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� CLTC expression increases during liver tumorigenesis in

humans and mice.

� CLTC expression is required for TGF-b-induced anti-apoptotic
signals in liver cells.

� Autocrine TGF-b signalling in invasive HCC cells upregulates
CLTC expression.

� High levels of TGFB and CLTC correlate with lower overall
survival in patients with HCC.

� CLTC expression may help to select patients that will benefit
from anti-TGF-b therapy.
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Background & Aims: Upon ligand binding, tyrosine kinase
receptors, such as epidermal growth factor receptor (EGFR),
are recruited into clathrin-coated pits for internalization by
endocytosis, which is relevant for signalling and/or receptor
degradation. In liver cells, transforming growth factor-b (TGF-
b) induces both pro- and anti-apoptotic signals; the latter are
mediated by the EGFR pathway. Since EGFR mainly traffics via
clathrin-coated vesicles, we aimed to analyse the potential role
of clathrin in TGF-b-induced signalling in liver cells and its rel-
evance in liver cancer.
Methods: Real-Time PCR and immunohistochemistry were used
to analyse clathrin heavy-chain expression in human (CLTC) and
mice (Cltc) liver tumours. Transient knockdown (siRNA) or over-
expression of CLTC were used to analyse its role on TGF-b and
EGFR signalling in vitro. Bioinformatic analysis was used to
determine the effect of CLTC and TGFB1 expression on prognosis
and overall survival in patients with hepatocellular carcinoma
(HCC).

Results: Clathrin expression increased during liver tumorigene-

pathways. Upon binding their respective ligands, each of these
sis in humans and mice. CLTC knockdown cells responded to
TGF-b phosphorylating SMADs (canonical signalling) but
showed impairment in the anti-apoptotic signals (EGFR transac-
tivation). Experiments of loss or gain of function in HCC cells
reveal an essential role for clathrin in inhibiting TGF-b-induced
apoptosis and upregulation of its pro-apoptotic target NOX4.
Autocrine TGF-b signalling in invasive HCC cells upregulates
CLTC expression, switching its role to pro-tumorigenic. A positive
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correlation between TGFB1 and CLTC was found in HCC cells and
worse prognosis and lower overall survival.
Conclusions: This work describes a novel role for clathrin in liver
tumorigenesis, favouring non-canonical pro-tumorigenic TGF-b
pathways. CLTC expression in human HCC samples could help
select patients that would benefit from TGF-b-targeted therapy.
Lay summary: Clathrin heavy-chain expression increases dur-
ing liver tumorigenesis in humans (CLTC) and mice (Cltc), alter-
ing the cellular response to TGF-b in favour of anti-apoptotic/
pro-tumorigenic signals. A positive correlation between TGFB1
and CLTC was found in HCC cells and patients. Patients express-
ing high levels of TGFB1 and CLTC had a worse prognosis and
lower overall survival. CLTC expression in HCC human samples
could help select patients that would benefit from therapies tar-
geting TGF-b.
� 2019 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Primary hepatic endocytic functions are important in several
physiological and pathological processes. Despite this, their
molecular mechanisms remain poorly defined and remarkably
understudied.1 Ligand-induced internalization and degradation
of receptor tyrosine kinases, such as epidermal growth factor
receptor (EGFR) or hepatocyte growth factor receptor (c-MET),
are relevant for maintenance and inhibition of their signalling
receptors are recruited into clathrin-coated pits eventually lead-
ing to endocytosis. However, clathrinmight play additional roles,
since Akt signalling following EGFR or MET activation requires
clathrin, but could not require receptor endocytosis.2 EGFRmedi-
ates differential signalling depending on its localization in the
cell.3,4 At the plasma membrane, clathrin is present in
microdomains,5,6 where EGFR clustering occurs.7 In these micro-
domains, clathrin may act as a scaffold protein, recruiting sig-
nalling adaptors. In human hepatocellular carcinoma (HCC),
020 vol. 72 j 125–134
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levels of clathrin heavy-chain protein help to distinguish early
HCC frombenign tumours and its expression is stronger in poorly
differentiated HCC than in well differentiated HCC.8–10 However,
little is known about the molecular mechanisms behind these
results.

