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Abstract: Peri-implant diseases are one of the main complications of dental implants. There are no
well-established guidelines regarding laser parameters for implant decontamination. The aim was to
compare two different settings of irradiation of the Er,Cr:YSGG laser on dental implants regarding
surface alterations and determine the best settings for less damage on the surface. An in vitro study
was performed and 30 areas of dental implants were irradiated with two different regimes of energy
per pulse 50 and 84 mJ (1.5 W/30 Hz and 2.5 W/30 Hz). A total of 30 sites of implants were irradiated
with three different tips (10 surfaces per tip): conical (RTF3-17 mm), side firing (SFT8-18 mm) and
cylindrical (MGG6-6 mm). The following descriptive classification on surface damage was employed:
no damage (class A), minimal effects (class B), metal fall with melting (class C), and destruction
with carbonization (class D). The assessment was made through a descriptive scanning electron
microscope (SEM) analysis. Side firing and conical tips at 50 mJ were classified as class A. Side firing
at 84 mJ and cylindrical tips 50 mJ and 84 mJ were classified as class B. Finally, class C defects were
found in the areas where the conical tip was used at 84 mJ. Side firing and conical tips at 50 mJ do not
seem to damage the implant surface.
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1. Introduction

Oral rehabilitation using implants is a highly documented treatment in scientific literature and
has a high success rate with more than 10 years of follow-up [1]. Despite its high success rate,
implant treatment can have both mechanical and biological complications [2]. Peri-implantitis is a
plaque-associated pathological condition occurring in tissues around dental implants, characterized
by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone [3].
According to a systematic review and meta-analysis of 15 articles with a long follow-up, mucositis
affects approximately 50% of patients and peri-implantitis around 21% [4]. Depending on the sample
features and diagnostic criteria, these figures can be significantly higher, and peri-implantitis can affect
almost half of the patients [5].

According to two papers by Cortés-Acha et al. [6,7], implants exposed to the oral cavity are
extensively covered by biofilm formed by a diverse microbiota. Thus, the treatment of peri-implantitis
should include decontamination of the implant surface that has experienced bone loss. Several methods
have been described to remove the biofilm attached to the implant (chemical, physical and combination
of both) [8]. The decontamination of the implant surfaces with a low-energy Er:YAG laser also appears
to have positive outcomes [9].
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A recent ex vivo study concluded that laser irradiation of titanium implant surfaces using a
9.3 mm carbon dioxide laser with an average power of 0.7 W showed no increase in temperature of
the implant body and surrounding tissues, as well as no evidence of implant surface damage [10].
Although removal of the biofilm without damaging the implant surface is one of the main aims of
laser therapy for peri-implant diseases, laser tips, settings and points of application are still a matter of
clinical debate.

Therefore, the aim of this study was to compare two different settings of irradiation of the
Er,Cr:YSGG laser on implants regarding surface alterations and to determine which application tip of
the above-mentioned laser provides less damage to the dental implant surface.

2. Materials and Methods

A Waterlase iPlus laser, a class IV Er,Cr:YSGG laser with 2780 nm wavelength (Biolase®, Irvine,
CA, USA), was used in 15 Avinent® Coral HE implants (AVINENT, Santpedor, Spain). The implants
had a diameter of 3.3 mm, were 10 mm long and had a surface sandblasted by alumina and oxidized
with calcium and phosphorus.

Using a carborundum disk, a groove was made to divide the implant into 2 sides, so different
treatments could be applied. Then, the implants were cleaned with a non-abrasive air spray.

2.1. Randomization of Samples

The website www.randomization.com was employed to allocate each side of the implant to a
different laser setting. The laser was used for 60 s with 40% water and 50% air at 30 Hz and 1.5 W
(50 mJ per pulse) on one side, as recommended by the manufacturer to treat the peri-implantitis, and
2.5 W (84 mJ per pulse) on the other side (with the same frequency, water and air settings). Three
different tips were used. Thus, there were 3 subgroups of 5 implants treated with the 3 different tips
(Conical tip of 415 µm (RTF3-17 mm), the side firing tip of 800 µm (SFT8-18 mm), and the cylindrical
tip of 600 µm (MGG6-6 mm)), each implant being lased on opposite sides with 1.5 or 2.5 W/30 Hz.

