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Transcriptomic metaanalyses of autistic
brains reveals shared gene expression and
biological pathway abnormalities with
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Abstract

Background: Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum
disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported.

Methods: Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer
types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between
them.

Results: Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene
expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed
differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and
LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways
that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative
phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of
transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD.

Conclusions: Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain,
kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand,
lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of
specific biological processes underlie these associations which include several pathways previously implicated in both
cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and
signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain
epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific
cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer.
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Background
As Jane Austin once wrote, It is a truth universally ac-
knowledged that [1] autism spectrum disorder (ASD) is a
chronic childhood-onset neurodevelopmental condition
characterized by persistent deficits in social communica-
tion and social interactions, as well as, by restricted, re-
petitive patterns of behavior, interests, or activities [2, 3].
However, other serious clinical aspects of ASD are less
well known. For instance, an increase in premature mor-
tality has been recently reported [4–7]. ASD is among
the top ten causes of disability worldwide in children be-
tween 5 and 9 years old [8], these findings could be par-
tially explained by the link between ASD and other
lifetime health problems, including epilepsy, diabetes,
cardiovascular and gastrointestinal diseases, cancer, de-
pression, and suicide [8–12]. A better understanding of
these lifetime co-occurring conditions is important for
people with ASD, their families and caregivers, clinicians
and other healthcare professionals, scientists, and policy
makers [13, 14]. Recognizing this multimorbidity scenario,
we focus our attention on the relationships between ASD
and cancer for two reasons. First, evidence pointing to-
wards different cancer rates in patients with central ner-
vous system disorders has started to been gathered [15].
Although several studies have failed to find specific associ-
ations between ASD and cancer [16–18], others, including
a large population cohort study in Taiwan [11] suggested a
higher-than-expected occurrence of overall cancer in ASD
patients. These authors found a standardized incidence ra-
tio of 1.94 (95% CI 1.18–2.99), with further increased inci-
dence for brain and genitourinary cancers. Similarly, a
large population-based case-control study in Sweden
noted a significant increase in cancer mortality for all can-
cers combined (OR = 1.80, 95% CI 1.46–2.23) among
individuals with ASD as compared with the general popu-
lation [6].In addition, mothers of children with ASD have
been shown to be approximately 50% more likely to die
from cancer than those of non-autistic offspring [17].
Conversely, two studies found a lower-than-expected risk
of neoplasm in ASD patients, a situation that could be de-
scribed as “inverse cancer comorbidity” [12, 19]. Second,
given the prevalence and social impact of both diseases,
further characterization of the genetic, molecular and cel-
lular factors involved in ASD and cancer, which represent
their underlying mechanisms and are used in their identi-
fication, are important and incompletely resolved issues.
Recent genome-wide exome-sequencing studies of de
novo variants and recurrent copy number variations
(CNVs) in ASD and cancer have revealed extensive over-
lap in risk genes for autism and cancer [20–24]. Moreover,
several studies have found a striking implication of the
classically cancer related PTEN pathway in ASD [22, 25–
27]. These findings provide persuasive evidence of a mo-
lecular link between ASD and cancer, possibly opening

the door to new treatments for both conditions. For ex-
ample, chemotherapeutic agents that inhibit PTEN signal-
ing or related pathways, such as PI3K-AKT, mTOR and
NF-1 (e.g., rapamycin and everolimus), are potential can-
didates for treating several manifestations of autism [28].
The main goal of this study is to identify molecular

mechanistic connections between the two groups of
complex disorders. With this aim, we conducted
meta-analyses of differential RNA expression of ASD
brain tissues, and compared the dysregulated RNAs and
related pathways with those involved in a collection of
22 tumor types and two non-cancer control diseases.
Additionally, we employed the LINCS L1000 database
[29, 30] to detect drugs with similar or opposite gene
expression signatures to those of ASD and cancer [31].
Finally, we specifically examined which elements of the
PI3K-Akt-mTOR signaling axis (involving PTEN, FMR1,
NF1, TSC1, and TSC2) were dysregulated jointly in ASD
and cancer [32, 33].

Methods
Data acquisition
Using the Gene Expression Omnibus (GEO) [34] and
Array Express (AE) [35] we retrieved RNA expression
studies from ASD brain tissues and cancer. To apply
uniform normalization methods to microarray raw data,
we selected case-control datasets belonging to the most
popular single channel array platforms from Agilent,
Affymetrix, and Illumina. In the case of ASD, given the
small number of studies available, an RNA-Seq dataset
was also incorporated.
Three studies, which included ASD and control frontal

cortex samples, were found and retrieved from public
repositories or were obtained directly from the authors.
The datasets of Chow [36] and Voineagu [37]
(GSE28475 and GSE28521) were generated using the
Illumina array platform HumanRef-8 v3.0, whereas Gup-
ta’s dataset [38] was generated using Illumina’s HiSeq
2000 sequencing-technology (Fig. 1a). Cerebellar, tem-
poral, and occipital cortex samples derived from the
same set of patients were also available in GSE28521
and Gupta’s datasets. However, we focused on frontal
cortex data to avoid introducing heterogeneity into the
analysis due to tissue variability and because frontal
cortex data was represented by the highest number of
samples. In the case of cancer datasets, we only used pri-
mary tumors and their healthy matched control tissues,
and excluded other studies and samples (i.e., metastasis
and cell lines).

