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Abstract: Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting
people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators
such as epigenetic factors, transcription factors, and signaling genes. AML’s aggressiveness and
responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged
hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a
completely different cellular context for AML development compared to young cells. In this review,
we summarize key aspects of AML development, and we focus, in particular, on the contribution
of cellular aging to leukemogenesis and on current treatment options for elderly AML patients.
Hematological disorders and leukemia grow exponentially with age. So far, with conventional
induction therapy, many elderly patients experience a very poor overall survival rate requiring
substantial social and medical costs during the relatively few remaining months of life. The global
population’s age is increasing rapidly without an acceptable equal growth in therapeutic management
of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in
younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic
system, the development of appropriate research models, and new therapeutic approaches are urged.

Keywords: acute myeloid leukemia (AML); aging; epigenetic; hematopoietic stem cell (HSC); clonal
hematopoiesis (CH); mutation

1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous hematological disease which is mainly
characterized by the block of myeloid differentiation and expansion of immature myeloid progenitors
(blasts) in the bone marrow (BM) of patients [1]. While statistically being a relatively rare cancer type
(1.1% of all new cancer cases), according to the American Cancer Society’s [2] prediction, in the United
States, AML will affect approximately 20,000 people in 2019. Acute myeloid leukemia, like many
other cancers, is a disease commonly found in elderly people with the average age at diagnosis being
68 years according to NIH (National Institutes of Health) SEER (Surveillance, Epidemiology and End
Results) database. Despite the existence of a long history of leukemia research, spanning more than
half a century, long-term survival of elderly AML patients remains remarkably low [3]. Nevertheless,
the understanding of AML biology, including molecular events leading to AML development and
cellular hierarchy of the disease, has consistently improved over the last several years. Here, we
review the current knowledge on AML development with a particular focus on the role of aging in
leukemogenesis and disease progression.
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2. AML Development

2.1. AML Initiating Events

According to the conventional view, AML develops from somatically acquired driver mutations
that create a growth advantage for carrying cells [4–6]. Indeed, the presence or absence of specific
genetic mutations is one of the main parameters for stratifying AML patients and defining the treatment
protocol [7]. However, it is worth noting that driver mutations confer to the cell a fitness advantage
that might be context dependent, and alterations of the microenvironment can change the relative
competitiveness of a cell clone [8–10]. This aspect might be particularly relevant in elderly patients who
may harbor mutated clones for a longer time and develop disease only when the microenvironment
becomes permissive. Therefore, an immediate growth advantage might not be the only parameter to
define driver mutations in elderly AML patients. This concept also extends to other cancers affecting
elderly patients and could possibly explain why mutations accumulate linearly over an individual’s
lifespan while cancer incidence raises exponentially with age [9].

In a study recently published by Papaemmanuil et al. [6], the presence of driver mutations in 111
pre-defined cancer genes was assessed in a cohort of 1540 patients. At least one driver mutation was
identified in 96% of samples and two or more in 86% of samples. According to The Cancer Genome
Atlas Research (TCGA) Network [11], genes which have mutations that are involved in the development
of AML can be organized based on their biological function into nine categories: activated signaling
genes (e.g., FLT3), DNA methylation-related genes (e.g., DNMT3A, TET2, IDH2), chromatin-modifying
genes (e.g., MLL-X fusion genes, ASXL1, KDM6A, EZH2), gene encoding nucleophosmin (NPM1),
myeloid transcription factor genes (e.g., RUNX1, CEBPA), transcription factor fusions (e.g., PML-RARA,
RUNX1-RUNX1T1), tumor-suppressor genes (e.g., TP53, WT1), spliceosome complex genes (e.g.,
U2AF1), and cohesin complex genes (e.g., SMC1A, SMC3, STAG2, RAD21). Importantly, in most AML
cases various mutations are co-occurring in different combinations, adding an additional level of
complexity and heterogeneity to the disease. At the same time, certain genes or even whole gene
categories are mutually exclusive, suggesting complex biological relationships among the driver
mutations [11].

The very early leukemia-initiating event is still a rather controversial topic, mainly because in most
cases AML arises without any detectable early symptoms, and patients usually present with the acute
complications of bone marrow failure later in time [12]. The accumulation of somatic mutations in
hematopoietic stem/progenitor cells happens also in individuals that eventually do not develop disease
but might present with clonal hematopoiesis (termed age-related clonal hematopoiesis (ARCH)) [8,13].
According to a study by Abelson et al. [8], it is possible to discriminate ARCH from pre-AML many
years before malignant transformation, and some specific mutations are linked to a higher risk of
disease development (mainly TP53 and U2AF1). As well, it is highly likely that cell extrinsic factors
(exogenous stressors and alterations of the bone marrow microenvironment) and alterations in cell
polarity [14] are major contributors to the trajectory of disease development. Recently, many reports
have been dealing with the alterations in hematopoietic stem cell polarity and in the aged bone marrow
microenvironment offering new insights into these topics [15–17].