In hepatocytes, transforming growth factor-b (TGF-b) induces
both pro- and anti-apoptotic signals.11 The anti-apoptotic signals
are mediated by the EGFR pathway, which is transactivated by
TGF-b through a mechanism that involves EGFR ligands’ upregu-
lation and activation of the metalloprotease TACE/ADAM17,
responsible for their shedding.12–14 In HCC cells, TGF-b also
upregulates the expression of EGFR ligands, which transactivates
the EGFR pathway, counteracting its pro-apoptotic response.15

EGFR targeting knockdown, or pharmacological inhibition, signif-
icantly enhances TGF-b-induced cell death, correlating with
higher levels of the NADPH oxidase NOX4 and changes in the
expression of BCL-2 and IAP families. Once cells overcome apop-
tosis, they respond to TGF-b by undergoing epithelial-
mesenchymal transition (EMT), which confers migratory/inva-
sive capacities and stem cell properties.16

We have recently reported that caveolin-1, a protein
involved in intracellular traffic for which a role in HCC has been
proposed,17 is necessary for the TGF-b-induced transactivation
of the EGFR,18 switching the response to TGF-b from cytostatic
to tumorigenic in liver tumour cells.19 Much less is known about
the potential role of clathrin in the TGF-b signalling in liver cells.
In hepatocytes, Dooley’s group described that blocking clathrin
trafficking does not alter the canonical-SMAD phosphorylation
induced by TGF-b,20 which indicates that clathrin-dependent
endocytosis is not required for the early signals induced by
TGF-b. Nevertheless, the role of clathrin in other endocytosis-
independent responses, or in the crosstalk between TGF-b and
the EGFR pathway, is completely unknown. More knowledge
in this area is necessary to understand the role of clathrin in
hepatocarcinogenesis.

Therefore, in this study, we aimed to analyse the potential
role of clathrin in TGF-b-induced signalling in liver cells and
its relevance in liver cancer.

Material and methods
Human HCC tissues and ethics statements
Human tissues were collected with the required approvals from
the Institutional Review Board (‘‘Comité Ético de Investigación
Clínica (CEIC)”, Bellvitge University Hospital) and patient’s writ-
ten consent conformed to the ethical guidelines of the 1975
Declaration of Helsinki. See Table S1 for further details.

DEN-induced hepatocarcinogenesis animal model
C57BL/6JOlaHsd mice were maintained in the Complutense
University of Madrid (UCM) animal facility. Male mice aged
15 days received intraperitoneal injection of DEN (10 mg/kg)
diluted in saline buffer. The experimental procedure was
approved by the Institutional Committee for Animal Care and
Use (CEA -UCM 87/2012, Madrid, Spain). At 9 months of age, ani-
mals were euthanized, and their livers removed. The samples
were used in previous studies of the group.21 More information
and Ethical Statements are provided in the supplementary
information.

Cell culture
Mouse hepatocytes, isolated from 3.5–4-day-old neonatal male
mice, were immortalized as described.22 PLC/PRF/5 and SNU449

cell lines were obtained from the European Collection of
Authenticated Cell Cultures (ECACC, Salisbury, UK) and Ameri-
can Tissue Culture Collection (ATCC, Virginia, USA), respectively.
Cell culture conditions and treatments are provided in the sup-
plementary information.

CLTC targeting knockdown in liver cells
For small interference RNA (siRNA) transient transfection, cells
(30–40% confluence) were transfected with TransIT-Quest
reagent (Mirus, Madison, WI, USA) at final siRNA concentration
of 50 nM. Further details in supplementary information.

Statistical analysis
Statistical analyses were performed as an estimation of the
associated probability, using a Student’s t test or 1/2-way
ANOVA method, depending on the conditions involved. Experi-
ments were carried out at least 2–3 independent times with 2–3
technical replicates. Data were represented as mean ± SEM. Nor-
mal distribution was assumed.

For further details regarding the materials used, please refer
to the CTAT table and supplementary information.