Expression data preprocessing and normalization
Datasets generated using Affymetrix platforms were pre-
processed as follows: CEL files were retrieved from GEO
or AE. The R packages oligo [39] and affy [40] were used
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to read them and to perform RMA background correc-
tion and summarization, which was followed by quantile
between-sample normalization and log2 transformation.
For Illumina platforms, non-normalized data were
loaded to the R environment, and the Lumi [41] package

was used to perform background correction using a nor-
mal exponential model fitting followed by quantile
normalization and log2 transformation. Agilent data
were preprocessed using the limma [42] package follow-
ing the same preprocessing steps. In the case of

A

B

C

Fig. 1 a Table showing the datasets included in the ASD differential gene expression meta-analysis. b Diagram depicting the workflow used to
perform the ASD differential gene expression meta-analysis. c Summary of the cancer types, number of datasets and samples included in each
cancer-specific differential gene expression meta-analysis
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RNA-Seq data, raw counts were loaded in the R environ-
ment. The Rlog function from the DESeq2 [43] package
was utilized to transform the RNA-Seq count distribu-
tion to a continuous distribution suitable for integration
with the array data. In short, the Rlog function trans-
forms count data into a continuous log2 scale distribu-
tion, minimizing the differences between samples for
rows with small counts and normalizing the data with
respect to library size. Additional file 1: Figure S1 shows
a comparison between two state of the art RNA-Seq spe-
cific differential expression methods and traditional
limma analysis using Rlog transformed data suggesting
that Rlog transformation renders the dataset suitable for
inclusion with micro-array datasets.
To harmonize probe annotations between different

dataset, platform-specific IDs were transformed into
ENTREZ IDs using annotation packages. Probes targeting
the same gene were collapsed using the collapseRows
function from the WGCNA [44, 45] package selecting the
MaxRowVariance method.

Outlier exclusion
Each dataset was subjected to outlier samples detection
and removal using the following criteria. We computed
mean inter-array correlations prior to normalization for
cases and controls independently. If the mean inter-array
correlation within each group was lower than 0.9, we re-
moved the sample showing the lowest mean inter-array
correlations iteratively until a global correlation value of
0.9 was reached for both case and control groups. This
method ensures that samples are not eliminated as out-
liers due to unbalanced case control designs while guaran-
teeing the elimination of samples with significant deviance
from the group distributions. Additional file 1: Table S1
shows the initial number of samples included in each
study and the final number of samples after exclusion cri-
teria and outlier samples removal were performed.

Addition of control samples
The small number of samples found in the ASD brain
transcriptomic studies limits the statistical power of dif-
ferential expression meta-analysis. To enhance the
power, searches were performed for additional datasets
including frontal cortex control samples profiled with a
compatible array platform. One study with such charac-
teristics (GSE36192 [46, 47]) was found and retrieved. It
included samples from the frontal lobe of the cerebral
cortex profiled with Illumina HumanHT-12 V3.0. Then,
we randomly included 80 frontal cortex control samples
from GSE36192 to GSE28475 and GSE28475 (40 sam-
ples to each dataset) while maintaining balanced sex and
age distributions between the cases and controls. No sig-
nificant differences in sex, age of post mortem interval
(PMI) distributions were observed between cases and

controls after control sample addition (Additional file 1:
Table S2). For each dataset (GSE36192 and GSE28475)
data from the original study and the 40 extra control
samples were merged at the raw level. Then, a normal
exponential background correction method was applied
to the combined data followed by quantile normalization
and log2 transformation using the lumi package [41].
The combat function from the sva package [45] was fi-
nally applied to each preprocessed combination of one
of the original datasets plus the control sample set in
order to remove batch effects derived from different
study origins (Fig. 1b).

Removal of redundant patient samples
Currently published ASD brain transcriptomic datasets
rely on a set of samples derived from a partially overlap-
ping group of patients. Eleven ASD and one control
samples derived from the same patients were included
in both GSE28521 and Gupta’s dataset. Fourteen ASD
and five control redundant samples were included in
both GSE28475 and Gupta’s datasets. Ten ASD and four
control redundant samples respectively were shared be-
tween GSE28475 and GSE28521. Nine ASD samples de-
rived from the same patients were present in all three
datasets. No common control samples were included in
the three datasets (Additional file 1: Figure S2).
Since patient redundancy could artificially inflate the

number of differentially expressed genes yielded by dif-
ferential gene expression meta-analysis, redundant sam-
ples were removed sequentially using the following
criteria.
First, the R MetaQC package [48] was used to generate

an index for the quality of each study. MetaQC inte-
grates six quantitative quality control measures, apprais-
ing internal homogeneity of co-expression structure
among studies, external consistency of co-expression
patterns with a pathway database, and accuracy and
consistency of differentially expressed gene detection or
enriched pathway identification. For each dataset, the al-
gorithm produces an index called standardized mean
rank value (SMR) that can be interpreted as a relative
measure of the quality of the study. SMR values were
1.17, 2.33 and 2.5 for GSE28521, Gupta, and GSE28475
respectively (Additional file 1: Figures S3 A and S3 B).
Additionally, as an alternative quality metric, mean

