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Abstract: This paper examines the effects of competition driven by low-cost airlines and 

high-speed rail on long-haul connecting routings. We use passenger, supply and fare data 

for 2010-2017 on transatlantic routings with a stopover in large European hub airports. 

Competition from low-cost airlines on the short segments of transatlantic routings reduces 

the number of connecting passengers channeled by hubbing airlines, who have to pay 

higher fares. In contrast, airline competition in the long segments of the transatlantic 

routings does not seem to have a detrimental effect on connecting travelers. Finally, high-

speed rail services are not found to lead to a reduction in the number of connecting 

passengers or to an increase in the price they have to pay.  
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1. Introduction 

 

Network airlines operate through hub-and-spoke systems to take advantage of the 

economies of traffic density that characterize the airline industry. To this end, they 

concentrate flights at their (few) hub airports where passengers on short-haul flights feed 

their long-haul services. This means a sizable proportion of passengers channeled by 

network airlines are connecting passengers that use the hub airport as a stopover to reach 

their final long-haul destination. In contrast, low-cost carriers (LCCs) operate point-to-
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point routes with the consequence that most of their passengers are point-to-point 

passengers who do not need a stopover to reach their final destination. LCCs have been 

able to exploit several cost advantages that make them highly competitive on short-haul 

and medium-haul trips.  

The hubbing operations of network airlines generate a number of positive externalities 

including the high direct connectivity afforded by hub airports and a high indirect 

connectivity afforded by smaller airports with good connections to these hub airports. 

Elsewhere, travelers on short-haul flights typically benefit from the low prices offered by 

LCCs.  

In Europe, the competition between hubbing airlines and LCCs is intensifying as the 

presence of the latter increases at large hubs (Dobruszkes et al., 2017; Wong et al., 2019). 

Here, competition on the short segments of intercontinental routings may have 

detrimental effects both for hubbing operations and for connecting travelers due to a 

poorer exploitation of density economies. However, competition on these short segments 

might have its benefits for connecting travelers due to the weaker market power exercised 

by the hubbing airline.  Determining whether the presence of LCCs is beneficial or not 

for connecting passengers is relevant to the extent that LCCs utilize the capacity of what 

are highly congested airports. 

Additionally, some hubbing airlines in Europe also face competition from high-speed 

rail (HSR) lines. This is especially true of countries with a large domestic air market such 

as France, Spain and Italy. On short- and medium-haul routes, HSR usually offers a highly 

competitive service in terms of fares, times, frequency and comfort. However, an increase 

in the number of passengers travelling on the long segments (yet arriving at the hub airport 

by train) could offset this negative competition effect for hubbing airlines on the short 

segments. Shifting short-haul services from planes to trains could reduce the external 

costs associated with aviation in terms of pollution and congestion.  

In this paper, we examine the effects of competition driven by LCCs and HSR on the 

hubbing operations of European network airlines at their main hubs. Specifically, we 

analyze the effects of competition on passengers channeled and on fares charged by 

hubbing airlines on transatlantic routings with a stopover in their hubs.  

We focus our analysis on six large European hubs that concentrate a high proportion 

of connecting flights from Europe to North America: namely, Amsterdam, Paris-Charles 

de Gaulle, Rome-Fiumicino, Frankfurt, London-Heathrow and Madrid. We use 
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passenger, fare and supply data on transatlantic routings with a stopover in one of these 

hubs for 2010-2017.  

All previous studies about the impact of LCCs on fares and traffic focus on short-haul 

non-stop routes (Windle and Dresner, 1995, 1999; Dresner et al., 1996; Morrison, 2001; 

Hofer et al., 2008, Goolsbee and Syverson; 2008; Oliveira and Huse, 2009; Murakami; 

2011; Huse and Oliveira, 2012, among others). Here, we add to this literature by 

providing a direct test of the impact of LCCs on traffic and on fares in connecting long-

haul flights. 

Additionally, several studies have examined the impact of HSR on air traffic and fares 

(Clewlow, 2012; Albalate et al., 2015; Bergantino et al., 2015; Wei et al., 2017; Zhang et 

al., 2017; Wang et al., 2018; Ma et al., 2019; Wang et al., 2018; Zhang et al.,  2018; Ma 

et al., 2019, among others). All these studies focus on the impact of HSR on non-stop 

routes, as does the literature examining the impact of LCCs. Thus, here, we add to this 

literature by providing a direct test of the impact of HSR on connecting travelers on long-

haul flights.  

The rest of this paper is organized as follows. The next section briefly reviews the 

related empirical literature relevant to our study and develop the main hypothesis of the 

empirical analysis. In the third section, we detail the sample used and provide relevant 

information about the data used in the empirical analysis. In the following section, we 

explain the empirical equation that we estimate. In the fifth section, we discuss the main 

results of the empirical analysis. After that, we run several robustness checks to examine 

different issues that may have an influence on the estimated results. The last section is 

devoted to our concluding remarks.  

 

 

2. Literature review and hypothesis 

Figure 1 illustrates a simplified version of the network that we consider in the empirical 

analysis. We focus on routings with one stopover. These routings have a short leg (ie; 

O1H) and a long leg (HD). The network in figure 1 is a hub-and-spoke network where 

the origin points (O1….O4) are connected to the destination (D) with a stopover in the 

hub airport (H). Hence, (network) airlines may exploit density economies by using bigger 

planes at higher load factors because their flights are filled with point-to-point-passengers 

(passengers that fly from several O points to H, or that fly from H to D) and connecting 

passengers (passengers that fly from several O points to D with a stopover in H). In this 
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regard, there is consensus in the literature about the relevance of density economies in air 

transportation (Caves et al., 1984; Brueckner and Spiller, 1994; Berry et al., 2006).  

Insert Figure 1 

Previous empirical studies provide evidence about the impact of LCCs and HSR on air 

traffic and fares in short-haul non-stop routes. In our network, these routes would be those 

that link any of the O points with H. To this point, our contribution is to examine how 

competition in OH points may have an influence on the connecting routings (OHD).  

The downward pricing pressure that LCCs exert on the routes they operate is well 

documented (eg; Dresner et al., 1996; Windle and Dresner, 1995, 1999). In particular, 

those studies that analyze the reaction of incumbent (network) airlines to competition 

from LCCs generally find that they reduce prices when LCCs enter in the route (Hofer, 

et al. 2018; Morrison, 2001; Murakami, 2011; Goolsbee and Syverson, 2008; Oliveira 

and Huse, 2009; Huse and Oliveira, 2012). Note also that some recent studies have 

examined the viability of long-haul low-cost operations in terms of both costs and 

revenues (De Poret et al., 2015; Soyk et al., 2017; Soyk et al., 2018). 

Other studies have focused on the capacity reactions of incumbent airlines to LCC 

competition. In particular, Fageda (2014) estimates a frequency equation to explain the 

determinants of network airline services in large European hub airports. He finds that 

network airlines reduce their flight frequencies when the share of low-cost airlines 

increases both on the route and at the hub airport. In contrast, some studies for Brazil find 

that incumbent airlines increase capacity to compete with LCCs as a pre-emption strategy 

(Bettini et al., 2018; Bettini and Oliveira, 2008). 

Furthermore, several studies have examined the effect of HSR services on air traffic 

and airfares (see Givoni and Dobruszkes, 2013; and Zhang et al., 2019, for a detailed 

literature review). As with analyses of LCC impact, the focus is on non-stop short-haul 

routes and usually the studies concentrate on domestic routes. However, various studies 

provide some insights about the expected impact for connecting routes.  