2.2. Mutations in Epigenetic Modifiers

Mutations in epigenetic modifiers are found in a huge proportion of AML patients [11] and,
therefore, represent an important category in the discussion about the AML-initiating events. Epigenetic
alterations are defined as changes in gene function that are inheritable through cell divisions but are
not caused by DNA sequence changes [18]. The epigenetic modifications that are primarily discussed
in the context of AML are DNA methylation, DNA hydroxymethylation, histone acetylation, and
histone lysine methylation [19].

Deoxyribonucleic acid methylation occurs as a result of a methyl group transferred to the fifth
carbon in the cytosine nucleotide by DNA methyltransferases (DNMTs) (e.g., DNMT3A), which leads to
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the formation of 5-methylcytosin (5mC). This mostly happens in the context of a cytosine being followed
by a guanine in the DNA sequence (CpG sites) [20,21]. Deoxyribonucleic acid hydroxymethylation is
the result of 5mC oxidation by ten-eleven translocation (TET) enzymes (e.g., TET2) which leads to
the formation of 5-hydroxymethylcytosine (hmC) [22]. Histone modifications occur predominantly
at the histone N-terminal tail protruding from the nucleosomes. Histone lysine acetyltransferases
(KATs) and lysine methyltransferases (KMTs; e.g., KMT2A or MLL and EZH2) are groups transferring
acetyl and methyl, respectively, to lysine’s ε-amino group. The reverse process of lysine deacetylation
and demethylation is governed by lysine demethylases (KDMs; e.g., LSD1) and histone deacetylases
(HDACs) respectively [23].

The effect of epigenetic modifications on gene expression depends on the type of modification.
For instance, DNA methylation has a mainly repressive function, since it inhibits the association
between DNA-binding factors and their target DNA regions, and at the same time allows binding of
specific repressive complexes [24]. Histone modifications act through affecting chromatin compaction
and recruiting various effector proteins and may have both repressing and activating functions [25].
Mutations in epigenetic modifiers may result in global alterations of epigenetic and transcriptional
programs and lead to the development of pre-malignant and malignant conditions (reviewed in more
detail in Reference [19]).

In addition to mutations in epigenetic modifiers, changes in the epigenetic landscape can be
caused by alterations in proteins involved in epigenetic regulation indirectly. For instance, isocitrate
dehydrogenase (IDH) enzymes are required for conversion of isocitrate to α-ketoglutarate, that,
in turn, is utilized as a co-substrate by various enzymes such as histone demethylases and TET
family hydroxylases [26]. Mutant IDH1 and IDH2 catalyze the reduction of α-ketoglutarate to the
structurally similar oncometabolite 2-hydroxyglutarate [27] which acts as a competitive inhibitor of
α-ketoglutarate-dependent enzymes including TET family hydroxylases [26]. These mutations are
associated with a hypermethylation signature, altered gene expression, and impaired hematopoietic
differentiation [28–30]. Mutations in IDH1 or IDH2 are found in 20% of AML cases [11].

2.3. Pre-Leukemic State

The group of Ravindra Majeti [31,32] performed sets of experiments based on fluorescence activated
cell sorting (FACS) separation of the leukemic cells from the residual non-leukemic hematopoietic
stem cells (HSCs) in AML samples. Sequencing of these populations revealed that some but not all
mutations present in leukemic cells were also found in the “functionally normal” residual HSCs. This
suggested the existence of ancestor cells containing pre-leukemic mutations which further evolve into
leukemia through gradual acquisition of additional (late) mutations [31,32]. Interestingly, in the subset
of mutations discovered to be pre-leukemic, mutations in genes associated with epigenetic mechanisms
(DNA methylation-related genes, chromatin-modifying genes, and cohesin complex genes) were
significantly overrepresented. The same gene categories were underrepresented in the subset of late
mutations. Mutations in the activated signaling genes, on the contrary, were overrepresented in the
late gene subset. Based on this observation, a model was suggested, where the earliest leukemogenic
events happen in “landscaping” genes involved in epigenetic regulation and are followed by mutations
leading to increased activation of signaling pathways and cellular proliferation [31].