inter-sample correlations were computed for each data-
set. GSE28521, Gupta, and GSE28475 showed mean
inter-sample correlation values of 0.96, 0.95, and 0.91,
respectively, which was in agreement with the quality or-
dering established by MetaQC. Using both criteria, we
defined GSE28521 as the highest quality study, followed
by Gupta, and GSE28475. To preserve the maximum
number of samples in the highest quality studies, we
kept all samples in the study that showed the lowest
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SMR value and the highest mean inter-sample correl-
ation value (highest quality). Next, the samples derived
from the same patients present in both the highest qual-
ity study and the study showing the next lowest SMR
and the next highest mean inter-sample correlation (the
second highest quality study) were removed from the
second study. Finally, from the study showing the high-
est SMR value and the lowest mean inter-sample correl-
ation (lowest quality), we removed the samples derived
from individuals present either in the first or in the sec-
ond highest quality studies (Fig. 1b).
After control sample addition and removal of dupli-

cated individual samples, 34 non redundant ASD cases
and 130 control samples distributed in the three datasets
were available to perform differential gene expression
meta-analysis. No significant differences in age, sex or
PMI interval composition were found either between the
cases and controls (p-value > 0.05) (Fig. 1b). Additional
file 1: Table S3 shows the samples included in the final
ASD analysis and their associated covariates.

Cancer and control diseases datasets
A total of 198 datasets from 22 different cancer types
comprising 18,736 samples, 13,687 tumors and 5009
tissue-matched control samples were included in our
cancer differential gene expression meta-analyses (Fig.
1c, Additional file 1: Table S1). The number of included
datasets for each cancer type ranged from 3, in the case
of diffuse large b-cell lymphoma, to 19 in the case of
liver cancer. The sample sizes ranged from 180 in the
case of cholangiocarcinoma to 2133 in the case of colo-
rectal cancer. Malaria and ulcerative colitis were in-
cluded as control diseases in order to evaluate the
specificity of the associations between ASD and cancer.
Ten ulcerative colitis datasets including 442 cases and
189 controls and three malaria datasets including 174
cases and 95 controls were used to perform differential
gene expression meta-analyses.

Differential gene expression meta-analyses
Differential gene expression meta-analyses are known to
increase the statistical power and reduce the noise of
gene expression measurements [49]. For each disease,
meta-analyses were carried out independently using the
approach developed by Choi et al. [50] implemented in
the MetaDE package [51]. All meta-analyses were per-
formed using random effect models, since moderate to
high heterogeneity was expected given the biological and
technical variability present in our data. The threshold
of significance was set to a conventional level of 0.05.
Thus, genes with a false discovery rate (FDR)-corrected
p-value lower than 0.05 were considered differentially
expressed.

Comparison of differentially expressed gene profiles in
ASD and cancer
The expression profiles of ASD and all studied cancer
types were compared to evaluate the significance of the
overlaps between differentially expressed genes, as previ-
ously described [52, 53]. For each ASD-cancer pair, the
significance of the four possible intersections formed by
upregulated and downregulated genes was evaluated by
means of one-tailed Fisher’s exact tests. The intersec-
tions were:

1. Genes upregulated in both ASD and the selected
cancer type (Intersection A),

2. Genes downregulated in both ASD and the selected
cancer type (Intersection B),

3. Genes upregulated in ASD and downregulated in
the selected cancer type (Intersection C), and

4. Genes downregulated in ASD and upregulated in
the selected cancer type (Intersection D).

P-values were corrected by multiple testing using the
FDR. Overlaps showing corrected p-values lower than
0.05 were considered significant. The background num-
ber of genes was set as the number of genes jointly stud-
ied in the two meta-analyses under consideration, which
in turn depended on the platforms included in each
meta-analysis. A cancer type was considered to be
deregulated in the same direction as ASD when Inter-
sections A and B were significant and Intersections C
and D were not. These cancer types are referred to as
same direction deregulated cancers (SDDCs) and could
be candidates for direct comorbidity with ASD. Con-
versely, a cancer type was considered to be deregulated
in the opposite direction from ASD when intersections
C and D were significant but intersections A and B were
not. These cancer types are referred to as opposite direc-
tion deregulated cancers (ODDCs) and could be candi-
dates for inverse comorbidity with ASD.
An additional association analysis was performed on

the differential expression profiles between all possible
ASD and cancer pairs. Pearson’s correlation coefficients
of the μ̂ values obtained from each differential expres-
sion meta-analysis were computed. Positive correlations
suggest similar patterns of differential expression while
negative correlations would indicate opposite patterns.

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) [54] was performed
in order to detect functional categories enriched in upregu-
lated or downregulated genes. Z-values produced as output
in each differential expression meta-analysis were employed
as an ordering factor. For each disease, enrichment calcula-
tions were carried out using different molecular signature
databases, namely, Hallmarks (H), Canonical pathways
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(C2), and Gene Ontology (GO). A significance thresh-
old of 0.05 was defined for the corrected p-value gener-
ated by the GSEA algorithm when selecting enriched
functional categories.
For enrichment of gene sets placed on the intersec-

tions, a traditional overrepresentation analysis was per-
formed using g:Profiler, an online tool for functional
profiling of gene lists from large-scale experiments,
through the interface R package gProfileR [55].