Results
Clathrin expression is increased in tumoural tissues from
patients with HCC and in a DEN-induced
hepatocarcinogenesis model in mice
Clathrin heavy-chain (CLTC gene; CHC17 isoform) mRNA
expression was increased in matched samples of tumour com-
pared to adjacent non-tumour tissues in a cohort of 60 patients
with HCC, collected in the Bellvitge University Hospital (Fig. 1A-
B). Moreover, immunohistochemical analyses revealed that HCC
tissues presented stronger clathrin staining than healthy tissue
samples, which showed barely perceptible or moderate staining
(Fig. 1C). Clathrin localized in tumoural areas, with more intense
expression at the tumoural borders. To extend the analysis to a
higher number of patients, we used the Chen Liver database
(n = 196) and the TCGA database (n = 212), from Oncomine
(https://www.oncomine.org).23 HCC tissues expressed higher
levels of CLTC mRNA and had higher CLTC DNA copy numbers
than normal tissue (Fig. S1A,B).

Analysis of clathrin expression in a DEN-induced hepatocar-
cinogenesis model in mice also revealed that, at 9 months after
treatment, clathrin mRNA (Cltc gene) and protein levels were
higher in tumoural areas in comparison to non-tumoural areas
(Fig. 1D). Tumoural areas were identified by Ki67 staining (a
proliferative marker).

These data suggest that clathrin could play a role in
hepatocarcinogenesis.

CTLC knockdown unbalances pro- and anti-apoptotic signals
induced by TGF-b through impairment of the EGFR pathway
To analyse the specific role of clathrin in response to EGFR
ligands and TGF-b, we induced CLTC knockdown through siRNA
technology in mouse hepatocytes and in the HCC PLC/PRF/5 cell
line (Fig. S2). First, we analysed whether clathrin is required for
cell responses to extracellular EGFR ligands. In response to hep-
arin binding EGF-like growth factor (HB-EGF), an EGFR ligand,
clathrin downregulation attenuated EGFR, Akt and ERK
(MAPK1) activation in both mouse hepatocytes and PLC/PRF/5
cells (Fig. 2). Furthermore, in a proliferation functional assay,
Ctlc knockdown hepatocytes exhibited lower proliferation rates,
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analysed by Ki67 immunofluorescence, in response to HB-EGF
or FBS. FACS cell cycle analysis also revealed that the increase
in the % of cells in S-phase in response to these mitogens was
significantly lower in Ctlc knockdown hepatocytes than in con-
trol cells (Fig. S3). These results suggest that clathrin could be
important for the induction of proliferative and survival signals
by EGFR.

In foetal hepatocytes and liver cancer cells, TGF-b simultane-
ously induces both pro- and anti-apoptotic signals whose final
balance determines cell fate.11,24 TGF-b binding to specific
TGF-b receptors induces phosphorylation of SMAD2/3. At short
time (30 min) after TGF-b treatment, phospho-SMAD2 did not
show lower levels in Cltc knockdown mouse hepatocytes, com-
pared to siControl cells (Fig. 3A). Similarly, no differences were
found in PLC/PRF/5 cells (Fig. 3B). Indeed, clathrin is not neces-
sary for TGF-b-mediated SMAD phosphorylation. Next, we won-
dered whether CLTC knockdown cells showed alterations in the
survival signals triggered by TGF-b, which involve EGFR

Hep Ctrl Hep Cltc-KD
A

p-EGFR

p-SMAD2

p-Akt

p-ERKs

TGF-β (h)

Cltc
180 

180

48 

63

(kDa)

63

- 0.5 3 - 0.5 3

0.0

p-SMAD2

Fo
ld

 in
du

ct
io

n

2.0

1.0

*3.0

- 0.5TGF-β (h)

p-Akt
2.5

2.0n
β-actin

B

35

35

180 

180

35

48 

35

63

(kDa)

63

p-EGFR

p-SMAD2

p-Akt

p-ERKs

β-actin

TGF-β (h)

CLTC

PLC/PFR/5
Ctrl

PLC/PFR/5
CLTC-KD

- 0.5 3 - 0.5 3

Hep Ctrl
Hep Cltc-KD

0.0

1.5

1.0

*

- 0.5 3

0.5

*

Fo
ld

 in
du

ct
io

TGF-β (h)

0.0

p-SMAD2

Fo
ld

 in
du

ct
io

n

4.0

2.0

6.0

- 0.5 3TGF-β (h)

0.0

p-Akt

0.8

0.4

*
1.2

- 0.5 3

PLC/PFR/5 Ctrl
PLC/PFR/5 CLTC-KD

Fo
ld

 in
du

ct
io

n

TGF-β (h)

Fig. 3. CLTC knockdown attenuates TGF-b-mediated anti-apoptotic signals in
(B) PLC/PRF/5 cells. Left: western blot of protein extracts: a representative experim
on the same gel but were non-contiguous. Original blots are available in the su
fold induction vs. each corresponding control (untreated cells). (C) Cell viability w
percentage of PI-positive cells. Data are mean ± SEM (n = 3). Two-way ANOVA w
<0.05, ##p <0.01 compared to untreated condition. PI, propidium iodide.