In 14% of cases, AML evolves after a myelodysplastic syndrome (MDS) [33], a hematologic
disorder often described as a pre-AML condition. Myelodysplastic syndrome is characterized by
abnormal BM and blood cell morphology and ineffective hematopoiesis with the frequency of blasts
in the blood or BM below 20% [34]. It is considered to be evolved into full blown AML when the
frequency of blasts reaches or exceeds 20% [35]. The two categories of genes most commonly mutated
in MDS are splicing factors and epigenetic regulators. Interestingly, many genes found to be recurrently
mutated in AML are also mutated in MDS, for instance, DNMT3A, TET2, and ASXL1 [36]. In a recent
study, Chen et al. [37] performed clonality analysis in samples obtained from patients that progressed
from MDS into secondary AML. The samples were collected during both MDS and AML stages of the
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disease and were further fractionated into stem cells, pre-malignant stem cells, and blasts. The data
revealed the existence of distinct clonal architecture in stem cell compartments with a higher number
of subclones compared to blast cell compartments. In addition, in three out of seven patients, clones
that were strongly expanded at the AML stage and were detectable in MDS stem cells were hardly
detectable in the MDS blasts. Based on these observations, the authors suggested that secondary AML
does not develop linearly from MDS stem cells through an MDS blast axis, but rather evolves in parallel
with MDS through AML stem cells branching from MDS stem cells [37].

2.4. Leukemic Stem Cells

Over the last decades, multiple studies revealed the cellular heterogeneity of AML and the existence
of a hierarchical relationship among different populations of leukemic cells [38–40]. In analogy to
hematopoietic stem cells (HSCs) at the head of the hierarchy of the hematopoietic system, AML
originates from a small population of cells which are characterized by a very high (potentially
unlimited) self-renewal capacity. These cells are named leukemic stem cells or leukemia-initiating
cells (LICs) due to the fact of their ability to give rise to leukemia after re-transplantation into
secondary recipients. Like in the case of HSCs, the increased self-renewal capacity of LICs comes
at the cost of reduced proliferation speed [41]. This property of LICs makes them a difficult target
for conventional anti-cancer therapies that normally affect highly proliferative bulk leukemia cells.
Leukemia-initiating cells are deemed responsible for tumor relapse which often happens with increased
aggressiveness [7,42]. Therefore, the holy grail of research on leukemia is finding a way to specifically
eradicate quiescent LICs.

2.5. Cell of Origin and “Cellular Context”

Acute myeloid leukemia is often characterized by an over-proliferation of functionally impaired
immature myeloid progenitors. However, in 1997, Bonnet and Dick [38] suggested that a transforming
event leading to the initiation of AML is occurring in primitive hematopoietic cells rather than in
committed progenitors. This suggestion was based on immuno-phenotypical resemblance of the
identified human AML LICs and normal human HSCs where both populations were CD34+CD38− [38].
This concept was further supported by the identification of several fusion proteins associated with
myeloid leukemias or their transcripts in normal HSCs and various non-myeloid cell types of
AML patients, suggesting that acquisition of the mutations occurred in an immature cell capable
of giving rise to cells of multiple lineages [43–45]. However, later viral transduction of various
hematopoietic populations with fusion oncoproteins, such as MLL-AF9, MLL-ENL, MOZ-TIF2 as well
as fusion oncoprotein knock-in models, revealed that progenitor cells can also be transformed [46–51].
Importantly, Krivtsov et al. [46] demonstrated that LICs isolated from progenitor-derived leukemia
presented with a reactivated self-renewal-associated gene expression program. Additionally, several
reports demonstrated that aggressiveness of the resulting leukemia depended on the cell of
origin [47–49]. For example, MLL-AF9 expression in HSCs results in significantly more aggressive
leukemia compared to the one arising from granulocyte-monocyte progenitor (GMP) cells. In addition,
HSC-derived AML showed higher frequency of LICs and lower responsiveness to chemotherapy
treatment [48]. In agreement, Siriboonpiputtana et al. [52] have demonstrated that self-renewal of
LICs in HSC-derived AML is maintained through different molecular mechanisms compared to
progenitor-derived AML, while phenotypically these two AMLs are indistinguishable. This suggests
that genetically and phenotypically identical AMLs deriving from different cells of origin may
react differently to the same treatment and emphasizes the importance of the “cellular context” for
AML transformation.

3. Contribution of Aging to AML

One of the main risk factors for AML development is aging. However, it is not yet fully understood
which aging-associated alterations contribute to leukemogenesis and to what extent. Organismal aging
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is accompanied by biochemical and cellular changes. Among the main hallmarks of aging are genomic
and epigenomic alterations, deregulated protein homeostasis and nutrient sensing, mitochondrial
disfunction, cellular senescence, and stem cell malfunction which are all considered to potentially
contribute to an increased risk of disease development [53]. Multiple studies have been performed in
order to characterize aging-associated alterations and explain the increased predisposition of aged
individuals to cancers [54–57]. Here, we focused on genetic and epigenetic alterations of hematopoietic
cells as one of the primary causative factors leading to AML development (Table 1). In addition,
we mainly reviewed research data that were based on murine models and on clinical data from patients.
However, we acknowledge the importance of other models used to characterize molecular mechanisms
of leukemic transformation and aging.