LINCS-based analysis and drug set enrichment analysis
LINCS L1000 [27, 29, 56, 57] comprises a collection of
230,556 gene expression profiles of cancer cell lines per-
turbed by small molecules and genetic constructs. Here,
a subset of 29,157 small molecule perturbations that was
included in a custom drug classification partially based
on the anatomical therapeutic chemical classification
system (ATC) was selected and employed to perform
drug set enrichment analyses for each studied condition
as previously described in Sanchez et al. [53].
A list of genes ranked based on z-values derived from

the differential gene expression analysis was generated
for each disease. Then, each ranked gene list was used to
compute cosine distances with each of the 29,157 per-
turbations included in our drug classification using the
R ccmap package [58]. This method produces a list of
perturbations or drugs ordered by its cosine distance
with the target disease. Positive cosine distances indicate
that a particular small molecule or drug produces a dif-
ferential expression profile that mimics or resembles the
differential expression profile of the disease under con-
sideration, whereas negative cosine distances suggest
that a particular small molecule or drug produces a dif-
ferential expression profile that reverses the target dis-
ease profile.
Finally, the list of small molecules or drugs ordered by

their cosine distances was used to detect enrichment in
drug sets using a GSEA-based enrichment method imple-
mented in the fgsea package [59]. The algorithm reveals
whether a particular drug set is preferentially located at
one of the extremes of the ranked list of drugs associated
with each disease. Significant placement of a particular
drug set at the top of the distribution suggests that it pro-
duces an effect that mimics the transcriptomic changes
found in the disease under consideration. Conversely, sig-
nificant placement of a particular drug set at the bottom
of the perturbation distribution suggests that it produces
an effect that reverses the transcriptomic changes found
in the disease under consideration. A conventional FDR
value of 0.05 was selected as a threshold.
We carried out this analysis for all ASD and cancer

differential expression profiles. Finally, the results were
compared between ASD and each tumor type.

Results
ASD differential gene-expression meta-analysis and gene
set enrichment analysis (GSEA)
A total of 13,699 genes were tested for differential ex-
pression, yielding 1055 differentially expressed genes
(DEGs) in ASD patients relative to controls below an
FDR threshold of 0.05. Of these DEGs, 450 were upregu-
lated and 605 were downregulated. Full ASD differential
gene expression meta-analysis results are available in
Additional file 2.
Gene set enrichment analysis (GSEA) suggested that

genes upregulated in ASD are mainly associated with
immune system-related processes, including cytokine
production, inflammatory response, leukocyte activa-
tion, NFKB signaling, interferon response and comple-
ment reaction. Cell death regulation, cell adhesion, P53
signaling, and extracellular matrix organization were
also enriched in upregulated genes. Genes downregu-
lated in ASD samples were mainly associated with oxi-
dative phosphorylation, ATP metabolism and lactic
acidosis. Neuronal system functions, such as GABA
synthesis, reuptake, and degradation plus proteasome
pathway related processes, were also enriched in genes
downregulated in ASD samples compared to controls.
Full ASD GSEA enrichment results can be found in
Additional file 3.

Cancer data analysis
We found a very high proportion of differentially
expressed genes in our cancer meta-analysis results, with
values ranging from 11% to 71% of the total number of
tested genes in chronic myeloid leukemia (CML) and
colorectal cancer, respectively (Fig. 1c, Additional file 4).
These proportions are compatible with previous findings
for differential gene expression analysis of TCGA
RNA-Seq cancer data [60], where the percentage of dif-
ferentially expressed genes ranged from 32% in the case
of bladder cancer to 72% in the case of breast cancer.
The number of differentially expressed genes found in
our analysis was correlated to the number of included
studies (r = 0.76) and samples (r = 0.53), and the mini-
mum weighted mean difference ( μ̂) for a gene detected
as significantly differentially expressed in a particular
meta-analysis negatively correlated with the number of
included studies (r = − 0.73) and samples (r = − 0.67).
This finding indicates that as more studies were intro-
duced in the meta-analyses, genes with smaller but
consistent differences in expression were detected as
significantly deregulated. The full cancer differential
gene-expression meta-analyses results are available in
Additional file 5.
Enrichment analysis showed that pathways associated

with cell cycle such as, mitotic phase transition, DNA
synthesis and repair, and telomere extension, were
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commonly upregulated in most of the cancer types
(68%). Interestingly, leukemias and lymphomas did not
show changes in mitosis related pathways (Additional
file 1: Figures S4 and S5). The most common downregu-
lated pathways among cancers were related to calcium,
G-protein-coupled receptors (GPCR) signaling, and fatty
acid metabolism which were downregulated in between
40 and 50% of the studied cancers.

Autism and cancer expression deregulation profile
comparisons
To investigate whether the transcriptomic deregulations
observed in particular cancer types showed direct or in-
verse patterns of association with ASD, all possible ASD
and cancer pairs were subjected to intersection and cor-
relation analysis (See Methods). Four cancer types
(brain, kidney, pancreatic, and thyroid cancer) presented
differential gene expression profiles that were signifi-
cantly deregulated in the same direction as ASD below
an FDR corrected p-value threshold of 0.05. These
tumor types are referred to as same direction deregu-
lated cancers (SDDC). Two tumor types (lung and pros-
tate cancer) showed differential expression profiles
deregulated in the opposite direction from frontal cortex
samples of ASD patients. These types are referred to as
opposite direction deregulated cancers (ODDC). No as-
sociation was present between ASD and the rest of the
studied cancers. (Fig. 2a).
Two hundred and fifty-four genes were found to be