128 Journal of Hepatology 2
phosphorylation. Western blot analysis showed a decrease in
EGFR and Akt phosphorylation in both TGF-b-treated hepato-
cytes and PLC/PRF/5 cells (Fig. 3A-B). Curiously, levels of p-
EGFR appeared to be higher in CLTC knockdown cells. We previ-
ously described a SRC-dependent transactivation of the EGFR
under serum withdrawal conditions in liver tumour cells.25

Since our experiments are performed in the absence of serum,
the results might indicate that CLTC knockdown would favour
this auto-transactivation of the EGFR. However, higher phos-
phorylation of the EGFR and its downstream signals was not
observed in response to TGF-b.

In order to know whether the absence of clathrin could be
affecting the membrane cell trafficking of EGFR, we performed
EGFR confocal microscopy analysis. We observed that in PLC/
PRF/5 cells, clathrin colocalized with EGFR at the cell membrane
and after TGF-b treatment both were internalized (Fig. S4A).
Cytosolic clathrin colocalized with the Golgi reticular system
and the Pearson correlation coefficient increased in
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TGF-b-treated cells (Fig. S4B). In CLTC knockdown cells, EGFR
localized mainly in cytosolic compartments and no significant
changes were observed after TGF-b treatment (Fig. S5A). A sim-
ilar pattern was observed in cells treated with dynasore (GTPase
inhibitor of dynamin activity, which prevents endocytosis)
(Fig. S5B). These results together suggest that clathrin and endo-
cytotic processes are required for the cell membrane trafficking
of EGFR in liver tumour cells.

Since CLTC knockdown cells showed alterations in the sur-
vival signals triggered by TGF-b, we analysed whether these
cells were more sensitive to the pro-apoptotic effects of TGF-
b. CLTC knockdown liver cells showed an increased sensitivity
to TGF-b in terms of cell death. These differences were clearly
visualized under microscopy (Fig. S6). Furthermore, CLTC knock-
down cells, after TGF-b treatment, exhibited a higher percentage
of non-viable cells, compared to control cells, after 72 h of treat-
ment, measured by flow cytometric analysis of propidium
iodide incorporation (Fig. 3C). These results suggest that cla-
thrin levels, through favouring the response to EGFR ligands,
could unbalance the response to TGF-b in liver cells in favour
of anti-apoptotic signals.

TGF-b upregulates clathrin expression in liver tumour cells
The analysis of CLTC and TGFB1 expression in different HCC cell
lines revealed a positive correlation between CLTC and TGFB1
mRNA levels (Fig. 4A), correlating with the cell phenotype.
Indeed, epithelial HCC cells showed lower expression of both
genes, while mesenchymal HCC cells expressed higher levels.
Likewise, the same result was observed for clathrin by western
blot (Fig. 4B). These results suggested a possible regulation of
clathrin expression by TGF-b. Corroborating this, both hepato-
cytes and PLC/PRF/5 cells showed higher protein levels of

clathrin after TGF-b treatment, which in the case of PLC/PRF/5
significantly correlated with higher mRNA levels of CLTC at
72 h after TGF-b treatment (Fig. 4C,D). These results indicate a
positive correlation between clathrin and TGF-b.