Table 1. Aging-associated alterations in hematopoietic cells defining changes in the intra-cellular context.

Category Type of Alteration References

Mutations 2–3 fold increase in mutation load [58–61]

Protein expression Altered expression of epigenetic regulators [62–64]

Epigenetic drift DNA methylation alteration (redistribution, level change) [65–69]

Changes in histone modifications [63,67]

Nuclear/chromatin
structure alterations

Reduced lamin A/C level, changed nuclear size and shape,
global changes in heterochromatin mark deposition [62,70]

Epipolarity CDC42 activity, H4K16ac polarity [71]

Others (not discussed
in the review)

Increased expression of repetitive elements [63]

Alternative protein isoforms [63]

Altered expression of non-epigenetic cellular regulators [63,72]

3.1. Accumulation of Somatic Mutations upon Aging

One of the first mechanisms suggested to be responsible for cellular aging and cancerous
transformation was the accumulation of DNA lesions during the lifespan of most individuals [73,74].
Mutations in DNA continuously arise in normal tissues as a result of spontaneous errors in biochemical
processes within the cell or due to the exposure to environmental and intrinsic mutagenic factors (UV
light, mutagenic chemicals, reactive oxygen species, diet, etc.). In an attempt to maintain genomic
integrity, cells rely on a number of pathways which together enable a so-called DNA damage response.
This mechanism represents a cascade of events including lesion recognition, signal transduction, and
repair events which ultimately lead to either mutation repair or to death of the affected cell (reviewed
in Reference [75]). However, errors in DNA damage response may result in survival of the mutated cell
and potentially propagation of the mutation to the progeny of this cell. Because of its nature, stem cells
possess the highest capacity to maintain and spread the acquired mutations through self-renewal and
differentiation steps into different cellular lineages [76]. To date, multiple studies have reported a 2–3
fold increase in mutation frequency in aged cells compared to young or young adult cells for different
tissues [77,78] including human hematopoietic stem cells [58]. This latter study [58] in particular
showed that mutations accumulate linearly with a rate of 14 base substitutions per cell per year. It has
been suggested that one of the reasons behind the accumulation of mutations in HSCs is quiescence of
these cells which leads to DNA repair attenuation [59]. Further, it was shown that upon stimulation
into the cell cycle, HSCs were able to repair DNA damage regardless of age [59]. This hypothesis was
consistently supported by Moehrle et al. [61] who showed that both young and aged HSCs tend to
leave their quiescent state upon DNA damage in vivo. Interestingly, the same study demonstrated
that the ability of aged HSCs to repair DNA damage was not impaired compared to young HSCs [61].

Exome sequence comparison of the AML sample and the HSPC sample from healthy individuals
revealed no significant difference in mutation number and spectrum between leukemic and normal
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cells within one age category. At the same time, the number of mutations in both the AML sample and
the normal HSPC sample positively correlated with their age. Based on these observations, the authors
suggest that the majority of mutations present in AML cells are “background” mutations and do not
contribute to leukemogenesis [60]. It has also been suggested that the 2–3 fold increase in mutation
frequency observed in aged cells compared to young adults’ cells is unlikely to be sufficient to explain
the exponential increase in leukemia initiation observed upon aging [57]. This suggests the likely
existence of additional factors contributing to leukemogenesis in aged patients.

3.2. Clonal Hematopoiesis in Elderly

Large-scale studies based on whole-exome sequencing of peripheral blood cells from persons
unselected for cancers and hematological disorders revealed another property of the aged hematopoietic
system—clonal expansion of cells carrying somatic mutations in healthy older adults, termed clonal
hematopoiesis (CH) [79,80]. In more than 10% of people over 80 years old, clonal expansion of blood
cells with somatic mutations was observed, whereas only 1% of people younger than 50 years presented
with the same clonal composition of blood. At the same time, given the fact that detection of minor
subclones depends on the technical accuracy of the sequencing methods, it is possible that improving
the accuracy of next-generation sequencing in the future will reveal even higher clonality rates [81].

Clonal hematopoiesis was shown to be associated with the increased risk of development of
hematologic malignancies [79,80]. Importantly, mutational analysis of genes involved in age-related CH
in samples obtained from patients 6 years before AML diagnosis revealed differences in the mutational
landscape and clonal expansion between pre-AML cases and the control group [8]. These data suggest
that AML development through clonal evolution occurs over many years and that AML-free CH can
be distinguished from pre-AML years before the disease onset.