2.2. Irradiation of the Implants

The irradiation of the implants was carried out to replicate a clinical scenario of peri-implant
diseases treatment. The side firing and the conical tips were kept parallel and in contact with the
surface of the implant, and continuous vertical movements were made from top to bottom (lateral
movements were avoided), with a 2 mm per second speed. The irradiated area was of approximately 2
squared cm. In this way, the application resembles what occurs in patients with peri-implant diseases
without opening a surgical flap.

On the other hand, the cylindrical tip was applied perpendicular and oblique to the implant
surface, thus mimicking the situation when a surgical flap is raised (Figure 1), The irradiated area was
of approximately 2 squared cm. Table 1 describes the dosimetry of the Er,Cr:YSGG laser.

www.randomization.com
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Figure 1. Protocol of irradiation. (a) Conical type of 415 micrometer (RTF3-17 mm) tip; (b) 800 
micrometer side firing tip (SFT8-18 mm); (c) 600 micrometer cylindrical tip (MGG6-6 mm). 

Table 1. Dosimetry of the Er,Cr:YSGG Laser. W: Watts; Hz: Hertz; sec: seconds; μm: micrometers; cm: 
centimeters; r: radius; d: diameter; A: Area; Ed: Energy density; J: Joules; Ep: Pulse energy; Pm: Mean 
power. 
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2.5 30 60 Conical (415) 0.02 0.0012 66.66 0.08 
1.5 30 60 Cylindrical (600) 0.03 0.0028 17.85 0.05 
2.5 30 60 Cylindrical (600) 0.03 0.0028 28.57 0.08 
1.5 30 60 Lateral (800) 0.04 0.0050 10 0.05 
2.5 30 60 Lateral (800) 0.04 0.0050 16 0.08 

2.3. Scanning Electron Microscope (SEM) Analysis 

A gold bath on the implant surfaces using diode sputtering (Diode JFC-100 JEOL Coater; JEOL 
USA, Inc., Peabody, MA, USA) was deposed. After sputtering, the implants were placed, one by one, 
in a Quanta 200 SEM (FEI Co., Hillsboro, OR, USA) in an insulating cavity at a 55 degrees angle. The 
xT Microscope Control Software (FEI Co., Hillsboro, OR, USA) was employed to process the digital 
images. A chemical analysis of the implants was performed using the EDAX Genesis program 
(AMETEK Materials Analysis Division, Mahwah, NJ, USA). 

The alterations of the implant surface were assessed and classified according to the following 
criteria: 

Class A: No visible damage. 
Class B: Minimal effects (areas with small marks without any metal fall or carbonization). 
Class C: Metal fall with melting of the surface, considerable fusion and crystallization, visible 

cracks and small crater-like defects. 
Class D: Complete alteration of surface including carbonization with large deep craters. 
The classification was carried out observing images at different magnifications (28×, 100×, 500×, 

1500×, 3000× and 5000×) in each sample and comparing it with a control implant. To reduce the risk 
of bias when assessing this variable, two blinded researchers, unaware of the employed parameters 
and tips, analyzed different photos of samples with different magnifications (including the control). 
In case of discrepancy, a consensus was reach between the researchers. 

Figure 1. Protocol of irradiation. (a) Conical type of 415 micrometer (RTF3-17 mm) tip; (b) 800
micrometer side firing tip (SFT8-18 mm); (c) 600 micrometer cylindrical tip (MGG6-6 mm).