CLTC knockdown sensitizes liver tumour mesenchymal HCC
cells to the pro-apoptotic effects of TGF-b
HCC cell lines used in this work had already been described to
respond with different gene expression profiles to TGF-b treat-
ment: the early gene signature defined a pro-apoptotic and
cytostatic response, whereas the late TGF-b signature defined
an anti-apoptotic and invasive response.26 PLC/PRF/5, Huh7
and Hep3B cell lines belong to the early TGF-b signature group,
while mesenchymal HLF and SNU449 cell lines belong to the
late TGF-b signature group. We previously found that autocrine
TGF-b expression is high in mesenchymal-like HCC cells, which
are resistant to its pro-apoptotic signals and respond to it induc-
ing EMT, migration and invasion. Thus, we wondered whether
the high expression of CLTC could be responsible for the lack
of pro-apoptotic response to TGF-b in the mesenchymal cell
lines. We chose SNU449 due to its mesenchymal phenotype
and its higher expression levels of both clathrin and TGF-b, in
comparison with PLC/PRF/5 which expressed lower levels of
both proteins and had an epithelial phenotype. CLTC knockdown
in SNU449 cells (Fig. 5A) attenuated the phosphorylation of
EGFR in response to either HB-EGF or TGF-b (Fig. S7) and sensi-
tizes them to the pro-apoptotic effects of TGF-b, analysed by
propidium iodide incorporation and % of cells with a DNA con-
tent lower than 2C – SubG1 cells (Fig. 5B-D). Interestingly, TGF-
b receptor I (TbRI, ALK5 gene) knockdown cells showed a
decrease in basal CLTC expression (Fig. S8), which suggests that
autocrine production of TGF-b in mesenchymal-invasive cells
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(72 h)

Fig. 4. Positive correlation between clathrin and TGF-b in liver cells. (A) An
hL32 gene. (B) Parallel western blot of clathrin and densitometric analysis (n =
times. (C) Analysis of CLTC mRNA levels. Relative expression to mL32 or hL32 g
show where the blots were cut. Samples were run on the same gel but were
Bottom: densitometric analysis. Data are mean ± SEM. One-way ANOVA with B
(CLCT expression) compared to SNU449 cells. Two-way ANOVA with Bonferron
cells.
Journal of Hepatology 2
(h) (h)

lysis of mRNA expression in different HCC cells (n = 3). Relative expression to
). In (C) and (D), cells either untreated or treated with TGF-b at the indicated
e. (D) Upper: western blot: representative experiment is shown. Dashed lines
n-contiguous. Original blots are available in the supplementary information.
ferroni post hoc test in A: *p <0.05, **p <0.01 (TGFB1 expression) and #p <0.05
post hoc test in C: #p <0.05, ##p <0.01 and ###p <0.001 compared to untreated
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of NOX4 mRNA levels in both cell lines (Fig. 6C-D) compared to
control cells.

We next wondered whether the overexpression of CLTC in
the PLC/PRF/5 cells could confer resistance to the pro-
apoptotic effects of TGF-b. CLTC overexpressing cells (Fig. S9)
showed higher basal mRNA levels of TGFB1 and lower expres-
sion of NOX4 compared to control cells. Furthermore, clathrin
overexpression provided resistance to the pro-apoptotic effects
of TGF-b, preventing cell death.

These results suggest that clathrin, due to its role in favour-
ing the EGFR anti-apoptotic pathway, impairs NOX4 upregula-
tion and ROS production by TGF-b in liver tumour cells, which
would in turn inhibit its pro-apoptotic effects and favour its
pro-tumorigenic response.

Relevance of the expression of CLTC and TGFB1 on the
prognosis and overall survival of patients with HCC
Next, we decided to evaluate expression of CLTC, TGFB1 and
EGFR genes in the HCC patient samples cohort (n = 60). Notably,
CLTC expression positively correlated with TGFB1 and EGFR
expressions (Fig. 7A). To expand the analysis to a higher number
of patients we used the TCGA database (n = 369), with the aim
of performing a bioinformatic analysis of the importance of
TGFB1 and CLTC gene expression in HCC prognosis and overall
survival. We found that higher expression of TGFB1 predisposes
patients with HCC to lower overall survival (hazard ratio 1.84;
95% CI 1.13–2.98; p = 0.019). High CLTC expression tends to
indicate a poor prognosis (hazard ratio 1.33; 95% CI 0.78–
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2.28; p = 0.312). Next, we defined a cohort of patients where
the expression of both genes was high (average expression
+ 1SD) (Fig. S10A). In this patient cohort, a positive correlation
between TGFB1 and CLTC was also found (Fig. S10B). Interest-
ingly, patients with a high combined scored for both genes
had a significantly lower overall survival (3.22; 95% CI 1.45–
7.13; p = 0.013) (Fig. 7C), compared with the effect of high
expression of each gene separately. Finally, we decided to anal-
yse the overall survival for CLTC expression in patients (n = 358)
stratified according to high (NHigh = 54) or low (NOther = 304)
TGFB1 expression (Fig. 7C). It is worth mentioning that CLTC
expression had no prognostic value in those patients where
TGFB1 expression was not high, whereas high TGFB1 expression
significantly decreased the overall survival of patients that
expressed high levels of CLTC. Interestingly, when we focused
on the analysis of some mesenchymal genes whose expression
was related to TGF-b in HCC cells, such as CXCR4 or CD44,32,33