In addition to cell-intrinsic forces driving the age-associated CH, such as acquisition of driver
mutations, the role of the aged microenvironment in promoting this potentially leukemogenic clonal
expansion has been suggested [82]. Indeed, some recent reports highlighted profound alterations in
the BM microenvironment on aging which might play important roles in disease progression, or it
might be critical to tailor the chemotherapeutic approach for the elderly [16,17,83,84]. Interestingly,
the three genes most frequently found to be involved in CH in healthy aged individuals are DNMT3A,
TET2, and ASXL1. These genes are epigenetic regulators which have previously been reported to be
involved in MDS and AML development [79,80]. Based on this observation, Akunuru and Geiger [85]
suggest the hypothesis of “epigenetic clonality”, where the aged hematopoietic environment supports
the expansion of cells with a certain epigenetic landscape.

Importantly, mutations in epigenetic regulators DNMT3A, TET2, IDH1/IDH2, ASXL1 have
been shown to persist in complete remission (CR) patients [31,86]. For example, in a study by
Rothenberg-Thurley et al. [87], it was reported that the persistence of these driver mutations was
associated with worse prognosis, and it was most common in elderly patients. Therefore, monitoring
the persistence of pre-leukemic clones after first remission was suggested to be critical to guide
post-remission treatment. Indeed, allogenic transplantation abrogated the risk of relapse and, therefore,
the analysis of persistent mutations during remission might provide more valuable information in terms
of risk stratification than only the genetic analysis of pre-treatment samples [80,87,88]. Interestingly,
minimal residual disease (MRD) measured by flow cytometry or qPCR was apparently not significantly
correlated to persistent mutations, inducing to hypothesize a different mechanism for disease relapse
than the survival of a small number of resistant leukemic cells.

3.3. Age-Associated Epigenetic Changes

In the same way as mutations accumulate throughout a person’s lifetime, epigenetic alterations
were reported to increase upon aging. Analysis of DNA methylation and histone acetylation levels
performed on monozygotic tweens, where age of tween-pairs was in a range between 3 and 74 years
old, revealed that epigenetic difference between tweens was significantly higher in older tween-pairs
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than in younger ones [65]. This suggests that, over the course of a lifetime, our epigenetic landscape
diverges from the original one. These random epigenetic changes were collectively termed “epigenetic
drift” [65]. Moreover, large-scale methylome analysis has shown that DNA methylation patterns can
reliably predict chronological age [68,89,90]. Interestingly, donor HSCs transplanted into recipient
patients of different age have been shown to maintain their chronological DNA methylation age,
which suggests that DNA methylation age is an intrinsic property of the cell and is not affected by
the environment [91]. Further, multiple studies reported the presence of various types of epigenetic
alterations as well as changes in the expression of epigenetic regulators in aged hematopoietic
cells [63,64,66,67,69]. For example, a comprehensive study involving the analysis of transcriptome,
DNA methylome, and histone modifications in young and aged murine HSCs described global
epigenetic changes associated with stem cell aging. The authors demonstrated the reduced expression
of DNA methyltransferases, the key epigenetic regulators and altered positioning of some regulatory
histone marks like H3K4me3, H3K27me3, and H3K36me3 in aged cells [63]. Additionally, analysis
of the epigenetic landscape of an HSC-enriched population from young (18–30 years) and aged
(65–75 years) healthy donors, performed by Adelman et al. [67], revealed an age-associated reduction
in H3K4me1, H3K27ac, and H3K4me3, as well as altered DNA methylation in aged cells.

Furthermore, Grigoryan et al. [70] have shown that aged murine HSCs display an increased
nuclear volume and altered nuclear shape. These alterations have been shown to be associated with
reduced levels of the nuclear envelope protein Lamin A/C in aged HSCs. In addition, the authors
reported an altered distribution of a H3K9me2 heterochromatin mark in aged HSCs. Interestingly,
treatment with CASIN (a Cdc42-activity inhibitor) [71,92,93] restored Lamin A/C levels, H3K9me2
peripheral localization, and nuclear volume in aged HSCs to the levels observed in young HSCs.
Alterations of another heterochromatin mark, H3K9me3, have been reported in aged HSCs by Djeghloul
et al. [62]. Reduction in the global level of H3K9me3 in aged murine and human HSCs has been shown
to be associated with reduced expression of one of the principal enzymes involved in heterochromatin
formation—the methyltransferase SUV39H1 [62]. Further evidence of an altered heterochromatin
structure in aged cells is provided by research performed on non-mammalian and non-hematopoietic
models [94,95]. Altogether, these data suggest the presence of global changes in the nuclear structure
in HSCs upon aging which, in turn, might be linked to changes in chromatin organization and gene
expression [96].