Table 1. Dosimetry of the Er,Cr:YSGG Laser. W: Watts; Hz: Hertz; sec: seconds; µm: micrometers;
cm: centimeters; r: radius; d: diameter; A: Area; Ed: Energy density; J: Joules; Ep: Pulse energy; Pm:
Mean power.

Entered Parameters Calculated Parameters

Power (W) Frequency (Hz) Time (s)
Tip and Diameter

(µm)

Tip Radius
(cm)

Spot Area
(cm2)

Energy
Density

Pulse
Energy (J)

r = d/2/10,000 A = π r2 Ed = E/A;
J/cm2 Ep = Pm/f

1.5 30 60 Conical (415) 0.02 0.0012 41.66 0.05
2.5 30 60 Conical (415) 0.02 0.0012 66.66 0.08
1.5 30 60 Cylindrical (600) 0.03 0.0028 17.85 0.05
2.5 30 60 Cylindrical (600) 0.03 0.0028 28.57 0.08
1.5 30 60 Lateral (800) 0.04 0.0050 10 0.05
2.5 30 60 Lateral (800) 0.04 0.0050 16 0.08

2.3. Scanning Electron Microscope (SEM) Analysis

A gold bath on the implant surfaces using diode sputtering (Diode JFC-100 JEOL Coater; JEOL
USA, Inc., Peabody, MA, USA) was deposed. After sputtering, the implants were placed, one by
one, in a Quanta 200 SEM (FEI Co., Hillsboro, OR, USA) in an insulating cavity at a 55 degrees angle.
The xT Microscope Control Software (FEI Co., Hillsboro, OR, USA) was employed to process the
digital images. A chemical analysis of the implants was performed using the EDAX Genesis program
(AMETEK Materials Analysis Division, Mahwah, NJ, USA).

The alterations of the implant surface were assessed and classified according to the
following criteria:

Class A: No visible damage.
Class B: Minimal effects (areas with small marks without any metal fall or carbonization).
Class C: Metal fall with melting of the surface, considerable fusion and crystallization, visible

cracks and small crater-like defects.
Class D: Complete alteration of surface including carbonization with large deep craters.
The classification was carried out observing images at different magnifications (28×, 100×, 500×,

1500×, 3000× and 5000×) in each sample and comparing it with a control implant. To reduce the risk of
bias when assessing this variable, two blinded researchers, unaware of the employed parameters and
tips, analyzed different photos of samples with different magnifications (including the control). In case
of discrepancy, a consensus was reach between the researchers.
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3. Results

Chemical analysis of the implants disclosed several elements: titanium, calcium, aluminum, gold
(coating) and phosphorus. (Figure 2).
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Figure 2. Chemical components of implant. Titanium (Ti), calcium (Ca), aluminum (Al) and gold (Au) 
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the 415 micrometers conical tip at 1.5 W, showed no signs of surface alterations (class A; Figure 3C,D). 
However, when the power was increased to 2.5 W, some metal alteration, fusion and crystallization 
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implants lased with the 600 micrometers cylindrical tip at 1.5 and 2.5 W induced a reduction in the 
surface roughness, without any metal fall (class B; Figures 3G,H and 4G,H). Table 2 shows the main 
study outcomes. 

Figure 2. Chemical components of implant. Titanium (Ti), calcium (Ca), aluminum (Al) and gold
(Au) were the most commonly detected elements. Some of these are probably related to the coating
used to process the samples before the scanning electron microscope (SEM) observation. Kev: Kilo
electronvolts; Counts: number of elements presented.