It has been found that competition from HSR affects negatively airline fares although 

the impact is greater in the case of LCCs (Bergantino et al. 2015; Wei et al., 2017; Wang 

et al., 2018; Ma et al., 2019). Furthermore, it has been found that HSR services impose a 

substitution effect on short-haul (less than 500 km) and medium-haul routes (between 500 

and 800-1000 km), causing a decrease in air traffic after HSR entry (Albalate et al., 2015; 

Wan et al., 2016; Zhang et al., 2018). However, for long-haul trips (more than 800-1000 
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kilometers), the opposite outcome is reported for analyses of the Chinese experience 

(Zhang et al., 2018; Wan et al., 2016; Liu et al., 2019).  

Additionally, at the airport level, it is found a lower air connectivity in the domestic 

market after HSR entry (Zhang et al., 2017; Li et al., 2019), but this effect is reported as 

not being significant at the international level (Zhang et al., 2017). Furthermore, the effect 

seems to differ between hubs and non-hubs (Albalate et al., 2015; Clewlow et al., 2012; 

Dobruszkes et al., 2014) and, in fact, some studies find an increase in air traffic when the 

airport has its own HSR station (Clewlow et al., 2012, Zhang et al. 2018).  

Taken as a whole, this body of literature provides clear evidence that LCCs and HSR 

can have substantial negative impacts on airline traffic and fares on short-haul non-stop 

routes. However, there is some indirect evidence that HSR may play a complementary 

role in longer international services. 

In the context of our network, we may expect that competition in the short leg of the 

routing have an influence on connecting travelers that make a stopover in the hub airport 

to reach their long-haul final destination.  

Services provided in short-haul routes by LCCs and HSR may be very competitive in 

terms of fares and quality. Thus, both LCCs and HSR may capture much of the point-to-

point traffic that could otherwise be channeled by the hubbing airline. Such reduction in 

the number of point-to-point passengers may result in a poorer exploitation of density 

economies in the short-haul flight. An expected reaction of the hubbing airline to less 

point-to-point traffic would be to reduce its supply either by cutting flight frequencies 

and/or operating smaller planes. Lower frequencies may be detrimental to the connections 

in terms of layover time and smaller planes may lead to higher operating costs. Finally, 

previous studies clearly show that network airlines reduce prices when they have to 

compete with LCCs or HSR. Network airlines could compensate the lower profitability 

in the short-segment by increasing the fares charged to travelers in the long-segment.   

All these factors may imply that competition on short segments leads to fewer 

connecting passengers being channeled by the hubbing airline and that the surviving 

connecting passengers have to pay higher fares. This is what we call the “density 

economies hypothesis”.  

However, the intensity of competition may have an effect on the ability of the hubbing 

airline to exploit its market power. Indeed, competition could force the hubbing airline to 

contain its prices, which in turn could boost demand. This is what we call the “market 

power hypothesis”.  
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Finally, the negative effects linked to the “density economies hypothesis” could be 

countered if HSR or LCCs services may feed the long flight with connecting passengers 

that take the train or the LCC flight in the short segment of the routing. Hence, the hubbing 

airline might reduce supply on the short segments without sacrificing passengers on the 

long segments. In this regard, higher frequencies and/or lower fares on the long segments 

could lead to more connecting passengers by the hubbing airline. This is what we call the 

“complementary effect” hypothesis.  

We argue that this latter hypothesis should be more relevant for HSR than for LCCs, 

particularly for those airports that have their own high-speed train station. HSR generally 

provide high-frequency services that depart from the city-center. Furthermore, HSR may 

alleviate the severe congestion distortions that suffer most of hub airports. Finally, LCCs 

may affect to a much higher number of feeding short-haul routes to the hub than HSR so 

that LCC may have a higher negative influence on the overall profitability of the feeder 

services provided by hubbing airlines.  

 

3. Data 

Passenger and fare data are drawn from the Official Airlines Guide (OAG) and include 

information for one-way routings with one-stop. Specifically, the routings we consider 

link a European (i.e. European Union, Norway and Switzerland) airport with a North 

American (i.e. United States and Canada) airport via one large hub in Europe.1 Hence, 

the origin is from a European airport and the destination is to a US/Canada airport. All 

routings comprise a long-haul transatlantic segment and a short-haul segment within 

Europe.  

The hub airports included in our analysis are Amsterdam, Paris-Charles de Gaulle, 

Rome-Fiumicino, Frankfurt, London-Heathrow and Madrid. These airports are 

characterized by their big size and the fact that one network airline operates a high 

percentage of all its flights out of them. Additionally, these six airports concentrate a high 

proportion of connecting flights from Europe to North America.  

Data are at the airline/routing level and our focus is on the traffic channeled and on the 

fares charged by the dominant hubbing airline on those connecting routings where the 

stopover is made at their main hub (i.e. IAG at London Heathrow and Madrid, Air France-

 
1Note that all the countries in our sample form part of an open skies agreement in all the years of 

the period considered (Bernardo and Fageda, 2017).   
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KLM at Amsterdam and Paris, Lufthansa at Frankfurt and Alitalia at Rome-Fiumicino). 

Examples of the routings in our sample, include, that flown by KLM between Athens and 

Atlanta via Amsterdam and that flown by British Airways between Barcelona and Boston 

via London Heathrow. The long segments in these examples correspond to Amsterdam-

Atlanta and London Heathrow-Boston and the short segments to Athens-Amsterdam and 

Barcelona-London Heathrow, respectively. 

 We use quarterly data for the period 2010 (first quarter)–2017 (third quarter) 

comprising 131,474 observations in the case of passenger data and 113,829 observations 

in that of fare data. We restrict our attention to: i) routings with more than 20 passengers 

per quarter to guarantee a feasible dataset, and ii) urban areas with a population exceeding 

300,000 inhabitants to ensure consistency of information for both North America and 

Europe. In this regard, our sample is composed by 8088 routing for several time periods. 

Data for the number of passengers and average fares comes from OAG Traffic 

analyzer. Passenger data are based on marketing information data tapes (MIDT) that 

include passengers’ true origin and destination. This dataset is constructed from bookings 

made through global distribution systems. Hence, direct airline bookings are excluded. 

Unfortunately, we do not have available information on the share of direct bookings 

although it can be expected that is lower in long-haul transatlantic routings served by 

network airlines than in non-stop routings served by low-cost airlines.  

The OAG tool offers several reports with different information for fares. Estimated 

data by fare class is provided in some reports, while the one used here – mix report – is 

based on average fare values that are derived from Travelport issued tickets. Travelport 

is one of the top three global distribution systems along with Amadeus and Sabre. Given 

that fare data provided by the OAG Traffic Analyzer mix report tool is expressed in mean 

values, we cannot identify discrimination across fare classes. Some recent studies that use 

OAG data or similar data from other global distribution systems include Abate and 

Christidis (2020), Boonekamp et al. (2018), Button et al. (2019), Fageda et al. (2019b), 

Scotti and Volta (2018) or Nyoyaa et al. (2018).  