Given the fact that an altered epigenetic state might result in an altered transcriptional profile
and, consequently, impaired function of the cell [97], it is reasonable to hypothesize that changes in
the epigenetic landscape and nuclear structure of aged hematopoietic cells, especially HSCs, might
contribute to differences in the intracellular context between young and aged LICs and, therefore,
result in different behaviors of “aged” AML cells compared to “young” cells despite the same
genetic alterations.

In addition to genetic and epigenetic alterations, changes in the expression of multiple cellular
regulators [63,72], increased expression of repetitive elements [98,99], and altered expression of different
protein isoforms have been reported in aged cells [63]. However, we did not discuss these aspects in
the current review.

3.4. Epigenetic Polarity in Aged HSC

Another type of aging-associated epigenetic alteration that has recently been reported, but not yet
fully understood, is the loss of H4K16ac polarity in aged HSCs associated with increased activity of the
small RhoGTPase Cdc42. Importantly, inhibition of Cdc42 activity with a small molecule compound,
CASIN, which leads to restoration of H4K16ac polarity, has been shown to correlate with functional
rejuvenation of HSC [71]. The same group has shown that loss of epigenetic polarity in HSCs is
associated with an increased rate of symmetric self-renewing divisions in aged stem cells [93] which is
in line with the phenotypic expansion of HSCs observed upon aging [100,101]. The importance of this
observation is emphasized by the role of aberrant self-renewal in AML development [38]. Further
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research is needed to understand whether changes in epigenetic polarity contribute to leukemogenesis
and whether reversal of these changes could be used as an approach to improve disease outcome.

4. Aging and AML

Discoveries over the past few years have revealed that combinations of several factors, such as
co-occurrence of mutations [6], mutation order [102], cell of origin/intracellular context [48], can affect
AML kinetics, development, and treatment responsiveness. Based on these observations, it became
particularly evident that AML developed on the basis of aged hematopoietic cells might have distinct
properties compared to “young” AML, despite similar clinical manifestation (Figure 1 and Table 2).
Indeed, a study by Silva et al. [54], who performed an analysis of samples from elderly (65 to 90 years
old) patients and data from the TCGA network [11], and Metzeler’s group [103] revealed that AML
presents with distinct genetic and epigenetic patterns in the elderly. The authors showed that elderly
patients more often accumulate mutations in epigenetic regulators than young patients. Specifically,
mutations in DNMT3A, TET2, SRSF2, and ASXL1 were found to be more frequent in elderly patients.
Further, increased frequency of genetic alterations in spliceosome-related genes and genes involved
in DNA repair as well as differentially methylated DNA regions have been reported in elderly AML
patients [54].
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Figure 1. Cartoon scheme illustrating the effect of young and aged intracellular contexts on leukemic
transformation. A leukemia-initiating event is indicated with a red star. Healthy hematopoietic stem
and progenitor cells (HSPCs) (without red star) acquire a leukemia-initiating event which leads to
expansion of the leukemic cells (with the red star). After diagnosis, young and aged leukemic cells are
treated with the compound developed to target young leukemic cells. Young leukemic cells respond
to the treatment and dye. Residual healthy HSPCs support the regeneration of the hematopoietic
system. Aged leukemic cells do not respond to the same treatment due to the different intracellular
genetic and/or epigenetic context and leukemia progression is not arrested. Figure created by using the
resources provided by Servier Medical ART which is licensed under a Creative Commons Attribution
3.0 Unported License.
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Table 2. Epigenetic genes mutated in acute myeloid leukemia (AML): type of mutations and frequencies
in adult and elderly patients and clinical features. (n.d.: not defined).

Gene Type pf Mutation
and Mechanism

Frequency in
Adult AML

(<70 y)

Frequency in
Elderly AML

(>75 y)
Clinical Features Reference

TET2

Missense, nonsense, and frame
shift mutations which cause a

loss-of-function phenotype and
the impairment of the catalytic

activity, resulting in low levels of
5-hmc in genomic DNA

8–12% 42%

Debated prognostic value
(associated with poor prognosis in

AML patients with
intermediate-risk cytogenetic but

also reported with no clinical
impact in other studies); mutually
exclusive with IDH1/2 mutation

[6,7,11,103]

DNMT3A

Missense, nonsense, and frame
shift heterozygote mutations

which cause a dominant negative
loss of function

19–26% 35%

Frequently occurring in AML
with a normal karyotype;

unfavorable prognosis; the loss of
methylase activity results in

hypomethylation and
uncontrolled expression of

multiple HOX genes

[11,103]

ASXL1

Missense, nonsense, and frame
shift loss-of-function mutations;
ASXL1 interacts with PCR2 and

mutations decrease recruitment of
PRC2 to its targets

11% 21%

Early mutation which tends
to be associated with an

aggressive disease and a poor
overall survival

[103]

IDH2/IDH1

Heterozygous missense mutations
which result in reduced

production of α-KG and in a
neomorphic gain-of-function

effect, catalyzing the conversion of
α-KG to 2-HG resulting in

inhibition of TET2.