jointly upregulated in ASD and brain cancer and were
enriched in immune system and cell death related pro-
cesses. Two hundred and eighteen genes were found to
be jointly downregulated in ASD and brain cancer. En-
richment in neuron and synapse related genes was found
in this set of genes. Similar enrichment results were ob-
served in the analysis of the 164 and 152 genes jointly
up- and downregulated in ASD and pancreatic cancer.
Kidney cancer and ASD presented 211 and 204 genes
jointly up- and downregulated respectively. Shared up-
regulated genes between ASD and kidney cancer were
also heavily enriched in immune and cell death related
processes. Jointly downregulated genes in ASD and kid-
ney cancer were enriched in mitochondrial functions
and ATP synthesis. Similar results were obtained in the
analysis of the 167 and 186 genes jointly up- and down-
regulated, respectively, in ASD and thyroid cancer,
showing strong enrichment in immune system and mito-
chondrial function related genes in the joint upregulated
and downregulated gene sets respectively.
One hundred and seventy genes were found to be

jointly upregulated in ASD and downregulated in lung
cancer and were enriched in immune system processes
and cell death among others, whereas 229 genes were
found to be downregulated in ASD and upregulated in

lung cancer showing enrichment in functions related to
mitochondrial function. One hundred and nineteen were
found to be upregulated in ASD and downregulated in
prostate cancer which were also enriched in focal adhe-
sion, cell death and immune system processes whereas
113 genes were found to be downregulated in ASD and
upregulated in prostate cancer which were enriched in
mitochondrial related functions.
Additional file 1: Table S4 and Additional file 4 show

the genes placed in the described intersections and
the results of the overrepresentation-based functional
analysis.
To determine the degree of homogeneity within SDDC

and ODDC groups, we compared the content of the pre-
viously described intersections in each group. A total of
55 (17%) and 24 (6%) genes were jointly up- and down-
regulated respectively in the four SDDCs and ASD. Sev-
enty (31%) genes were upregulated in ASD and
downregulated in both ODDCs, whereas 86 (35%) were
downregulated in ASD and upregulated in both ODDCs
(Additional file 1: Table S5, Figure S2 B).
To evaluate the level of specificity of the reported as-

sociations between ASD and cancer and determine if as-
sociations with previous epidemiological confirmation
translate in same or opposite direction deregulation pat-
ters, ASD and cancer differential expression profiles
were compared to two control diseases, ulcerative colitis
(UC) and malaria. Ulcerative colitis has been shown to
have direct comorbid associations with both ASD and
colorectal cancer (CRC) [61, 62]. UC differential expres-
sion profile was found to be deregulated in the same dir-
ection as both, ASD and colorectal cancer (Additional
file 1: Figure S7 A). Nine other cancer types were found
to be deregulated in the same direction than UC includ-
ing all SDDCs. Prostate cancer, ALL, and CLL were
found to be deregulated in opposite directions as UC.
No reports investigating associations between malaria
and ASD or cancer have been published to the date.
Our results showed no transcriptomic associations be-
tween malaria and ASD differential expression pro-
files. Thyroid cancer was found to be deregulated in
the same direction as malaria whereas ALL and CLL
were found to be deregulated in opposite directions
(Additional file 1: Figure S7 B).
Complementarily, we computed Pearson’s correlation

between the differential expression profiles of each pos-
sible pair of ASD and cancer to quantify the degree of
association between them. SDDCs showed positive cor-
relations with ASD. Brain cancer was the cancer type
that showed the highest correlation values (r = 0.37, p <
0.05), and it was followed by kidney, thyroid and pancre-
atic cancer (r = 0.17, r = 0.10, and r = 0.08, respectively,
FDR < 0.05). ODDCs differential gene expression profiles
presented negative correlations with ASD. Lung and
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prostate cancer showed significant negative correlations
(r = − 0.14 and r = − 0.11, respectively, FDR < 0.05). All
other cancer types presented correlation absolute values
lower than 0.1 (Fig. 2c). Associations showing the lowest
FDR corrected p-values in the intersection analysis
tended to present the strongest Pearson’s correlations.
Partition Around Medoids (PAM) cluster analysis was

carried out on the differential expression profiles of ASD
and the 22 tumor types. Silhouette analysis was first ap-
plied to determine the optimum number of clusters. The
five groups partition showed the highest average silhou-
ette value suggesting that 5 was the optimum number of
clusters. However, the average silhouette value was low

in all cases indicating the absence of substantial struc-
ture. Results for different number of partitions can be
found in Additional file 1: Figure S5. Overall, ASD
tended to cluster together with brain cancer. Cancers in-
cluded in the ODDC and SDDC groups tended to group
together in the same cluster, indicating that their differ-
ential expression profiles were more similar between
them compared to other cancer types.
A theoretical overall cancer gene expression profile

was constructed by averaging the differential expression
profiles of all studied cancer types. No association (r =
0.05) was observed between ASD and this theoretical
overall cancer profiles.