The fare data used have some limitations because it provides a partial picture of the 

actual average fares paid by all travelers in each routing. However, it may have some 

advantages in relation to other sources used in previous papers that examine airline fares 

at the route level. Screen scraping techniques using electronic spiders linked to the 

websites of specific airlines are based on posted rather than booked data. Furthermore, 

they could only cover a very short period of time. The use of specific surveys would 
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require to limit the analysis to a small number of airports and routes. For the Transatlantic 

aviation market, an alternative would be to use the airline origin and destination survey 

(DB1B) provided by the US Department of Transportation but international data are not 

available for non-US citizens and information only covers 10% of all tickets sold.  

While the different ways to collect fare data may be helpful for addressing some 

specific questions, the OAG fare data is the best available source for the purposes of this 

paper given that it allows considering a large number of routings for several years. 

However, it must be recognized that the number of tickets used to calculate the average 

fares may be low in some routings so that the variable of fares may be affected by outliers 

or extreme values. In section 6, we analyze in detail the potential distortion that this 

limitation in the fare data may impose on results of the baseline regressions.  

To show the relevance of connecting routings, figure 2 shows the proportion of 

connecting passengers over total passengers in the transatlantic market for the last quarter 

of the period considered (third quarter of 2017). In all hub airports in our sample, 

connecting passengers are more than half of the total market with percentages that range 

from 54% in London Heathrow to 77% in Frankfurt.  

Insert Figure 2 

We also use supply data at the airline/route level (flight frequency, distance) which are 

drawn from RDC aviation (Innovata data). Note that these data are for non-stop routes. 

We use these data to build variables that capture the effect of the intensity of airline 

competition on the short- and long-haul segments of the transatlantic routings.  

As control variables, we consider the population of the urban areas at the origin and 

destination of the routes, and gross domestic product (GDP) per capita at both endpoints 

of the routes at the country level. Urban population data have been obtained from the 

United Nations (World Urbanization Prospects) and GDP per capita from the World Bank 

(World Development Indicators). 

As main variables of the analysis, we consider a dummy variable that takes a value of 

one for those routes on which HSR services compete with airline flights (referring, 

logically, to the short segments of the transatlantic routings). The HSR variable applies 

to routes on which rail services operate at, at least, 250 km/h. We only take into account 

direct services with no connections/transfers and for which the entire line is a high-speed 

service (thus, routes with sections of conventional rail are excluded). We obtained 

information about each line from the International Union of Railways’ (UIC) HSR maps, 
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while information about direct services across Europe was collected from the search 

engines of Voyages-sncf, the commercial online ticket distributor of SNCF.  

In our sample, the following routes offer HSR services (in parentheses, we report the 

year the service came into operation when later than the first quarter of 2010):  

1) Paris to Amsterdam, Barcelona (first quarter of 2013), Bordeaux (third quarter of 

2017), Cologne, Basel-Mulhouse (first quarter of 2012), Frankfurt, London, 

Luxembourg, Lyon, Marseille, Montpellier, Nantes, Rennes (third quarter of 2017) and 

Toulon.  

2) Madrid to Alicante (fourth quarter of 2010), Barcelona, Málaga, Seville, Valencia 

(fourth quarter of 2010) and Zaragoza.  

3) Rome to Bologna, Florence, Milan, Naples and Turin 

4) Amsterdam to Brussels, Cologne, Frankfurt and Paris.  

5) Frankfurt to Amsterdam, Brussels and Paris 

6) London to Paris 

 

Chapter 5.1 of the Manual on the Regulation of International Air Transport published 

by the International Civil Aviation Organization (ICAO) defines an LCC as “an air carrier 

that has a relatively low-cost structure in comparison with other comparable carriers and 

offers low fares and rates. Such an airline may be independent, the division or subsidiary 

of a major network airline or, in some instances, the ex-charter arm of an airline group”.  

Based on these criteria, the ICAO provides the list of LCCs that we use here. The LCCs 

offering services on the short-haul segments of our sample are: Air Southwest, Belle Air, 

Blue Air, Blue1, bmibaby, Condor, Corendon, Easyjet, Eurowings, Flybe, Germania, 

Germanwings, Jet 2, Meridiana, Monarch, Niki, Norwegian, Pegasus, Ryanair, 

Smarwings, SunExpress, Thomas Cook, Thomson, Transavia, Tuifly, Volotea, Vueling, 

Wind Jet, Wizz air, Wow and XL Airways.  

The presence of LCCs is modest in Frankfurt and London Heathrow, but their share 

has increased exponentially in the considered period to about 23% in Paris and more than 

30% in Amsterdam, Rome and Madrid.  Note also that LCCs may, in fact, offer short-

haul flights to secondary airports that serve the same urban area as that in which the hub 

airport is located. Specifically, several LCCs offer flights to secondary airports in the 

urban area of London (Gatwick, Stansted, Luton, City and Southend), Paris (Beauvais-

Tille, Orly) and Rome (Ciampino).  



10 
 

On the long-haul segments, the presence of LCCs is much lower in the period 

considered. The proportion of observations in our sample for which LCCs offer high 

frequency services on short segments (at least one daily flight) is about 14% while the 

proportion of observations for which LCCs offer high frequency services on long 

segments is about 0.005%. Thus, it is clear that here competition from LCCs concentrates 

above all on short segments.  

Competition on long segments (ie; Amsterdam-Atlanta, London Heathrow-Boston) 

comes primarily from US and Canadian network carriers. Note here that British Airways, 

Iberia and American airlines signed a Joint Venture agreement in October 2010 (later 

joined by US Airways in 2014), Lufthansa signed a Joint Venture agreement with Air 

Canada, United and Continental in October 2009, and Air France-KLM signed a Joint 

Venture agreement with Delta/Northwest in June 2009 (later joined by Alitalia in July 

2010). As part of these Joint Venture agreements, airlines cooperate as regards both costs 

and revenues and so they can be considered as virtual mergers on specific routes (Fageda 

et al., 2019a). This may weaken competition on long-haul segments.  

 

4. Empirical model 

We estimate the following equations where the dependent variable refers to demand or 

fares of the hubbing airline a on routing k in period t:  

 

𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠_ℎ𝑢𝑏𝑏𝑖𝑛𝑔𝑎𝑘𝑡 = 𝛽0 + 𝛽1𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽2𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑘𝑡 +  𝛽3𝐻𝐻𝐼_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽4ℎ𝑖𝑔ℎ_𝑠𝑝𝑒𝑒𝑑_𝑟𝑎𝑖𝑙𝑘𝑡 + 𝛽5𝐻𝐻𝐼_𝑙𝑜𝑛𝑔_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 + 𝛽6𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑙𝑜𝑛𝑔_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽7𝑁𝑜𝑛_𝑠𝑡𝑜𝑝_𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑘𝑡 +𝛽8𝑃𝑜𝑝_𝑜𝑟𝑖𝑔𝑖𝑛𝑘𝑡 + 𝛽9𝑃𝑜𝑝_𝑑𝑒𝑠𝑡𝑖𝑛𝑘𝑡 + 𝛽10𝐼𝑛𝑐𝑜𝑚𝑒_𝑜𝑟𝑖𝑔𝑖𝑛𝑘𝑡 +
𝛽11𝐼𝑛𝑐𝑜𝑚𝑒_𝑑𝑒𝑠𝑡𝑖𝑛𝑘𝑡 + 𝛾′𝑟𝑜𝑢𝑡𝑖𝑛𝑔 + 𝜆′𝑦𝑒𝑎𝑟 + 𝜇′𝑞𝑢𝑎𝑟𝑡𝑒𝑟 + 𝜀𝑎𝑘𝑡                                                                                                     

