

effect was driven by direct

exposure rather than

witnessing violence

Fiorito et al. (2017) 5111 57.3 48.0 SES (educational

attainment, occupational

position, income)

Horvath

Hannum

0.73 to 0.80

depending on

clock

Peripheral blood

(whole blood,

dried blood

spots and

PBMCs)

Lower SES was associated

with accelerated

epigenetic age

Continued
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Table 2 Studies examining epigenetic age acceleration after exposure to stress or trauma.—cont’d

Study
Sample
size

Mean age
(SD; range)

Female
sex (%)

Type of stress or trauma
(instrument)

Clock
used

Chronological/
biological age
correlation (r) Tissue assessed Main findings

Austin et al. (2018) 335 [15–55] 54.8 Early-life SES (parental

occupational status)

Current SES (maximum

household occupational

status)

Horvath 0.93 Monocytes Low early-life SES (but

not current) was associated

with accelerated

epigenetic age

Han et al. (2018) 811 41.5

(12.26)

66.7 Childhood trauma

(NEMESIS-based

childhood trauma

interview)

Tailored

for

MBD-

seq data

NA Peripheral blood Childhood trauma was

associated with accelerated

epigenetic aging

Hughes et al.

(2018)

1099 58.4 (14.9;

28–98)
57.6 SES (income,

employment, education,

childhood SES as parents’

social classification)

Horvath

Hannum

0.90

0.94

Whole blood Social disadvantage during

childhood was associated

with accelerated

epigenetic age as measured

by both Horvath and

Hannum clocks.

No associations were

found for current SES

Lawn et al. (2018) 989

(twice)

+773

28.65

(5.54)

47.44

(4.42)

53.44

(0.16)

100 SES (father’s and highest

current occupational

social class)

Psychosocial adversity

during childhood

(personalized

ALSPAC/NSHD

interview)

Horvath 0.45

0.50

0.12

Whole blood

Buccal cells

Sexual abuse was

associated with accelerated

epigenetic aging in one of

the cohorts at both time

points.

No associations were

found for any other

psychosocial or

socioeconomic parameter

A
R
T
IC
L
E

IN
P
R
E
S
S



Sumner, Colich,

Uddin, Armstrong,

and McLaughlin

(2019)

247 12.7 (2.6;

8–16)
47.8 Early-life adversity

(categorized as threata

and deprivationb)

Horvath 0.62 Saliva Exposure to threat—but

not to deprivation—was

associated with accelerated

epigenetic aging

Wolf et al. (2018) 2185 40.2

(18–89)
38.2 Childhood trauma

(CTQ/ETI) and lifetime

trauma (TLEQ, LEC,

TEI, self-report)

Horvath

Hannum

0.87

0.87

Whole blood Childhood trauma but not

lifetime trauma was

associated with accelerated

epigenetic aging as

measured by Hannum’s

but not Horvath’s clock

McCrory et al.

(2019)

490 62.2 (8.3;

50–87)
50.2 SES (social class

trajectory, education and

income)

Horvath

Hannum

Levine

0.75

0.75

0.84

Whole blood Epigenetic age

acceleration was not

associated with

socioeconomic position

aThreat was conceptualized as an exposure composite including childhood abuse (either sexual, physical or emotional) and other threatening situations such as witnessing domestic violence.
bDeprivation was categorized as an exposure composite including childhood neglect (both emotional and physical), food insecurity and cognitive deprivation.
Abbreviations: ETI, Early Trauma Inventory; CES-D, Center for Epidemiological Studies Depression scale; CTQ, Childhood Trauma Questionnaire; LEC, Life Events Checklist; MBD-seq,
Methyl-CpG Binding Domain Protein-Enriched Genome Sequencing; NA, not available; NEMESIS, Netherlands Mental Health Survey and Incidence Study; PBMC, peripheral blood
mononuclear cells; SEQ, Stressful Events Questionnaire; SES, socioeconomic status; TANF, Temporary Assistance of Needy Families; TEI, Traumatic Events Inventory; TLEQ, Trau-
matic Life Events Questionnaire; VEX-R, Violence Exposure Scale for Children-Revised.
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3. Exposure to life adversity accelerates
epigenetic aging

Ten out of 15 studies examined different types of childhood trauma and

maltreatment. Of those, seven reported significant associations with acceler-

ated epigenetic aging. Interestingly, the only two studies performed in chil-

dren and adolescents (from 6 to 16 years) yielded positive results suggesting

that proximal experiences correlate with epigenetic changes ( Jovanovic et al.,

2017; Sumner et al., 2019). Both studies highlighted that the nature of

the stressor influenced its impact on biological age, since (i) direct exposure

rather than witnessing violence and (ii) exposure to threatening rather than

depriving environments, were the specific factors triggering age acceleration,

respectively. Nevertheless, studies assessing epigenetic age in children and

adolescents should be examined with caution as they include samples with

narrow age range, whereby measures of epigenetic age only modestly corre-

late with chronological age ( Jovanovic et al., 2017; Simpkin et al., 2017;

Sumner et al., 2019). In an effort to address these limitations, two new

DNAmethylation-based clocks have been developed in independent samples

of children and adolescents to more accurately estimate epigenetic age in

these younger populations (Li et al., 2018; McEwen et al., 2019).