A B

C D

Fig. 2 a) Table showing the significance of the intersections of upregulated and downregulated genes between ASD and the 22 cancer types
included in our study, comprising, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), bladder cancer (BLAD), brain cancer
(BRAIN), breast cancer (BREAST), cervical cancer (CERVI), cholangiocarcinoma (CHOL), chronic lymphocytic leukemia (CLL), chronic myeloid
leukemia (CML), colorectal cancer (CRC), diffuse large b cell lymphoma (DLBCL), follicular lymphoma (FLYMPH), gastric cancer (GSTCA), head
and neck carcinoma (HNC), kidney cancer (KIDN), liver cancer (LIV), lung cancer (LUNG), melanoma (MEL), ovarian cancer (OV), pancreatic
cancer (PANC), prostate cancer (PROST), and thyroid cancer (THYR). Columns A, B, C, and D include the number of genes upregulated in both,
downregulated in both, upregulated in ASD and downregulated in cancer, and downregulated in ASD and upregulated in cancer, respectively.
Green cell colors indicate significant intersections (FDR corrected p-values from Fisher’s exact test lower than 0.05) with darker green tones
indicating lower FDR corrected p-values. b) Venn diagrams showing the number of genes commonly deregulated in SDDCs and ODDCs. c)
Scatter plots and correlation values, depicting the associations between ASD and all SDDC and ODDCs for cancer differential expression profiles.
d) Heatmap showing the differential expression status of genes included in the KEGG hsa04151 pathways (PI3K-Akt signaling pathway), that were
found to be differentially expressed in the ASD differential expression meta-analyses. White, gray and black cells indicate unaltered, downregulated
and upregulated differential expression status, respectively
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PI3K associated genes
Given the pivotal role that PI3K/AKT/MTOR plays in
both ASD and cancer, we studied the differential expres-
sion status of the genes included in KEGG’s hsa04151
pathway (PI3K-Akt signaling pathway). Twenty-five
genes out of 272 genes belonging to hsa04151 (Fisher’s
exact test p-value = 0.21) were found to be deregulated
in ASD below an FDR threshold of 0.05, including the
core pathway gene MTOR, which was found to be
downregulated in ASD. Twenty-three out of 25 genes
were present in the meta-analysis of ASD and the 22
cancer types.
To determine the degree of similarity among the de-

regulation patterns of the 23 PI3K-associated genes ob-
served in ASD and present in all meta-analysis cancer
results, we performed hierarchical clustering using dif-
ferent distance measures using as an input a matrix con-
taining discrete values for each gene representing
upregulation, downregulation and normal expression
status (Fig. 2d). Brain and kidney cancer clustered to-
gether with ASD with all distance measures employed
suggesting common patterns of changes in this subset of
genes belonging to the PI3K-Akt signaling pathway.
(Additional file 1: Figure S6). In particular, F2R, MYC,
NFKB1, VEGFA, DDIT4, CDKN1A, CDK2, ITGA5,
COL4A1, COL4A2, and IL4R were upregulated in ASD
and brain and kidney cancer, while MTOR, FLT3, and
GNB5 were found to be downregulated in these three
diseases.

Pathway enrichment analysis comparisons and LINCs
drug set analysis results
To sketch the landscape of global common biological
pathway dysregulation between ASD and cancer, we car-
ried out functional analysis of the differential expression
meta-analyses results for each included disease. To this
end, GSEA and LINCS drug set enrichment analysis
were performed as described in Methods. Immune sys-
tem associated pathways, such as interferon alpha and
gamma signaling, IL6 JAK STAT3 signaling, TNFA sig-
naling through NFKB and MTORC1 signaling, were
found to be upregulated in both ASD and 55%, 55%,
41%, 41% and 63% of cancer types, respectively. Jointly
downregulated pathways between ASD and cancer were
mainly associated with neuronal system genes, oxidative
phosphorylation and ATP synthesis in 41% and 31% of
cancers respectively. However, oxidative phosphorylation
was also found to be upregulated in a subset off cancer
types indicating differences in the energy metabolism ab-
normalities found in different tumor types. Processes
downregulated in ASD and upregulated in cancer in-
cluded MYC targets, DNA repair, HIV infection and
proteasome activity in 77%, 68%, 55%, and 46% of the
studied cancers, respectively, whereas GPCR signaling

and myogenesis are examples of pathways that were up-
regulated in ASD and downregulated in 59% and 63% of
cancers, respectively (Fig. 3).
Drug sets commonly linked to ASD and cancer were

also examined. The results suggest that treatment with
mTOR inhibitors, such as everolimus, sirolimus, and
temsirolimus, produce differential expression profiles
that mimic the differential expression profile found in
ASD while reversing the differential expression profiles
found in most cancer types, excluding brain, kidney, thy-
roid, and pancreatic cancer, the four SDDCs.
STAT signaling inhibition by niclosamide produces dif-

ferential expression profiles that mimic the ASD DEG
signature while reversing the differential expression pro-
files of 40% of the studied cancers. Proteasome inhibitors
and histone deacetylase inhibitors, such as bortozemib,
entinostat and vorinostat, also mimicked ASD differen-
tial expression profile while reversing the differential ex-
pression profiles of 40% of the studied cancers (Fig. 4).
Restricting the analysis to cancers significantly associ-

ated with ASD, we observed that pathways jointly af-
fected in ASD and SDDCs were mainly dysregulated in
the same direction, i.e., they were upregulated or down-
regulated in both diseases. Their proportions in brain,
kidney, thyroid, and pancreatic cancer were 85%, 89%,
88% and 65%, respectively, while pathways jointly af-
fected in ODDCs and ASD were mainly deregulated in
opposite directions (96% and 95% for lung and prostate
cancer, respectively) (Additional file 1: Figure S8). Up-
regulated pathways shared by SDDCs and ASD were
fundamentally linked to immune system-related processes.
Shared downregulated pathways were implicated in oxida-
tive phosphorylation, GPCR signaling and neuronal sys-
tem genes. ODDCs upregulated pathways included cell
cycle and DNA repair pathways. Contrary to what we ob-
served in SDDCs, oxidative phosphorylation-related path-
ways were also upregulated in both lung and prostate
cancer, indicating heterogeneity in energy metabolism ab-
normalities in different cancer types. Apoptotic, focal ad-
hesion, and MAPK pathways were downregulated in
ODDCs and upregulated in ASD. Finally, the MTORC1
pathway was found to be deregulated in ASD, SDDCs and
ODDCs (Fig. 5).