                                                                                                                                                      (1) 
                                                                                                                      

 

𝐹𝑎𝑟𝑒_ℎ𝑢𝑏𝑏𝑖𝑛𝑔𝑎𝑘𝑡 = 𝛽0 + 𝛽1𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽2𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑘𝑡 +  𝛽3𝐻𝐻𝐼_𝑠ℎ𝑜𝑟𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽4ℎ𝑖𝑔ℎ_𝑠𝑝𝑒𝑒𝑑_𝑟𝑎𝑖𝑙𝑘𝑡 + 𝛽5𝐻𝐻𝐼_𝑙𝑜𝑛𝑔_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 + 𝛽6𝐹𝑙𝑖𝑔ℎ𝑡𝑠_𝐿𝐶𝐶_𝑙𝑜𝑛𝑔_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑘𝑡 +
𝛽7𝑁𝑜𝑛_𝑠𝑡𝑜𝑝_𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑘𝑡 +𝛽8𝑃𝑜𝑝_𝑜𝑟𝑖𝑔𝑖𝑛𝑘𝑡 + 𝛽9𝑃𝑜𝑝_𝑑𝑒𝑠𝑡𝑖𝑛𝑘𝑡 + 𝛽10𝐼𝑛𝑐𝑜𝑚𝑒_𝑜𝑟𝑖𝑔𝑖𝑛𝑘𝑡 +
𝛽11𝐼𝑛𝑐𝑜𝑚𝑒_𝑑𝑒𝑠𝑡𝑖𝑛𝑘𝑡 + 𝛾′𝑟𝑜𝑢𝑡𝑖𝑛𝑔 + 𝜆′𝑦𝑒𝑎𝑟 + 𝜇′𝑞𝑢𝑎𝑟𝑡𝑒𝑟 + 𝜀𝑎𝑘𝑡                                                                                                                                

                                                                                                                                                     (2)                                                                                                                                         
 

The dependent variables in equations (1) and (2) are the number of passengers 

channeled and the fares charged by the hubbing airline, respectively. Demand in inter-

city aviation markets is commonly modelled through a gravity equation that considers as 

explanatory variables income and population of the endpoints and route distance although 

some studies also include airline-specific factors like fares per km as explanatory factor 
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(see Grosche et al, 2017; Zhang et al., 2018 for detailed surveys). Competition variables 

may have an influence on the number of passengers through their effects on fares and 

quality.  

Prices are commonly modeled as a mark-up over total costs where demand shifters 

and distance control for the potential exploitation of density and distance economies and 

the mark-up is a function of competition variables. To this point, note that the effect of 

distance is captured by routing fixed effects given that it is a time-invariant variable.  

We include three variables that seek to capture airline competition on the short 

segments. First, we consider the route concentration, measured using the Herfindahl–

Hirschman index (HHI), in terms of flight frequencies. In addition to route concentration, 

we consider a variable that identifies LCC flights on each route. Given that both variables 

are correlated due to the notable presence of LCCs on short-haul routes, we estimate two 

different specifications to disentangle the effect of the general level of competition from 

that driven by the LCCs. In the first specification, we consider the number of flights 

offered by LCCs. In the second, we consider the HHI variable and a dummy for high-

frequency services of LCCs (and the interaction between the two variables). This latter 

dummy variable takes a value of one when the LCCs offer at least one daily flight on the 

short segment of the routing. To this point, these two latter variables are based on the 

flights offered by LCCs to short segments of the routings (ie; flights from a European 

airport to one of the six large European hubs). For example, on the routing Lisbon-

Amsterdam-Washington Dulles, for this variable we compute Vueling and Easyjet flights 

from Lisbon to Amsterdam.  

Furthermore, we include a variable that measures the flights of LCCs from secondary 

airports on the short segment. This variable considers LCC flights from the same airport 

of origin of the routing to a secondary airport that serves the same urban area as that in 

which the given hub airport is located. For example, on the routing Malaga-Paris Charles 

de Gaulle-Atlanta, for this variable we compute Vueling and Ryanair flights from Malaga 

to Paris Orly.  

We also consider the HHI variable measured in terms of flight frequencies and the 

number of flights provided by LCCs on the long segments of a routing. The modest 

presence of LCCs on the long segments makes it unnecessary to use two different 

specifications of the competition variables as we do when identifying competition on the 

short segments of a routing.  
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We also consider a variable to identify the influence of high-speed rail services on 

hubbing operations. This variable is constructed as a binary variable taking a value of 1 

for short-segments of the routing affected for HSR connections.  

Unfortunately, we do not have available data for the frequencies offered by HSR that 

would be the ideal way to measure its impact as we do when considering the variables for 

LCCs. The dummy variable for HRS is aimed to approximate the increase in frequencies 

and the reduction in travel time that HSR is always able to achieve in comparison to 

conventional rail services. The lack of rail frequency information for several years is 

common in previous studies. In fact, all previous studies that examine the impact of HSR 

on air traffic and fares use a dummy variable as we do here (Albalate et al., 2015; 

Bergantino et al. 2015; Wan et al., 2016; Wei et al., 2017; Wang et al., 2018; Zhang et 

al., 2018; Liu et al., 2019). Only the study of Ma et al. (2019) for the route Beijing-

Shanghai is able to add a variable for HSR frequency while that Bergantino et al. (2015) 

provide some information on frequencies in their analysis for intra-modal competition in 

Italy.  

We consider an additional variable that may capture the intensity of competition when 

we use the sample of transatlantic routings; the number of non-stop flights (if any) from 

origin to destination. For example, the routing Brussels-Frankfurt-Washington offered by 

Lufthansa has to compete with the non-stop flights from Brussels to Washington provided 

by United and Brussels Airlines. The non-stop service is clearly superior in quality to the 

connecting service and so we should expect fewer passengers and lower fares on the 

connecting routes that have to compete with non-stop services.  

In all equations, population and income at both endpoints of the routing are included 

as control variables. Recall that the origin is a European airport and the destination a 

North American airport. Demand should be higher when the endpoints are richer and 

more highly populated. The population variables could have indirectly an effect on fares 

due to their effect on the demand generated, while the income variable might capture the 

willingness of travelers to pay.  

All continuous variables without zero values are expressed in logs. Unreported year, 

quarter, and routing fixed effects are also added in the regressions. Note that the routing 

fixed effects imply that the regressions focus on the within variation of the data so that 

the effect of variables such as distance, joint venture agreements or the major tourist 

attractiveness of the origin and/or destination of the routings are captured by these fixed 

effects. In this regard, the use of routing fixed effects allows us to control for unobserved 
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factors that do not vary over time. For example, the routing fixed effects may allow 

controlling for the fact that some routings may be systematically suffering more delays 

than others due to more congestion in the airports of the routing. However, we must 

recognize here that a limitation of our analysis is that we cannot control for time varying 

shocks that may have an influence on the on-time performance of the service provided by 

the hubbing airline in the routing.  

The year fixed effects are dummies for each year of the considered period, being 2010 

the omitted year. The inclusion of year fixed effects allows us to control for unobserved 

shocks that are common to all routings like the price of fuel. The quarter fixed effects, 

which control for seasonal variations that are usual in aviation, are dummies for each 

quarter of the year, being the first quarter the omitted one. Standard errors are robust to 

heteroscedasticity and clustered by routing. 