With regard to adult samples in which childhood adversity was assessed

retrospectively, a study found that only sexual abuse was associated with

age acceleration as opposed to other forms of early psychosocial adversity such

as parental death, adoption, or neglect (Lawn et al., 2018), further highlighting

the differential role of childhood trauma depending on stressor type.Although

Lawn et al. did not find any association with parental mental illness, another

study reported accelerated epigenetic age after exposure to parental depression

at age 11 (Brody, Yu, et al., 2016). Discrepancies between studies could arise

from sociodemographic differences between assessed samples, since Lawn’s

study was conducted in middle-aged Caucasian women while Brody et al.

assessed African American youths. In the African American population, sup-

portive parenting was further associated with buffering of the pernicious

effects of exposure to racial discrimination during adolescence (Brody,

Miller, et al., 2016).

The effect of childhood maltreatment on epigenetic age acceleration has

been supported by a recent meta-analysis, which found that CTQ-measured

maltreatment was associated with accelerated epigenetic aging assessed with
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the Hannum but not the Horvath clock (Wolf et al., 2018). Nevertheless,

neither childhood trauma measured with Traumatic Life Events

Questionnaire (TLEQ) nor lifetime trauma were associated with epigenetic

age acceleration, and generalizability of these findings may be limited

because the study was conducted in patients with post-traumatic stress dis-

order (PTSD). In line with these findings in PTSD, Han et al. reported

a positive association between childhood trauma and accelerated epigenetic

age in adult depressed subjects (Han et al., 2018). In contrast, three studies

did not find significant associations between childhood maltreatment

and epigenetic age; specifically, one of them was conducted in recently

deployed soldiers (Boks et al., 2015), whereas the other two assessed

the presence of childhood trauma in middle-aged African American

participants of low socioeconomic status (Simons et al., 2016; Zannas

et al., 2015).

These discordant findings could be in part explained by differences in the

sociodemographic, clinical, and stressor characteristics across study cohorts.

Exposure to acute stressors could induce transient epigenetic marks that are

subject to change in the long-term and may thus not be detected if epige-

netic aging is measured much later in life. The type and intensity of stress

exposure may greatly influence its impact on subsequent epigenetic changes;

for example, violent events are more likely to increase allostatic load.

Likewise, adult subjects with current psychiatric diagnoses, such as major

depression or PTSD, have likely been exposed to more adverse childhood

environments (Scott, Smith, & Ellis, 2010). Additionally, when adjusting

for threatening events, experiences of deprivation seemed to delay pubertal

development, suggesting that childhood adversities such as neglect or

physical illnesses could decelerate rather than accelerate epigenetic aging.

Because different types of childhood trauma greatly overlap in the general

population (Vachon, Krueger, Rogosch, & Cicchetti, 2015), it is challeng-

ing to disentangle the effects of co-occurring exposures.

Only three studies assessed later exposures to stressful life events, yield-

ing discordant findings. While higher exposure to recent combat trauma

(Boks et al., 2015) and higher cumulative lifetime stress (Zannas et al.,

2015) were associated with accelerated epigenetic age, Wolf et al. (2018)

reported no association between lifetime trauma and epigenetic age.

Further longitudinal studies may help elucidate how life events occurring

at different life stages differentially affect epigenetic aging and aging-related

processes along the human lifespan.
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4. Socioeconomic status and epigenetic aging

Seven studies have explored whether lower socioeconomic status

(SES) was associated with epigenetic age acceleration. Across these studies,

current SES was defined based on (i) income, (ii) occupational position, and

(iii) educational attainment. Early SES was defined based on parental occu-

pational status during childhood. Studies assessing SES at both time points

also considered SES trajectories as a function of whether SES had increased,

decreased, or remained stable from childhood to adulthood.

While some of these studies found lower SES to be associated with accel-

erated epigenetic aging (Chen, Miller, et al., 2016; Fiorito et al., 2017;

Simons et al., 2016), others did not find significant associations (Austin

et al., 2018; Hughes et al., 2018; Lawn et al., 2018; McCrory et al.,

2019). These discrepancies may result from differences in sample demo-

graphics and definition of SES across studies. Notably, Chen, Miller,

et al. (2016) examined the youngest sample consisting of adolescents

exposed to the Great Recession during their transition to adulthood.