Discussion
This is the first study aiming to explore the molecular
associations between ASD and cancer at a transcrip-
tomic level. We found positive patterns of association
between ASD and four cancer types (brain, kidney, thy-
roid, and pancreatic) and negative patterns of association
between ASD and two cancer types (lung and prostate).
Brain cancer and kidney cancer showed the strongest
transcriptomic associations with ASD in both intersec-
tion and correlation analyses. This observation is in
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agreement with previous epidemiological data reporting
an increased risk of both benign and malignant brain
neoplasms in patients with ASD [10]. Interestingly, the
same work also noted an increased risk of congenital
malformations of the urinary system in autistic individ-
uals, including medullary sponge kidney and the pres-
ence of accessory kidneys. Epidemiological associations
between urogenital system tumors and ASD have also
been reported [11].
The ASD differential expression results included genes

that have been previously linked to both ASD and can-
cer [12, 24]. For example, CUL3, a component of the
multiple cullin ring ubiquitin-protein ligase complex
[24], was downregulated in our ASD analysis. Further-
more, nine oncogenes present on the gene list compiled
by Darbro [12] were found to be deregulated in ASD.
Seven were found to be upregulated (ABL1, MYC,
NFKB2, PIM1, PPARG, and BCL6) and 2 downregulated
whereas two were found to be downregulated (FLT3 and
MAP2K1).
On the one hand, a number of pathways were found

to be commonly deregulated in different directions in
ASD and several cancer types. Histone deacetylase activ-
ity, GPCR signaling, proteasome function, MYC targets,
and cell cycle processes are representative examples.
Some of the enumerated biological functions have previ-
ously been related to both ASD and cancer [63–68].
These abnormalities could help explain putative inverse
comorbid associations between ASD and cancer.

Some biological processes were found to be deregulated
in the same direction in both ASD and SDDCs, providing
theoretical support for hypothetical direct comorbid asso-
ciations between ASD and cancer. For instance, in agree-
ment with previous data [69–74], our analysis suggests the
presence of brain inflammation in ASD patients. Inflam-
matory processes are well-established drivers of carcino-
genesis [75, 76] and are a factor that exerts direct
influence on cancer-related features, such as proliferation,
survival, and migration [76]. In further support of this hy-
pothesis, indicators of ongoing inflammation were ob-
served in several cancers, including all tumors classified as
SDDCs.
Different degrees of mitochondrial activity impairment

were also observed as a shared trait between ASD and
SDDCs. These changes were more evident in kidney and
thyroid cancers, where oxidative phosphorylation, mito-
chondrial electron transport chain and ATP synthesis-
related genes, including ATP50, ATP5F1, OGDHL,
ATP5J, CYC1, PFKM, UQCRFS1, NDUFB6, NDUFB2,
NDUFAF1, NDUFV1, DLD, and COX7B, were found to
be jointly downregulated with ASD. Oxidative phosphor-
ylation impairment, mitochondrial dysfunction and in-
creased oxidative stress are distinctive features of autistic
brains [77, 78]. Some studies have suggested that genes
regulating these processes are highly enriched in parval-
bumin GABAergic interneurons of the forebrain, a cell
type that has been implicated in multiple murine ASD
models and in humans with ASD [79]. Higher rates of

A B

C D

Fig. 3 Top 10 ASD- and cancer-associated pathways extracted from 3 different molecular signature databases (Hallmarks, KEGG and Reactome).
Yellow and purple segments indicate pathways downregulated and upregulated in cancer, respectively, whereas red and green segments denote
pathways downregulated and upregulated in ASD, respectively. The length of the yellow and purple bars indicates the number of studied
cancers that represent the reported direction of deregulation for this particular pathway. a Pathways jointly upregulated in ASD and cancer. b
Pathways upregulated in ASD and downregulated in cancer. c Pathways jointly downregulated in ASD and cancer. d Pathways downregulated in
ASD and upregulated in cancer
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glycolysis and suppression of mitochondrial function are
traits commonly observed in cancer cells. Although ad-
vances in the understanding of cancer metabolism depict
oxidative phosphorylation impairment as a more com-
plex phenomenon than previously thought [80], our data
suggest that this function is commonly impaired in at
least a subset of tumor types. However, some cancer
types, such as lung cancer showed opposite patterns of
deregulation of mitochondria and ATP synthesis related
genes, highlighting the heterogeneity present in cancer
energy metabolism. In addition, there is evidence indi-
cating that inflammation and oxidative phosphorylation
may have a synergic effect. Cytokines, and particularly,
tumor necrosis factor alpha (TNFα), impair mitochon-
drial oxidative phosphorylation and ATP production and
increase reactive oxygen species (ROS), which in turn
can increase mitochondrial injury and trigger mitochon-
drial content release to the cytosol, amplifying the

inflammatory process [81].This interplay between the
two processes may increase the risk of tumor
development.
The PI3K/AKT/MTOR axis is an important target for

molecular abnormalities in both ASD and cancer, which
makes it a good candidate to modulate putative comor-
bid ASD and cancer associations. Our results showed
that ASD patients presented patterns of dysregulation in
this axis that are more similar to those observed in brain
and kidney cancer than to any other tested cancer. Fur-
thermore, GSEA and LINCS analyses suggested that the
pathway is affected in ASD and a subset of cancers.
However, given its complex nature [82, 83], which in-
cludes crosstalk with other signaling pathways and the
presence of feedback loops, it is difficult to state whether
the observed results are indicators of pathway activation
or inhibition. Interestingly, ASD idiopathic cases and
monogenic diseases related to autism have been linked