Table 1 shows the descriptive statistics of the variables used in the empirical analysis. 

In this regard, note that the frequency of most variables is quarterly with the exception of 

the variables of population and income at the origin and destination for which the 

frequency of data is annual. In this table, we show the within and between variation of 

the data. In general, the within variation seems to be sufficiently high for all variables 

except the variables for the population of the origin and destination of the routing and to 

lower extent the dummy variable for HSR and income of the origin.   

Insert Table 1 

In table 2, we show the correlation matrix between the variables used in the empirical 

analysis. Data in this table provide evidence that multicollinearity does not seem to be a 

major concern given that the correlation between the explanatory variables is generally 

low. Only moderate levels of correlation can be identified between HHI and LCC flights 

in the short segment, population at the origin and HHI in the short segment, and 

population at destination and HHI in the long segment.  

 

Insert Table 2 

Finally, Table 3 provides information about the routes in our sample affected by HRS 

services and about secondary airports that are close to the considered hub airports. We 

compare the current travel times of HSR in relation to air services. We add 60 minutes to 

the time by air to take into account that the access time to the infrastructure is higher for 

air services. The travel time ratio is more favorable for HSR in the shorter routes except 
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for Frankfurt. Furthermore, data in table 3 show that Paris, Rome and London have one 

or more nearby airports that are less than one hour away by car.  

Insert Table 3 

5. Results 

Table 4 shows the results of the estimates. Recall that we estimate two different 

specifications to disentangle the effect of the general level of competition from that driven 

by LCCs. First, we consider the number of LCC flights on the short segments as our 

explanatory variable without including the HHI variable. Second, we consider a dummy 

variable for high-frequency services provided by LCCs on the short segments, the HHI 

variable and the interaction between the two variables.  

The control variables work as expected with the exception of the variable of population 

at the origin that is negative and statistically significant. This surprising result may be 

explained by the low within variation of this variable.  

Insert Table 4 

We find that the greater the number of LCC flights on the short segment, the fewer the 

passengers and the higher the fares on the transatlantic connecting routings. This result 

holds both when we consider the number of LCC flights as our explanatory variable and 

when we consider a dummy variable for high-frequency services of LCCs as our 

explanatory variable.  

Furthermore, a more intense general level of competition in the short segment reduces 

the number of passengers, given that the coefficient of the HHI variable is positive and 

statistically significant. However, the effect of the HHI variable is not statistically 

significant in the fare regression. Note also that the interaction variable almost completely 

counteracts the effect of the HHI variable. This means that the impact of competition on 

the short segment of the transatlantic routing on the passengers of the hubbing airline is 

driven almost entirely by LCCs when these carriers are present. This can be attributed to 

the much lower fares that LCCs are able to charge in comparison to those charged by 

network airlines.  

Competition on the short segments from LCCs at secondary airports also results in 

fewer passengers and higher fares; although, this outcome as it affects passengers is not 

statistically significant.  

We also find that weaker competition on long segments leads to fewer passengers and 

higher fares. Indeed, the coefficient of the HHI variable on the long segments is negative 

and statistically significant in the passenger equation and is positive (although not 
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statistically significant) in the fare equation. However, we do not find a significant effect 

of the variable for LCC flights. The very modest presence of LCCs on the long segments 

in the period considered presumably accounts for this result.  

Overall, we find evidence that the “density economies hypothesis” is more relevant in 

explaining the results of the competition variables on the short segments and the “market 

power hypothesis” is more relevant in explaining the results of the competition variables 

on the long segments. The signs of the competition variables for both the passengers and 

fare regressions point in the expected direction. However, we do not find a statistically 

significant effect of the HHI variable on the long segments in the fare regression, which 

means we are unable to provide strong evidence in favor of the “market power 

hypothesis” in the case of the competition variables on the long segments. In any case, 

what seems clear from our results is that connecting travelers benefit from competition 

on the long segments, while they are harmed by competition on the short segments.  

Furthermore, we fail to find a negative impact of HSR services on connecting travelers. 

The HSR variable is positive and statistically significant in the regression for passengers, 

but it is not statistically significant in the fare regression. To this point, it should be borne 

in mind that the routing fixed effects regressions only capture the within variation of the 

data, which is modest in the case of the HSR variable. Only a few routes to Paris and 

Madrid present any changes in the period considered.  

Table 5 shows the results of the HSR variable for subsamples that consider each hub 

airport separately. We report the results for these subsamples using routing fixed effects 

and airport fixed effects. Our preferred regressions are those using routing fixed effects 

as they allow us to control for unobserved time-constant factors at the routing level. 

However, we report the additional regressions using airport fixed effects instead of 

routing fixed effects to provide further insights into the effect of HSR services given the 

modest within variation of this variable. To provide a more accurate analysis of the HSR 

effects, we differentiate in these regressions between routings affected by HSR with short 

segments having more and less than 400 kms (when the subsample allows us to make 

such differentiation). In this regard, the competitiveness of HSR vs flights in terms of 

travel time and frequency is generally higher in shorter trips.  

In the routing fixed effects regressions, we find a positive effect of HSR on traffic in 

the connecting routes via Paris but not those via Madrid. HSR does not seem to influence 

the price setting of hubbing airlines on connecting routes via Madrid but air fares are 

lower in the routings via Paris when the short segment is less than 400 kms. Recall that 
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Paris has its own HSR station while Madrid does not. Hence, connecting passengers using 

HSR services to reach Paris Charles de Gaulle airport may help to feed the long flight and 

more than offset the lower number of passengers on the short segment.  

Insert Table 5 

When we use airport fixed effects, we find that HSR services impact positively on 

passengers in Amsterdam and Frankfurt (both with their own HSR station), in routings 

that have short segments with less than 400 kms in Paris and Rome and in routings that 

have short segments with more than 400 kms in Madrid. We only find a negative impact 

of HSR on passengers in the case of London where just the route to Paris is affected by 

HSR services. This is a particularly dense route with a high proportion of point-to-point 

passengers. In terms of fares, only in the case of Frankfurt does the hubbing airline charge 

higher fares on routings affected by HSR. Importantly, HSR services do not seem to harm 

the hubbing airline or the connecting passengers at Paris, Rome and Madrid airports 

where several domestic routes are affected by HSR competition.  

  

6. Robustness checks 

In this section, we run several robustness checks to examine different issues that may 

have an influence on the estimated results for the competition variables.  

Regarding the fare equation, the fare data available provide a partial picture of the 

actual average fares paid by all travelers in each routing. In some routings, the number of 

tickets used to calculate the average fares may be low. Hence, the variable of fares may 

be affected by outliers or extreme values (see figure A1 in the appendix). To examine the 

potential distortion that this limitation in the fare data may impose on our results, table 6 

shows the results of additional regressions of the fare equation in which we exclude 

observations with extreme values for the variable of fares per kilometer. In particular, we 

report results of regressions using subsamples that exclude observations with fares per 

km below and above 1%, 5% and 10%, respectively. Figure A1 in the appendix shows a 

smoother distribution of the variable of fares per km when we consider these subsamples.  

Results for competition variables related with low-cost carriers remain essentially 

identical to those obtained in the baseline regression. However, the variable for HSR turns 

out positive and statistically significant when we exclude observations with fares per km 

below and above 5% and 10%. Results for the subsamples based on Paris Charles de 

Gaulle and Madrid airports show that this latter result only holds for the routes with short 

segments having more than 400 kms in the subsample based on Paris Charles de Gaulle 
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airport. Recall here that HSR does not lead to less connecting passengers in the routing 

fixed effects regression that use that subsample.   