Figures 3 and 4 show a comparison of all tips vs. control at 1.5 and 2.5 W. Implants lased with the
415 micrometers conical tip at 1.5 W, showed no signs of surface alterations (class A; Figure 3C,D).
However, when the power was increased to 2.5 W, some metal alteration, fusion and crystallization of
surface were observed (class C; Figure 4C,D). When the 800 micrometers side firing lateral tip at 1.5 W,
no surface damage was observed (class A; Figure 3E,F). Nevertheless, when the power was increased
(2.5 W), minimal fusion and crystallization was observed (class B; Figure 4E,F). Finally, implants lased
with the 600 micrometers cylindrical tip at 1.5 and 2.5 W induced a reduction in the surface roughness,
without any metal fall (class B; Figure 3G,H and Figure 4G,H). Table 2 shows the main study outcomes.
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Figure 3. Control versus all 3 tips at 1.5 W. (A) Control at 1000× magnification; (B) control at 5000× 
magnification; (C) conical tip (RTF3-17 mm) at 1000× magnification; (D) conical tip (RTF3-17 mm) at 
5000× magnification; (E) side firing tip (SFT8-18 mm) at 1000× magnification; (F) side firing tip (SFT8-
18 mm) at 5000× magnification; (G) cylindrical (MGG6-6 mm) tip at 1000× magnification; (H) 
cylindrical (MGG6-6 mm) tip at 5000× magnification. 

Figure 3. Control versus all 3 tips at 1.5 W. (A) Control at 1000×magnification; (B) control at 5000×
magnification; (C) conical tip (RTF3-17 mm) at 1000×magnification; (D) conical tip (RTF3-17 mm) at
5000×magnification; (E) side firing tip (SFT8-18 mm) at 1000×magnification; (F) side firing tip (SFT8-18
mm) at 5000×magnification; (G) cylindrical (MGG6-6 mm) tip at 1000×magnification; (H) cylindrical
(MGG6-6 mm) tip at 5000×magnification.
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Figure 4. Control versus all 3 tips at 2.5 W. (A) Control at 1000× magnification; (B) control at 5000× 
magnification; (C) conical (RTF3-17 mm) tip at 1000× magnification; (D) conical tip (RTF3-17 mm) at 
5000× magnification; (E) side firing tip (SFT8-18 mm) at 1000× magnification; (F) Side firing tip (SFT8-
18 mm) at 5000× magnification; (G) cylindrical tip (MGG6-6 mm) at 1000× magnification; (H) 
cylindrical tip (MGG6-6 mm) at 5000× magnification. 

Figure 4. Control versus all 3 tips at 2.5 W. (A) Control at 1000×magnification; (B) control at 5000×
magnification; (C) conical (RTF3-17 mm) tip at 1000×magnification; (D) conical tip (RTF3-17 mm) at
5000×magnification; (E) side firing tip (SFT8-18 mm) at 1000×magnification; (F) Side firing tip (SFT8-18
mm) at 5000×magnification; (G) cylindrical tip (MGG6-6 mm) at 1000×magnification; (H) cylindrical
tip (MGG6-6 mm) at 5000×magnification.
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Table 2. Main outcomes of the study. W: Watts; Hz: Hertz; sec: seconds; µm: micrometers; cm: centimeters;
r: radius; d: diameter; A: Area; Pd: Power density; J: Joules; Ep: Pulse energy; Pm: Mean power.

Entered Parameters Surface Alterations
ClassificationPower (W) Frequency (Hz) Time (s) Tip and Diameter (µm)

1.5 30 60 Conical (415) Class A
2.5 30 60 Conical (415) Class C
1.5 30 60 Cylindrical (600) Class B
2.5 30 60 Cylindrical (600) Class B
1.5 30 60 Lateral (800) Class A
2.5 30 60 Lateral (800) Class B

4. Discussion

There is currently a great discussion about the best way to decontaminate the surface of implants in
the treatment of peri-implantitis. The use of local or systemic medications, laser application, mechanical
and/or chemical decontamination, and implantoplasty have been suggested in previous reports [11–13].
Another important aim should be the reduction of the surface roughness of the implant, since a smooth
surface hampers biofilm adhesion. According to the SEM images obtained in the present study, laser
irradiation might be a useful tool to reduce surface roughness. However, future studies should analyze
if these changes inhibit bacterial growth over the dental implants. Implantoplasty can be a valid
alternative to remove biofilm of dental implants and to reduce its roughness [14]. Nevertheless, this
approach is far more aggressive than laser irradiation, although it does not seem to reduce fracture
resistance of the implants [15].