Simons et al. (2016) assessed African American women of very low-income

settings, and the positive finding observed in this sample could in part be

explained by reproductive factors, given that the number of pregnancies

has been positively associated with maternal epigenetic aging (Ryan et al.,

2018). Although Fiorito et al. (2017) assessed different indicators of SES,

their main analysis focused on educational attainment using a standardized

score adjusted for gender, age, ethnicity, and recruitment center rather than

a direct measure such as years of education. Indeed, higher educational

attainment has been repeatedly associated with lower epigenetic aging

(Levine et al., 2018; Lu et al., 2019; Quach et al., 2017). In contrast, studies

reporting lack of association between SES and epigenetic aging are charac-

terized by the use of a dichotomous occupational status as a proxy for SES

(Austin et al., 2018; Hughes et al., 2018; Lawn et al., 2018; McCrory et al.,

2019). Lastly, although McCrory et al. (2019) found no epigenetic age

acceleration with neither childhood nor adulthood low SES, they found

an association with higher allostatic load as measured with a multi-modal

marker derived from physiological measurements.

Parental income and occupational position during childhood were used

as proxies of early SES in some studies (Austin et al., 2018; Hughes et al.,

2018; Lawn et al., 2018). Two of these studies point to the preeminent role

of early SES as a driver of accelerated epigenetic age. These results are in line

12 Helena Palma-Gudiel et al.

ARTICLE IN PRESS



with prior evidence suggesting that childhood is a critical develop-

mental window for the programming of risk for complex disorders

(Pervanidou & Chrousos, 2018).

An alternative approach is to study SES trajectories from childhood to

adulthood. Stably high economic hardship—stably low SES—and upward

mobility from low to high SES were both associated with epigenetic age

acceleration when compared with stably high SES and downward mobility

(Austin et al., 2018; Chen, Miller, et al., 2016). Such findings highlight

that economic resources available during childhood may influence the

ticking rate of the epigenetic clock. Notwithstanding, lack of difference

in epigenetic aging across SES trajectories has also been reported

(McCrory et al., 2019). The fact that upward mobility did not positively

influence epigenetic aging is in line with exploratory studies suggesting that

resilience after trauma is associated with a lasting epigenetic footprint.

Specifically, higher self-control in low-SES youth predicted lower rates

of aggressive behavior and substance abuse but was associated with acceler-

ated epigenetic age (Miller, Yu, Chen, & Brody, 2015). Likewise, in a

sample of war veterans with PTSD, higher resilience scores—better coping

strategies—were also associated with accelerated epigenetic age (Mehta

et al., 2018). Collectively, these findings suggest a biological state of accel-

erated aging and higher allostatic load in subjects that successfully overcome

adversities.

Demographic characteristics other than SES should also be considered as

potential confounders. A recent study explored how gender and ethnicity

can influence the ticking rate of the epigenetic clock revealing men age faster

than women and Caucasian, Hispanic, Amerindian and African American

subjects show distinctive epigenetic aging patterns (Horvath et al., 2016).

5. Developmental programming of epigenetic age
at birth

Interestingly, two additional DNA methylation-based epigenetic

clocks were developed for the estimation of gestational age (GA) at birth

(Bohlin et al., 2016; Knight et al., 2016; see Table 3 for further details).

These clocks allow researchers to explore which prenatal risk factors might

be influencing developmental maturity of newborns.

Intuitively, it could be hypothesized that higher prenatal stress would be

associated with accelerated epigenetic GA; however, findings reported so far

suggest an opposite direction of effects. Specifically, gestational diabetes in a
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previous pregnancy, Sj€ogren’s syndrome, maternal history of depression

before pregnancy, antenatal depressive symptoms, and lower cerebroplacental

ratio during pregnancy (a proxy for prenatal hypoxia and/or placental resis-

tance) were all associated with epigenetic GA deceleration (Girchenko et al.,

2017; Palma-Gudiel et al., 2019; Suarez et al., 2018). Thus, exposure to stress

during prenatal stages of life is associated with decreased biological age, which

could be conceptualized as a marker of developmental immaturity at birth.

Knight et al. (2018) further tested the clinical relevance of epigenetic GA

deceleration at birth in terms of perinatal health revealing an increased need

of neonatal interventions and heightened risk of bronchopulmonary dysplasia.

Conversely, excessive maternal weight and obesity before pregnancy were

associated with accelerated epigenetic GA at birth (Khouja et al., 2018),

suggesting that these conditions hasten fetal development. Girchenko et al.

(2017) also foundmaternal pre-eclampsia, maternal age over 40 years at deliv-

ery, and fetal demise in a previous pregnancy to be associated with accelerated

epigenetic GA.