patients with higher expression of both TGFB1 and CLTC had
higher expression levels of these mesenchymal genes in com-
parison to patients who expressed lower levels of TGFB1 and
CLTC (Fig. S11). All these results indicate that CLTC expression
influences the prognosis and overall survival of patients with
HCC and high expression of TGFB1.

Discussion
HCC is one of the most common types of cancer and is associ-
ated with a very poor prognosis, mainly due to the heterogene-
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ity of the tumours and the lack of effective targeted therapy.
Drugs with a wide action, such as sorafenib or other multikinase
inhibitors, have shown only modest efficacy. Considering this, it
seemed rational to focus on crucial cellular mechanisms, com-
mon to different intracellular signals, as potential therapeutic
targets. This was the initial idea behind this work, which aimed
to study the role of clathrin, an essential protein involved in
endocytosis and signalling of multiple tyrosine kinase receptors,
in liver tumorigenesis. Initial analysis indicated that CLTC gene
expression was significantly increased in a large percentage of
patients with HCC (Fig. 1, Fig. S1). Furthermore, we confirmed
an increase in the protein levels of clathrin in tumours, particu-
larly in the peritumoural area, compared to tissues from healthy
patients or the non-tumoural areas of the same patients. In
agreement with this result, in the model of DEN-induced hepa-
tocarcinogenesis in mice, we observed higher expression of the
gene (Cltc) and increased levels of clathrin in tumoural areas
compared to non-tumoural areas (Fig. 1). This encouraging
result that, surprisingly, had not been explored before, pushed
us to analyse the relevance of clathrin expression in the
response of an immortalized cell line of mouse hepatocytes
and an HCC cell line, PLC/PRF/5, both of them used in our previ-
ous studies to analyse EGFR and TGF-b signalling.14,15,18

According to our data, clathrin is essential for the hepatocyte
and liver tumour cell response to EGFR ligands, such as HB-EGF,
in terms of full EGFR/Akt/ERKs phosphorylation and cell prolif-
eration (Fig. 2 and Fig. S3). After ligand binding, EGFRs are
recruited to clathrin-coated pits and their phosphorylation is
amplified by clustering platforms that promote the dimerization

pro-apoptotic role of TGF-b. Inhibition of NOX4 in liver cells
might lead to pro-tumorigenic processes. NOX4 plays a role in
regulating liver cell proliferation either under physiological con-
ditions or during tumorigenesis. NOX4 silencing increases the
tumorigenic potential of human HCC cells in xenografts in mice,
resulting in earlier onset of tumour formation and increases in
tumour size.31 The loss of NOX4 increases actomyosin levels
and favours an epithelial to amoeboid transition, contributing
to tumour aggressiveness.38 Indeed, here we propose a new
unknown, interesting and essential role for clathrin in the regu-
lation of the crosstalk between the TGF-b and EGFR pathways.
Indeed, clathrin is necessary for the EGFR transactivation that
prevents TGF-b-induced ROS production required for cell death
(Fig. 6). This hypothesis is further confirmed in the experiments
of CLTC overexpression in PLC/PRF/5 cells, where we found that
NOX4 expression decreases and TGF-b-induced apoptosis is
inhibited in CLTC overexpressing cells (Fig. S9).