Although a randomized clinical trial concluded that Er:YAG treatments might reduce bleeding
on probing around implants in comparison with subgingival debridement alone [16], the available
evidence on the effectiveness of lasers for implant debridement is still very scarce [17]. In case of
decontaminating the implant surface by means of laser irradiation, it is necessary to establish which
parameters should be employed. Damage to the implant surface and tissues around the implant
might occur as a result of lasing, so the settings should be optimized to avoid these complications [18].
Indeed, more studies on the effect of laser on different implant surfaces should be made. The present
study employed a descriptive analysis of the SEM images. However, other methods could also be
incorporated such as the measurement of the surface roughness.

Park et al. [19] studied machined titanium and anodized discs, under Er,Cr:YSGG and CO2 laser
at 1, 2, 3, 4, and 5 W. Both surfaces presented modifications when the power exceeded 3 W. In the
present study, conical tips (RTF3-17 mm) at 2.5 W produced greater damage to the implant surfaces.
Future research should analyze if these alterations have a clinical impact.

A study [20] evaluated the surface of failed implants; it did not find any bacteria on the coronal
portion of implants when they were irradiated with Er,Cr:YSGG laser before their extraction. Another
ex vivo study [21] showed that implantoplasty is a superior method for bacteria elimination compared
to other methods, such as laser, chemical agents, hydrogen peroxide and airborne-particle abrasion in
a failed implant. However, if the objective of decontamination is to not perform any alteration of the
implant surface, the use of a diode laser at 3 W is recommended [22].

Regarding of the decontamination methods, a recent study [23] evaluated three methods using
sonic scaler, sonic scaler and chemical agent (Perisolv®, Zurich, Switzerland) or an Er:YAG laser on
three different implant surfaces, machined, sandblasted and acid-etched (SLA) and hydroxyapatite
(HA). Er:YAG laser irradiation was reported as the best option for decontamination of the HA-coated
implants. The Er,Cr:YSGG laser is more effective in calculus removal and caused less surface roughness
compared with citric acid application [24]. Therefore, we can observe that surface type of implants
maybe has a correlation with the used method for decontamination.

A study showed that the Er,Cr:YSGG laser with 1 Watt of power, for 30 s, is capable of the complete
elimination of A.baumannii and P.aeruginosa biofilm on the implant surface without damaging the
surface topography [25]. Regarding the use of the other lasers, such as Nd:YAG, a recent study [26]
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showed that Q-Switch Nd:YAG laser-assisted biofilm removal has provided a significant elimination
of the biofilm on titanium surfaces.

The present study examined different tips mimicking a clinical situation of implant debridement.
It seems that the side firing and conical tips using 1.5 W with 40% water and 50% air at 30 Hz during
60 s are less likely to produce alterations to the implant surface. The calculated parameters estimate
that the side firing tip (SFT8-18 mm) had less power density in comparison with the other tips, which,
in our opinion, is an advantage. Another positive aspect of this tip is that, due to the lateral irradiation,
it could be used to introduce the peri-implant sulcus without raising a flap.

More studies are needed to confirm that the Er,Cr:YSGG laser, applied with the above-mentioned
parameters and tips, effectively eliminates bacteria. Moreover, it would be interesting to assess whether
the surface roughness modification reduces the bacterial growth after laser irradiation. These issues
are paramount to determine the value of laser irradiation in the treatment of peri-implant diseases.

5. Conclusions

Based on the present findings, an Er,Cr:YSGG laser with side firing and conical tips at 50 mJ
(1.5 W/30 Hz), 50% air, 40% water, for 60 s, do not seem to produce implant surface alterations. A higher
degree of damage should be expected when the energy per pulse increases to 84 mJ (2.5 W/30 Hz),
especially when the conical tips are used.
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