Fig. 4 LINCS L1000-derived top related drug sets. Gold cells represent drug sets that produce differential expression profiles that mimic the
differential expression profiles found in the disease of interest, light blue cells indicate drug sets that generate differential expression profiles
opposite to those found in our disease of interest. Green, blue and red bars located on top of the heat map indicate ODDCs, SDDCs and ASD
membership, respectively
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to both higher and lower activity of the PI3K/AKT/
MTOR axis [84–86]. The PI3K/AKT/MTOR axis is
one the most frequently altered pathways in human
tumors and directly participates in the regulation of
many cancer hallmarks [87]. Moreover, it regulates
several key events related to both inflammatory re-
sponse, oxidative phosphorylation, and mitochondrial
function [88–91]. Our observations are in agreement
with a recent review highlighting the importance of
the PI3K/AKT/MTOR axis and mitochondrial abnor-
malities as potential modulators of ASD and cancer
associations [23].
The analysis regarding the two control diseases, UC

and malaria, showed that previously reported direct
epidemiological associations between diseases translate
into similar patterns of transcriptomic deregulation
between them. The increased risk of UC in ASD patients
observed at a population level [61] was followed by
significant same direction deregulation patterns between

both diseases at a transcriptomic level. Similarly, signifi-
cant same direction transcriptomic changes were
observed between UC and colorectal cancer (CRC), two
diseases with a known direct epidemiologic link.
Furthermore, intersection analysis of UC and cancer
revealed that UC was positively associated with multiple
cancer types including all SDDCs and inversely associ-
ated with three cancer types including prostate cancer
(ODDC). These observations indicate that the transcrip-
tomic associations between ASD and cancer suggested
by our analysis are not ASD-specific and could be shared
by other diseases showing similar gene expression
deregulation patterns.
Finally, we recognize some important limitations. First,

despite the efforts of stablishing bio-collections aimed to
uncover the genetic bases of ASD [92], the number of
available datasets including gene expression data derived
from autistic patient brains is scarce as it is the number
of included samples in each dataset. This fact has two

Fig. 5 Heatmap showing the pathways altered in ASD, SDDCs and ODDCs. Yellow and purple cells indicate pathways downregulated and
upregulated in cancer, respectively, red and green cells denote pathways downregulated and upregulated in ASD, respectively
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main consequences. On one hand, it undermined the
statistical power of differential expression meta-analysis.
Furthermore, it impedes patient stratification, which
would be advisable given the intrinsic heterogeneity of
ASD [93, 94]. It is reasonable to expect that different
subgroups of ASD individuals present different patterns
of association with cancer. We are aware that several
studies, including blood-derived transcriptomic profiles
of autistic patients, have been published to date; how-
ever, it still is an open question as to whether differential
expression profiles derived from peripheral tissues can
be used as a proxy to detect molecular abnormalities dir-
ectly linked to disease physiopathology. Second, the ana-
lysis of transcriptomes is often not enough to detect
whether particular biological processes were activated or
inactivated, this imposes a limit to the conclusions that
can be drawn from our results. Finally, although scien-
tific evidence is starting to accumulate in favor of the
presence of comorbid associations between ASD and
cancer, more population and molecular studies are
needed to confirm or refute competing hypotheses.
In summary, immune-related processes, mitochondrial

dysfunction, and PI3K/AKT/MTOR signaling are bio-
logical processes that have been independently associ-
ated with both ASD and cancer. We have described the
presence of a variable degree of changes in these path-
ways in SDDC, including brain and kidney cancer, the
two cancer types showing the strongest associations with
ASD in our intersection analysis. This observation
makes these pathways good candidates to intervene to
modulate putative direct comorbid associations between
them. In addition, we report opposite direction associa-
tions between ASD and particular cancer types and
pathways that may represent underlying molecular sub-
strates of theoretical inverse association between ASD
and cancer. These findings show a complex interplay be-
tween potential comorbid associations of ASD and can-
cer, and highlight the importance of further research at
epidemiological, genetic, and molecular level.

Conclusions
ASD shows significant genetic and pathway deregulation
overlap with several cancer types. Cancers showing posi-
tive transcriptomic patterns of association with ASD in-
cluded (brain, kidney, thyroid, and pancreatic cancer)
whereas cancers showing negative transcriptomic pat-
terns of association with ASD were lung and prostate
cancer. Several pathways previously associated to both
diseases underlie the reported associations and include
aberrant expression patterns of genes related to immune
system, mitochondrial function, and PI3K/AKT/MTOR
signaling among others. Further studies are needed to
solidify current epidemiological and molecular know-
ledge about ASD and cancer multimorbidity.
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