Insert Table 6 

Regarding the passengers equation, air fares are not included as explanatory factor in 

the baseline regression because the goal of this paper is to examine the impact of 

competition variables on passengers and fares. Given that competition variables affect 

simultaneously both passengers and fares, the specific impact of such competition 

variables is cleaner if we estimate separately the passenger and fares equations. This is 

the approach that have been used in previous studies about the impact of competition 

either spurred by low-cost airlines or high-speed rails on air traffic (Goolsbee & Syverson, 

2008; Bettini and Oliveira, 2008; Fageda, 2014; Albalate et al., 2015; Bergantino et al., 

2015; Wan et al, 2016; Wang et al., 2018; ; Ma et al., 2019; Zhang et al., 2018). Only the 

studies of Bettini et al. (2018) and Liu et al. (2019) include fuel costs as explanatory 

factor. To this point, the use of year fixed effects allows us to control for the impact of 

fuel price changes given that such changes are a common shock for all airlines.  

Bearing this in mind, we report the results of a regression in column 2 of table 7 in 

which the passenger equation includes fares per kms as explanatory variable. To deal with 

the potential endogeneity bias, we use lagged values instead of contemporaneous values 

of the fares per kms variable. As expected, the variable of fares per km is negative and 

statistically significant. Results for competition variables related with low-cost carriers 

and high-speed rail remain essentially identical to those obtained in the baseline 

regression. Only the variable that accounts for the intensity of competition in the long 

segment loses its statistical significance.  

In column 3 of table 7, we also show the results of a regression of the passengers 

equation in which we include a variable that measures the flight frequency provided by 

the hubbing airline in the routing as explanatory variable. While this variable may account 

for an important airline service attribute as schedule convenience, we do not include it in 

the baseline regression because it may be correlated with competition variables. To deal 

with the potential endogeneity bias of this variable, we use lagged values instead of 

contemporaneous values. Note that in column 4 of table 7 we also report the results of a 

regression of the passengers equation including both the fares per km and the flight 

frequency provided by the hubbing airline as explanatory variables.  

As expected, the variable of flight frequency provided by the hubbing airline is positive 

and statistically significant. Results for competition variables related with low-cost 
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carriers and high-speed rail remain essentially identical to those obtained in the baseline 

regression. Again, only the variable that accounts for the intensity of competition in the 

long segment loses its statistical significance.  

The sample considered in this study has the structure of panel data given that we have 

available information on 8088 routings for several time periods. The two main panel data 

models are random effects and fixed effects. The fixed effects model is usually the 

preferred model because it allows controlling for unobserved factors that do not vary over 

time and random effects may impose a bias in the estimation given that they may be 

correlated with the rest of explanatory variables. Hence, the baseline regression is based 

on a routing fixed effects model that is able to capture the effect of time invariant factors 

like distance, joint venture agreements, a more systematic congestion in any of the 

airports of the routings or the major tourist attractiveness of the origin and/or destination 

of the routings. However, a limitation of the fixed effects model is that time invariant 

variables like a dummy for major tourist destinations cannot be considered because their 

effect is already captured by the fixed effects. Furthermore, the routing fixed effects imply 

that the regressions focus on the within variation so that the estimation of the impact of 

variables with low within variation may be imprecise. In contrast, the random effect 

model exploits the between and within variation of the data.  

Insert Table 7 

To this point, in column 5 of table 7 we report the results of an additional regression 

where the estimation is made using random effects and adding as explanatory variables 

the distance of the routing and dummies for major tourist destinations for the origin (EU 

cities) and destination (US cities) of the routing.  In the EU, all airports on the following 

islands are considered tourist destinations: the Balearic and Canary Islands (Spain), 

Sardinia and Sicily (Italy), Corsica (France), and many Greek islands, together with the 

airports of Alicante (ALC), Bari (BRI), Faro (FAO), Malaga (AGP) and Nice (NCE). In 

the US, Las Vegas (LAS), Orlando (MCO) and Fort Lauderdale-Hollywood (FLL) 

airports are considered major tourist destinations. Note that tourist variables seek to 

identity the impact on air traffic of origin and/or destination points where tourism 

intensity (number of tourists in relation to the inhabitants) is particularly high. Many big 

cities in our sample like London, Paris, Rome or New York also receive many 

international tourists each year but tourism intensity is not so high as for the places 

identified through the tourism dummy variables.  
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Results for competition variables related with low-cost carriers and high-speed rail 

remain essentially identical to those obtained in the baseline regression that uses routing 

fixed effects. Only the sign of the variable that measures the flights of LCCs from 

secondary airports on the short segment turns out positive and statistically significant. 

The distance variable is not statistically significant which may be because the sample is 

based on long-haul routings. The dummy for major tourist destinations at the origin is 

negative and statistically significant. This may be explained by the fact that few 

international tourists in these destinations come from US. In contrast, the dummy for 

major tourist destinations at the destination is positive and statistically significant. Note 

also that the variable that measures the population at the origin is positive and statistically 

significant so that the negative effect found for this variable in the baseline regression 

may be explained by its low within variation.  

7. Conclusion 

In this paper, we have examined the effects of competition driven by low-cost airlines 

and high-speed rail on the hubbing operations of European network airlines at their main 

hubs. More specifically, we have analyzed the effects of competition on the number of 

passengers channeled and on fares charged by these hubbing airlines on transatlantic 

routings with a stopover at their hubs.  

Overall, our results suggest that competition from LCCs on short-haul segments of 

transatlantic routings reduces the number of connecting passengers channeled by hubbing 

airlines on transatlantic routings and this smaller number of connecting travelers have to 

pay higher fares.  

Our results also provide some evidence that competition on the long-haul segments of 

transatlantic routings, which is usually driven by network airlines, may result in an 

increase in the number of connecting passengers on hubbing airlines. In these more 

competitive environments connecting passengers do not pay higher fares.  

Hence, we conclude that connecting passengers may benefit from airline competition 

on long-haul segments of transatlantic routings, while they clearly suffer detrimental 

effects from such competition on short-haul segments.  

Furthermore, we find that the presence of HSR does not generally lead to a reduction 

in the number of connecting passengers or an increase in prices. In fact, the number of 

connecting passengers channeled by hubbing airlines may increase on those routings 

where the short-haul segment is affected by HSR services, especially when the airport has 

its own HSR station. A potential explanation for this complementary role of HSR is that 
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many travelers seem likely to use HSR services to arrive at the hub airport to take their 

long-haul flight.  

In short, LCCs may provide benefits in terms of lower fares and more traffic on the 

short-haul routes for which they provide services. When these LCCs operate out of large 

hub airports, however, this positive effect may not offset the detrimental impact on both 

hubbing airlines and connecting passengers using their hub airports as a stopover. Bearing 

in mind that large hub airports are usually highly congested, measures to deter the 

expansion of LCCs at these sites could be beneficial from a general welfare perspective. 

Given that we may expect that LCCs react more to an increase of airport charges than the 

hubbing airline, such increase in airport charges may be positive for connecting travelers.  