12–20% 15%

Hypermethylation signature,
altered gene expression,

and impaired hematopoietic
differentiation

[11,28,103]

STAG2,
RAD21,
SMC3,

SMC1A

Frameshift and missense
mutations which disrupt cohesin

complex assembly; these
mutations act at least partially as

dominant negatives

9–15% n.d.

Mutually exclusive with
unfavorable-risk cytogenetics as
well as complex chromosomal

changes; independent favorable
risk factors in AML but associated

with a shorter survival in MDS

[11,103]

EZH2

Missense, nonsense, and frame
shift, loss-of-function mutations:

EZH2 is a histone H3K27
methyl-transferase and part of

PRC2. Loss-of-function mutations
occur in the catalytic SET domain

1–2% n.d.
EZH2 inactivating mutations are

associated to induction of
HOXA9 expression

[11,103]

The hypothesis suggesting that aging is contributing to leukemogenesis is also supported by
a publication by Adelman et al. [67]. Analyses comparing age-associated epigenetic changes in
HSC-enriched population and AML-associated epigenetic alterations (differentially methylated regions
and enrichment/depletion of several histone marks) revealed similarities between age-associated and
AML-associated epigenetic alterations [67]. Moreover, the role of the epigenetic drift in MDS/AML
development was emphasized by Maegawa et al. [66]. Using murine transgenic AML models,
progressive hypermethylation of preselected genes has been shown from young to old normal BM,
further to MDS, and finally to AML [66]. Interestingly, Mizukawa et al. [104] have demonstrated
that genetic depletion of CDC42 in both murine and human MLL-AF9-induced AML results in a
reduced rate of self-renewing divisions and blocked leukemia development [104]. Since CDC42
activity is increased upon aging in murine and human cells and is associated with impaired HSC
function [71,105], the requirement of CDC42 for leukemogenesis suggests that increased activation
of CDC42 in aged HSCs might make them more vulnerable to leukemic transformation. In addition,
CH, often observed in aged people [79,80], might underlie the differences between young- and
aged-patient AML. However, whether the presence of clonal hematopoiesis is associated with worse
outcome is still quite controversial and has not been yet clarified [87,106–109].

Another aging-related feature that has been associated to increased incidence of MDS is telomere
dysfunction [110]. Employing an inducible telomerase reverse transcriptase-estrogen receptor (TERTER)
mouse model, it was demonstrated that persistent physiological DNA damage (from eroded telomeres)
drives MDS in mice by inducing aberrant RNA splicing [110]. In human, short telomeres syndromes
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are also associated with accelerated aging syndromes characterized by diverse clinical manifestations
and with bone marrow failure and idiopathic pulmonary fibrosis being frequent manifestations [111,112].
Similarly, skewing in X-chromosome inactivation has been more frequently detected in blood from elderly
women [113] and deregulation of X-chromosome inactivation in the hematopoietic compartment is known
to cause typical aging-like myelodysplastic syndromes (MDS) with 100% penetrance in mice [114].

5. Therapy

5.1. Currently Available Treatment Options

The standard approach to treat AML patients is chemotherapy which in some cases might be
followed by stem cell transplantation. Conventional chemotherapy, commonly referred to as “7 + 3”,
consists of 7 days cytarabine and 3 days anthracycline (daunorubicin) treatment [115]. These drugs act
by inhibiting DNA and RNA synthesis and, therefore, highly proliferative cells are supposed to be
particularly sensitive to this treatment, including AML cells.

However, therapeutic approaches may vary depending on various factors such as patient’s age,
general physical fitness, type and genetics of AML at diagnosis. For instance, patients with FLT3
mutation, in addition to standard chemotherapy treatment, might be considered to receive the tyrosine
kinase inhibitors midostaurin in the case of newly diagnosed AML [116], or gilteritinib in the case of
FLT-3+ relapsed/refractory AML [117]. These compounds are inhibiting cells expressing wild-type as
well as mutant forms of FLT3 [118,119]. Newly diagnosed AML patients with mutation in IDH1 can be
treated with the small-molecule inhibitor ivosidenib [120], and adult patients with relapsed/refractory
AML with IDH2 mutation with enasidenib [121]. Ivosidenib and enasidenib target mutant forms of the
IDH1/2 molecules and promote differentiation of myeloid blasts thereby reducing tumor burden and
aggressiveness [122,123]. In addition, a targeted therapy with gemtuzumab ozogamicin, an anti-CD33
antibody conjugated with a cytotoxic drug, was approved for treatment of CD33-positive AML [124].