Taken together, these results suggest a dual nature for the effects of stress

on aging-related processes, whereby depriving environments may give rise

to delayed development—and thus decelerated epigenetic age—whereas

threatening events may be associated with heightened allostatic load and

Table 3 Characteristics of DNA methylation-based predictors of gestational age.
Knight’s clock for
gestational age

Bohlin’s clock for
gestational age

CpG sites 148 96/58

Platforma 27K (450K) 450K

Training dataset (n) 207 1068

Test dataset (n) 1135 685

Correlation with

chronological age

0.91 0.81/0.7

Accuracyb 1.24 weeks 12.5/14.9 days

Tissue Cord blood Cord blood

Age range 24–42 gestational weeks x ̅ ¼40 gestational weeks

aDNA methylation array used for estimation; when some of the samples included in the study were
assayed in larger platforms, they have been included inside parentheses to point out that actual CpG sites
included in the regression model are solely the ones common to all platforms assayed.
bAccuracy refers to median absolute error (MAE), i.e., the median absolute difference between predicted
epigenetic age and observed or chronological age.
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accelerated epigenetic aging. Notably, the rate of change of epigenetic aging

is faster during development (Horvath & Raj, 2018), and while age accel-

eration might be beneficial during the early stages of life—promoting

survival and growth—it may be also associated with later premature mortal-

ity. Large epidemiological and longitudinal studies should be conducted to

explore how the rate of biological aging may impact developmental pro-

gramming. Furthermore, alternative measures of biological aging, such

as neuroimaging-derived brain age, have revealed the positive association

between prenatal undernutrition and premature brain aging (Franke,

Gaser, Roseboom, Schwab, & de Rooij, 2018). These results highlight

the interest of exploring simultaneously different markers of biological

age, as different organs are known to have independent age rates in the same

individuals; thus, there could be tissue-specific effects of epigenetic age

predictors, e.g., brain epigenetic aging better informs about neurodegener-

ative processes (Levine et al., 2015) while blood epigenetic age better reflects

cardiovascular risk (Huang et al., 2019).

6. Mechanistic insights of stress-mediated
accelerated aging

Throughout evolution, living beings have developed diverse strategies

to cope with stress. In vertebrates and humans, the hypothalamic-pituitary-

adrenal (HPA) axis culminates with cortisol secretion in the bloodstream

upon exposure to stressful stimuli. As a lipophilic molecule, cortisol diffuses

through the cell membrane and reaches the cytoplasm where it can bind to

the glucocorticoid receptor (GR). Once bound to cortisol, the GR trans-

locates to the cell nucleus to regulate gene expression. The key role played

by the GR in the stress response has prompted abundant research on

how stress exposure could lead to altered DNA methylation of the

NR3C1 gene encoding this receptor (Palma-Gudiel, Córdova-Palomera,

Leza, & Fañanás, 2015). Specifically, the GR exerts its actions through bind-

ing to so-called glucocorticoid responsive elements (GREs) (Palma-Gudiel

et al., 2018). Notably, a large proportion of CpG sites comprising the

Horvath’s epigenetic clock co-localize with GREs and are susceptible to

glucocorticoid exposure, suggesting that circulating glucocorticoids could

mediate the effects of psychosocial stress on epigenetic aging (Zannas

et al., 2015).

Beyond such composite epigenomic effects, stress may also impart

epigenetic changes at genomic loci relevant for aging-related phenomena.
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Such a locus is FKBP5, the gene encoding a stress-responsive molecule

implicated in regulation of HPA axis function and stress responses.

Previously, FKBP5 DNA methylation was shown to partially mediate

the known association between exposure to childhood trauma and later

development of PTSD (Klengel et al., 2013). More recently, epigenetic

upregulation of FKBP5 was found to result from the synergistic effects of

aging and stress and to contribute to increased inflammation and cardio-

vascular risk (Zannas et al., 2019). These findings suggest that epigenetic

regulation of FKBP5, and likely other stress-responsive molecules, may in

part mediate the impact of psychosocial stress on aging-related disease states.

Elucidating the mechanisms through which stress exposure contributes

to accelerated epigenetic aging may enhance our ability to prevent the

high mortality and morbidity rates associated with adverse environments.

Predictions based on DNA methylation-based markers may also inform

which interventions have the potential to buffer the pernicious effects of

stress at the molecular level. Evidence to date suggests that early-life stress

can be deleterious, but longitudinal studies are needed to clarify the dynam-

ics and putative stability or reversibility of the effects on epigenetic aging.

The advent of novel measures of epigenetic aging aimed at predicting

not only lifespan but also healthspan opens new avenues for research in

the field. Future studies examining the effects of adversity on these indicators

of biological weathering may provide novel insights into aging-related phe-

nomena. Postmortem brain analyses are also needed to understand how

different kinds of stress can accelerate epigenetic aging not only in peripheral

tissues such as blood or saliva but also in different brain areas as it seems to be

associated with several neurodegenerative conditions.
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