In contrast, HSR services do not seem to have a detrimental impact on hubbing 

operations. Travelers on short-haul routes may benefit from the convenience of the 

service provided by HSR and this does not seem to impact the number of connecting 

travelers negatively. Furthermore, the increase in HSR services at the expenses of airline 

services may be beneficial for the environment. These potential benefits, however, need 

to be balanced with the high costs associated with the building and maintenance of HSR 

lines. 
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TABLES  

 

 

Table 1. Descriptive statistics of the variables used in the empirical analysis 

Variable Frequency Mean Standard 

deviation 

Standard 

deviation 

(between) 

Standard 

deviation 

(within) 

Ratio (Sd. 

between 

/Sd.within) 

Number 

observations 

Total passengers_hubbing Quarterly 191.22 229.58 165.25 116.48 1.42 138,740 

Fare_hubbing (USD) Quarterly 623.32 622.85 465.56 504.83 0.92 119,859 

Flights_hubbing Quarterly 533.78 335.93 304.55 118.11 2.58 138,320 

Flights_LCC_short_segment Quarterly 32.06 90.47 85.53 41.55 2.06 136,292 

Flights_LCC_secondary_airports Quarterly 120.29 270.52 246.02 78.32 3.14 138,740 

Dhigh_frequency_LCC_short_sgment Quarterly 0.14 0.35 0.33 0.19 1.67 136,292 

HHI_short_segment Quarterly 0.75 0.24 0.23 0.08 2.77 136,292 

DHigh_speed_rail Quarterly 0.07 0.27 0.25 0.03 8.09 138,740 

HHI_long_segment Quarterly 0.65 0.26 0.25 0.09 2.78 138,320 

Flight_LCC_long_segment Quarterly 3.02 13.04 11.01 9.87 1.12 138,740 

Non-stop flights Quarterly 22.72 87.28 75.09 16.74 4.49 138,740 

Population_origin (000 

inhabitants) 

Annual 1667.57 2011.65 1989.25 51.21 38.84 134,031 

Population_destination (000 

inhabitants) 

Annual 6578.08 5060.87 5094.46 127.45 39.97 138,627 

Income_origin (USD) Annual 40252 16517.18 16519.76 1588.97 10.40 137,072 

Income_destination (USD) Annual 50223.73 1478.50 1104.52 1306.31 0.85 138,740 

Distance (kms) Time 

invariant 

7892.26 1303.29 1303.29 0 - 138,740 
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Table 2. Correlation matrix of the variables used in the empirical analysis 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

Passengers_hubbing (1) 1              

Fare_hubbing (2) 0.009 1             

Flights_LCC_short_segment (3) 0.03 -0.07 1            

Flights_LCC_secondary_airports (4) 0.26 0.09 -0.04 1           

HHI_short_segment (5) -0.13 0.04 -0.40 -0.06 1          

DHigh_speed_rail (6) 0.05 -0.005 -0.02 -0.08 -0.08 1         

HHI_long_segment (7) -0.26 0.07 0.02 -0.14 0.02 0.01 1        

Flight_LCC_long_segment (8) 0.15 -0.01 -0.01 0.08 0.01 -0.001 -0.22 1       

Non-stop flights (9) 0.06 -0.02 -0.02 0.01 -0.19 0.21 -0.12 0.06 1      

Population_origin (10) 0.20 -0.01 0.12 0.09 -0.40 0.20 0.001 -0.01 0.30 1     

Population_destination (11) 0.21 -0.12 0.05 -0.07 -0.001 0.02 -0.43 0.12 0.19 -0.07 1    

Income_origin (12) 0.03 0.13 0.01 0.05 0.07 0.07 0.001 0.09 0.09 -0.13 -0.02 1   

Income_destination (13) 0.04 -0.01 0.04 0.10 0.05 -0.02 -0.06 0.01 0.02 0.01 0.11 0.02 1  

Flights_hubbing_airline (14) 0.39 0.11 0.04 0.27 -0.20 0.27 -0.13 0.10 0.43 0.34 0.08 0.23 -0.05 1 
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Table 3. Data on HSR and secondary airports 

Source: Voyages-SNCF and Google maps 

 

 

 

Table 4. Results of estimates (baseline regressions) 

Dependent variable Passsengers  Fares 

Flights_LCC_short_segment -0.0001 

(0.000005)*** 

- 0.0002 

(0.00006)*** 

- 

Flights_LCC_secondary_airports -0.00003 

(0.00002) 

-0.00003 

(0.00002) 

0.0001 

(0.00002)*** 

0.0001 

(0.00002)*** 

HHI_short_segment - 0.09 

(0.02)*** 

- 0.02 

(0.02) 

Dhigh_frequency_LCC - -0.06 

(0.02)*** 

- 0.09 

(0.02)*** 

Dhigh_frequency_LCC X   

HHI_short_segment 

- -0.07 

(0.03)** 

- 0.03 

(0.03) 

DHigh_speed_rail 0.22 

(0.06)*** 

0.22 

(0.06)*** 

0.06 

(0.04) 

0.03 

(0.04) 

HHI_long_segment -0.08 

(0.01)*** 

-0.08 

(0.01)*** 

0.02 

(0.01) 

0.02 

(0.01) 

Flight_LCC_long_segment 0.00005 

(0.0002) 

0.00005 

(0.0002) 

0.0001 

(0.0002) 

0.0001 

(0.0002) 

Non-stop flights -0.002 

(0.0001)*** 

-0.002 

(0.0001)*** 

-0.0008 

(0.0001)*** 

-0.0008 

(0.0001)*** 

Population_origin -1.39 

(0.26)*** 

-1.32 

(0.26)*** 

-0.15 

(0.23) 

-0.13 

(0.24) 

Population_destination 0.65 

(0.15)*** 

0.64 

(0.15)*** 

-0.12 

(0.14) 

-0.12 

(0.14) 

Income_origin 0.35 

(0.09)*** 

0.35 

(0.09)*** 

0.28 

(0.07)*** 

0.29 

(0.07)*** 

Income_destination 5.78 

(0.57)*** 

5.75 

(0.57)*** 

3.74 

(0.51)*** 

3.68 

(0.51)*** 

Year fixed effects YES YES YES YES 

Quarter fixed effects YES YES YES YES 

Routing fixed effects YES YES YES YES 

R2 0.13 0.13 0.03 0.03 

Observations 131,474 131,474 113,829 113,829 

Notes: Standard errors in parentheses (robust to heteroscedasticity and clustered by routing). Statistical significance 

at 1% (***), 5% (**), 10% (*). 

Airport Routes with less than 400 

kms 

Routes with more than 400 

kms 

Secondary airports 

 Number 

routes 

Ratio travel 

time HSR/air 

Number 

routes 

Ratio travel 

time HSR/air 

Distance to hub airport 

(kms) 

Minimum driving time 

(minutes) to hub airport 

Amsterdam 4 1.8 
 

0 - - - 

Paris 6 1.2 
 

8 1.5 
 

Orly (43), Beauvais-Tille 

(82) 

Orly (35), Beauvais-Tille 

(51) 

Rome 3 0.9 
 

2 1.6 
 

Ciampino (41)  Ciampino (35) 

Frankfurt 2 1.8 
 

1 1.7 
 

- - 

London 1 1.1 0 - Gatwick (61), Stansted 

(101),  Luton (57), 

Southend (121), City (39) 

Gatwick (42), Stansted 

(62). Luton (41), 

Southend (83), City (68) 

Madrid 3 1.1 2 1.2 - - 
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Table 5. Results for the HSR variable (subsamples by hub airports) 

 

 

 

 

 

 

 

 

 

 

Notes: Standard errors in parentheses (robust to heteroscedasticity and clustered by route/routing). Statistical significance at 1% (***), 5% (**), 

10% (*). 