Unfortunately, older and unfit patients might not be able to tolerate intensive chemotherapy;
therefore, other treatment procedures are required. However, treatment alternatives for these patients
are quite poor. Until recently, less intensive chemotherapy, treatment with hypomethylating agents
(HMA), and best supportive care were the options suggested for older or unfit AML patients [7].
The hypomethylating agents currently in use include azacytidine and decitabine which are pyrimidine
analogs that function as DNA methyltransferase inhibitors. These drugs are believed to revert DNA
hypermethylation in AML cells and, thus, restore expression of critical onco-suppressor genes [19].

In 2018, the Food and Drug Administration (FDA) approved two additional drugs for patients
who are 75 years or older. First, venetoclax [125]—an inhibitor of the anti-apoptotic protein BCL-2
which plays an important role in maintenance of leukemic blasts [126,127]. Venetoclax is suggested to
be used in combination with HMA (azacitidine or decitabine) or low-dose cytarabine [128]. A second
possible drug is glasdegib, approved in combination with low-dose cytarabine [129–131]. Glasdegib is
a small-molecule inhibitor of the Hedgehog pathway, shown to be involved in the development of
drug resistance [132].

5.2. Possibilities for Aging-Targeted Therapies?

Assuming the contribution of aging to leukemic development, it is tempting to speculate that
an aging-targeting therapy might be a possible approach to refine or improve treatment options for
AML in the elderly. Recently, several compounds with a potential to rejuvenate the hematopoietic
system have been described [85,133,134]. For example, besides the aforementioned CDC42 activity
inhibitor (CASIN), the senolytic compound ABT263 effectively kills senescent cells in the BM of aged
mice, leading to reversal of several age-associated hematopoietic alterations [135]. Another compound
that has been shown to rejuvenate aged HSCs in vivo is rapamycin, which acts through inhibition
of the mTOR pathway (upregulated in aged HSCs) [136]. Other aging-associated HSC alterations
suggested to be promising targets for the hematopoietic system rejuvenation therapy are, for example,
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autophagy [137] and reduced expression of SIRT3 and SIRT7, proteins involved in the regulation of
mitochondrial function and cellular metabolism [138,139].

6. Perspectives

More than 30% of AML patients are 75 years or older according to NIH SEER database. At the
same time, AML in the elderly (>60 years) is characterized by a lower overall survival rate and shorter
remission duration compared to AML in younger adults [140]. Given these facts, the number of
available treatment opportunities for elderly patients is unsatisfactory. This has also been acknowledged
by international expert panels who have published recommendations for diagnosis and management
of AML in adults on behalf of the European LeukemiaNet (ELN) [7].

The low number of treatment options might partially be a result of the “young-cell-focused” research.
Given the obvious role of aging in leukemogenesis, research employing aged models might generate
data with higher biological relevance for elderly patients. Genetically engineered models of accelerated
aging with shorter lifespan as well as models with longer life spans are available [141]. However, these
models might not properly reflect processes happening during physiological aging [142]. Preclinical
AML studies employing chronological aging models might produce more accurate and biologically
relevant data. For example, multiple murine models for various AML types are currently available for
research [143]. Testing these models on the background of aged hematopoietic cells might significantly
contribute to the development of the field and directly demonstrate the role of the aged environment
in leukemogenesis. However, we acknowledge that making the use of chronological aging models is
expensive and cumbersome. Importantly, on a clinical level, to facilitate the development of elderly
AML-specific drugs, an increased enrolment of aged AML patients into clinical trials has been suggested [7].

7. Conclusions

AML grows exponentially with age. So far, with conventional induction therapy, many elderly
patients experience a very poor overall survival rate requiring substantial social and medical costs
during the relatively few remaining months of life. The global population’s age is increasing rapidly
without an acceptable equal growth in therapeutic management of AML in the elderly; this is in
sharp contrast to the increase in successful therapies for leukemia in younger patients. A focus on the
understanding of epigenetic features and on the genome-epigenome interactions that dynamically
change during the age-related transition from normal HSCs, through HSCs driving clonal hematopoiesis,
to leukemic stem cells in AML will help to develop new therapeutic approaches and unravel the
age-related factors inherent in AML of the elderly which mediate the inferior clinical outcome even in
the presence of genetic features associated with low risk.
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