Our results also show that the more aggressive
mesenchymal-like HCC cells express higher levels of both TGFB1
and CLTC (Fig. 4). Interestingly, after TGF-b treatment, clathrin
expression is upregulated in both hepatocytes and PLC/PRF/5
cells, the effect being much more pronounced in the liver
tumour cells, where upregulation is observed at both mRNA
and protein levels (Fig. 4). We have recently described that mes-
enchymal cells overexpress TGF-b, which have acquired mecha-
nisms to escape from its suppressor effects and respond to it
undergoing EMT, which facilitates migration and invasion.32

Here we hypothesized that the high levels of clathrin could be
responsible for the lack of pro-apoptotic response to TGF-b in

mal HCC cell line that is unresponsive to the pro-apoptotic

Research Article Experimental and Translational Hepatology
and activation of unliganded EGFRs34 and protect the signalling
complex from membrane phosphatases.35 Endocytosis to early
endosomes seems to be a requirement for full ERK activation.36

Phosphorylation of Gab1 and Akt following EGFR activation also
requires clathrin.2 These data suggest that clathrin downregula-
tion might reduce active phosphorylated EGFR at the plasma
membrane and endosomes, as previously suggested.37

The anti-apoptotic response induced by TGF-b in hepatocytes
and HCC cells requires the transactivation of EGFR through
increases in the expression and shedding of EGFR ligands.11,12,15

Due to clathrin’s role in EGFR signalling, we hypothesized that it
would also be required for the non-canonical signalling of TGF-

b. Attenuation of clathrin expression could also potentiate the
canonical pathways and their functions, with increased and/or

expression is increased in a large percentage of patients with
longer phosphorylation of SMAD2/3. Both effects would con-
tribute to an increase in the pro-apoptotic actions of TGF-b.
We observed only a slight increase in the levels of phospho-
SMAD2 in CLTC knockdown hepatocytes and no changes in
PLC/PRF/5 cells (Fig. 3). In contrast, an impairment in TGF-b-
induced EGFR and Akt phosphorylation, which correlated with
an increase in TGF-b-induced apoptosis, was observed in both
CLTC knockdown hepatocytes and PLC/PRF/5 cells (Fig. 3 and
Fig. S6). Clathrin would be required for a correct membrane traf-
fic, dynamin-dependent, of the EGFR between Golgi and the cell
membrane (Fig. S4 and S5).

Increases in TGF-b-induced apoptosis in knockdown cells
correlated with higher levels of NOX4 and ROS production after

TGF-b treatment. Upregulation of NOX4 by TGF-b is required for biomarkers that indicate when TGF-b is acting as pro-

its pro-apoptotic activity (Fig. 6). The EGFR pathway inhibits
NOX4 expression, acting at the transcriptional level on the
NOX4 promoter.29 In this sense, clathrin downregulation could
impair the inhibition of NOX4 by EGFR and could promote the
132 Journal of Hepatology 2
these mesenchymal-like cells. Results support this hypothesis,
since targeting CLTC knockdown in SNU449 cells, a mesenchy-
effects of TGF-b, sensitize them to cell death (Fig. 5).
From these results, we decided to further improve the anal-

ysis in our cohort of patients with HCC, finding that CLTC
expression positively correlates with TGFB1 expression (Fig. 7),
suggesting that clathrin levels would be high when their sig-
nalling pathways are activated. Interestingly, clathrin seems to
be overexpressed in the tumour’s border. TGF-b, expressed by
stromal cells, could activate the expression of clathrin in
tumoural cells enhancing its pro-tumorigenic effects and
favouring the mesenchymal phenotype, migration/invasion,
which would contribute to tumour expansion and/or dissemina-
tion. Analysis in public databases allowed us to demonstrate
that expression of CLTC by itself has no prognostic value for
overall survival in patients with HCC, but the combination of
high TGFB1 and CLTC expression clearly decreased overall sur-
vival compared to high expression of TGFB1 alone.

In summary, we describe a novel role for clathrin in liver
tumourigenesis, wherein it mediates EGFR signalling and
favours non-canonical anti-apoptotic TGF-b pathways. CLTC
HCC and high expression of CLTC worsens the overall survival
in patients with high expression of TGFB1 (Fig. 8). Targeting
the TGF-b pathway has been proposed as a new promising ther-
apeutic tool in HCC.39 However, the identification of new
tumourigenic is essential to help in the selection of those
patients most likely to benefit from therapy aimed at inhibiting
its pathway. Our results indicate that high expression of TGF-b
concomitant with high levels of clathrin would identify those
020 vol. 72 j 125–134



https://doi.org/10.1016/j.jhep.2019.09.012.

u

2/

I
I

s

No

n
ra
in

JOURNAL 
OF HEPATOLOGY
patients with HCC who are likely to benefit from TGF-b targeted
therapies. Moreover, targeting clathrin would potentiate the
suppressor actions of TGF-b in HCC.
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