 

 

 

 Routing fixed effects Airport fixed effects 

 Passengers Fares Passengers Fares 

 DHigh_speed_rail (< 

400 kms) 

DHigh_speed_rail 

(> 400 kms) 

DHigh_speed_rail 

(< 400 kms) 

DHigh_speed_rail 

(> 400 kms) 

DHigh_speed_rail 

(<  400 kms) 

DHigh_speed_rail 

(> 400 kms) 

DHigh_speed_rail 

(< 400 kms) 

DHigh_speed_rail 

(> 400 kms) 

Amsterdam - - - - 0.74 

(0.08)*** 

- -0.20 

(0.13) 

- 

Paris 0.47 

(0.12)*** 

0.16 

(0.03)** 

-0.80 

(0.12)*** 

0.02 

(0.05) 

0.28 

(0.16)* 

-0.02 

(0.10) 

-0.72 

(0.12)*** 

0.06 

(0.04) 

Rome - - - - 4.10 

(1.98)** 

2.41 

(1.65) 

-0.47 

(1.84) 

-0.16 

(1.53) 

Frankfurt - - - - 2.26 

(0.57)*** 

3.87 

(1.31)*** 

1.87 

(0.53)*** 

2.12 

(1.11)** 

London - - - - -3.38 

(1.53)** 

- -0.36 

(1.56) 

- 

Madrid 0.02 

(0.08) 

- -0.13 

(0.12) 

- 0.01 

(0.08) 

5.05 

(1.45)*** 

-0.07 

(0.12) 

0.81 

(2.28) 
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Table 6. Robustness checks (fare regressions) 

Sample Excluding 

observations with 

fares per km 

below and above 

1% (1) 

Excluding 

observations with 

fares per km 

below and above 

5% (2) 

Excluding 

observations with 

fares per km 

below and above 

10% (3) 

Flights_LCC_short_segment 0.0002 

(0.00005)*** 

0.0002 

(0.00005)*** 

0.0002 

(0.00004)*** 

Flights_LCC_secondary_airports 0.0001 

(0.00003)*** 

0.0001 

(0.00003)*** 

0.0001 

(0.00002)*** 

DHigh_speed_rail 0.07 

(0.04) 

0.10 

(0.04)*** 

0.13 

(0.03)*** 

HHI_long_segment 0.01 

(0.01) 

-0.007 

(0.02) 

-0.01 

(0.01) 

Flight_LCC_long_segment 0.0001 

(0.0002) 

-0.00007 

(0.0001) 

-0.0001 

(0.0001) 

Non-stop flights -0.0008 

(0.0001)*** 

-0.0007 

(0.0001)*** 

-0.0005 

(0.0001)*** 

Population_origin 0.25 

(0.22) 

0.53 

(0.19)*** 

0.59 

(0.17)*** 

Population_destination -0.19 

(0.13) 

-0.15 

(0.12) 

-0.20 

(0.11)* 

Income_origin 0.29 

(0.07)*** 

0.33 

(0.06)*** 

0.30 

(0.06)*** 

Income_destination 4.35 

(0.49)*** 

4.91 

(0.43)*** 

4.50 

(0.40)*** 

R2 0.03 0.02 0.02 

Observations 111,911 103,113 91,811 

Notes: All regressions include year, quarter and routing fixed effects. Standard errors in 

parentheses (robust to heteroscedasticity and clustered by routing). Statistical significance at 1% 

(***), 5% (**), 10% (*). Results of the HSR variable for the subsample based on Paris CDG. (1) 

& less 400 km: -0.76 (0.12)***, (1) & more 400 km: 0.05 (0.04); (2) & less 400 km: -0.56 

(0.12)***, (2) & more 400 km: 0.09 (0.04)**; (3) & less 400 km: -0.37 (0.12)***, (3) & more 

400 km: 0.10 (0.04)***. Results of the HSR variable for the subsample based on Madrid. (1): -

0.15 (0.02); (2) -0.10 (0.10); (3): -0.04 (0.11).  
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Table 7. Robustness checks (passengers equation) 

Notes: Standard errors in parentheses (robust to heteroscedasticity and clustered by routing). Statistical significance 

at 1% (***), 5% (**), 10% (*). We use lagged values of Fares per km and Flights_hubbing_airline.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 fares per km as 

covariate (1) 

Flights_hubbing_airline as 

covariate (2) 

(1) & (2) as 

covariates 

Random effects model 

Fares per km -0.03 

(0.002)*** 

- -0.03 

(0.003)*** 

- 

Flights_hubbing_airline - 0.0002 

(0.00002)*** 

0.0002 

(0.00002)*** 

- 

Flights_LCC_short_segment -0.0002 

(0.000005)*** 

-0.0002 

(0.000005)*** 

-0.0002 

(0.000003)*** 

-0.0001 

(0.00005)*** 

Flights_LCC_secondary_airp

orts 

-0.00006 

(0.00003)** 

-0.00007 

(0.00003)** 

-0.00007 

(0.00003)** 

0.0001 

(0.00002)*** 

DHigh_speed_rail 0.28 

(0.05)*** 

0.27 

(0.05)*** 

0.28 

(0.05)*** 

0.13 

(0.03)*** 

HHI_long_segment -0.008 

(0.02) 

-0.02 

(0.02) 

-0.02 

(0.02) 

-0.14 

(0.01)*** 

Flight_LCC_long_segment -0.0002 

(0.0002) 

-0.0002 

(0.0002) 

-0.0003 

(0.0002) 

0.00002 

(0.00002) 

Non-stop flights -0.002 

(0.0002)*** 

-0.002 

(0.0002)*** 

-0.002 

(0.0002)*** 

-0.002 

(0.0001)*** 

Distance - - - -0.07 

(0.06) 

Population_origin -1.55 

(0.30)*** 

-1.38 

(0.28)*** 

-1.48 

(0.30)*** 

0.32 

(0.01)*** 

Population_destination 0.37 

(0.17)** 

0.41 

(0.16)** 

0.34 

(0.17)** 

0.37 

(0.01)*** 

Income_origin 0.34 

(0.10)*** 

0.22 

(0.09)** 

0.28 

(0.10)*** 

0.21 

(0.02)*** 

Income_destination 6.28 

(0.63)*** 

5.98 

(0.62)*** 

6.30 

(0.63)*** 

4.81 

(0.52)*** 

Tourism_origin - - - -0.13 

(0.03)*** 

Tourism_destination - - - 0.34 

(0.05)*** 

Year fixed effects YES YES YES YES 

Quarter fixed effects YES YES YES YES 

Routing fixed effects YES YES YES NO 

R2 0.10 0.10 0.10 0.13 

Observations 81,663 90,872 81,511 131,474 
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Figure 2. Proportion of connecting passengers over total passengers in the transatlantic market 

 

 

                Note: Data comes from OAG (third quarter of 2017)  
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Figure A1. Box plot of fares per kilometer 

 
Note: All sample 

 

 

 

 
Note: Excluding observations with fare 

per kilometer below and above 5% 

 

 
Note: Excluding observations with fare 

per kilometer below and above 1% 

 

 

 
Note: Excluding observations with fare 

per kilometer below and above 10% 
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