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Abstract: Markov chains (MCs) are widely used to model a great deal of financial and actuarial 

problems. Likewise, they are also used in many other fields ranging from economics, management, 

agricultural sciences, engineering or informatics to medicine. This paper focuses on the use of MCs 

for the design of non-life bonus-malus systems (BMSs). It proposes quantifying the uncertainty of 

transition probabilities in BMSs by using fuzzy numbers (FNs). To do so, Fuzzy MCs (FMCs) as 

defined by Buckley and Eslami in 2002 are used, thus giving rise to the concept of Fuzzy BMSs 

(FBMSs). More concretely, we describe in detail the common BMS where the number of claims fol-

lows a Poisson distribution under the hypothesis that its characteristic parameter is not a real but a 

triangular FN (TFN). Moreover, we reflect on how to fit that parameter by using several fuzzy data 

analysis tools and discuss the goodness of triangular approximates to fuzzy transition probabilities, 

the fuzzy stationary state, and the fuzzy mean asymptotic premium. The use of FMCs in a BMS 

allows obtaining not only point estimates of all these variables, but also a structured set of their 

possible values whose reliability is given by means of a possibility measure. Although our analysis 

is circumscribed to non-life insurance, all of its findings can easily be extended to any of the above-

mentioned fields with slight modifications. 

Keywords: bonus-malus system; fuzzy number; fuzzy transition probability; fuzzy Markov chain; 

fuzzy stationary state 

 

1. Introduction 

1.1. Motivation 

A bonus-malus system (BMS) is a common method for posteriori ratemaking in non-

life insurance. It is based on partitioning the insurer’s portfolio into a finite number of 

classes: bonus and malus classes. A typical case is automobile third-party liability insur-

ance [1]. In a BMS, policyholders do not have a fixed price for their contracts throughout 

periods (e.g., the mathematical expectation of claims value per period). Their membership 

into a concrete BMS class is reviewed each period according to the number of claims in 

the previous one. Claim-free years are rewarded by discounts or bonuses on a base-pre-

mium; at-fault accidents are penalized by surcharges called maluses. Some overviews on 

how BMS are applied in different countries can be found in [2–4]. 

Following [5], in most commercial BMSs, by knowing the insured’s class in the cur-

rent period and fitting the statistical distribution for the number of claims per period, it is 

possible to determine the probabilities of the insured’s class in the next period. Therefore, 

these BMSs are Markovian. For that reason, the academic literature on BMSs uses exten-

sively MCs for their modeling ([1,5–11]). Therefore, a key question in a BMS is fitting the 

value of the one-step transition probability matrix. Following [12,13], if full knowledge of 
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the probabilities of this matrix is not available, they have to be estimated somehow with 

the uncertainty that any estimation procedure involves. Uncertainty may be due to ran-

domness, hazard, vagueness, incomplete information, etc. In our paper, we consider that 

the claiming process is probabilistic, but the uncertainty about the parameter that governs 

this random behavior is captured by means of a fuzzy number (FN) and, as a consequence, 

fuzzy Markov chains (FMCs) will be used. 

1.2. Novelties 

Although other hypotheses can be taken, such as, for example, considering that the 

number of claims in a period, N, follows a negative binomial distribution ([14]), academic 

literature on BMSs usually assumes that �  is a Poisson random variable (RV). So, 

�~Po(�) and the parameter �, the claim frequency, is perfectly known and can be inter-

preted as a risk measure of the policy. However, in a more realistic approach, some au-

thors like [15] use intervals to quantify the uncertainty about the parameter of a distribu-

tion function that governs a risk variable. This is also the case within a BMS framework of 

[11], who model the uncertainty about � by means of a modal interval. One extended 

way to combine randomness and uncertainty of parameters of distribution functions con-

sists in modeling these parameters as FNs. It has been done both for continuous RVs ([16–

18]), and in the discrete case ([19]). Following this approach, [20,21] and also [15] model 

risk financial parameters with FNs. In the actuarial field, FNs have been used to capture 

the uncertainty of insurance pricing variables ([22]) but also to model parameters that 

quantify risks. In this regard, we can point out [23] in a non-life insurance context, [24] to 

interpret the parameter that quantifies the dependence in a Farlie-Gumbel-Morgestein 

copula, and [25–28] in life insurance pricing. Since any interval can be seen as the �-cut 

of a FN, even in the case of improper intervals ([29]), in this work we consider that � is 

fitted by means of a FN and, more particularly, by a triangular fuzzy number (TFN). So, 

this paper builds up a framework to model Markovian BMSs that embed the standard 

case, where the risk parameter � is crisp, but also the method developed in [11] that 

quantifies this parameter as a modal interval. Standard BMSs provide point values for the 

stationary state and the mean asymptotic premium. Modal BMSs as introduced in [11] 

allow obtaining these variables as modal intervals whose lower and upper bounds may 

be understood as pessimistic/optimistic scenarios. Our method generalizes both types of 

BMSs since it quantifies variables related to BMS as FNs. On the one hand, these FNs can 

be understood as a set of crisp outcomes with an associated possibility measure. On the 

other, these FNs can be interpreted as a set of intervals that come from pessimistic/opti-

mistic scenarios and are structured by means of possibility levels. Figure 1 shows a graph-

ical synthesis of the methodological framework developed in this paper. 

 

Figure 1. Graphical representation of our fuzzy bonus-malus systems (FBMS) model. 
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Other more complex forms of FNs, such as generalized FNs (GFNs) or intuitionistic 

FNs (IFNs), could be considered to quantify uncertain probabilities. Tools like GFNs or 

IFNs provide a more complete capture of uncertainty than FNs. However, their adjust-

ment has a greater cost than in the case of triangular FNs since they incorporate more 

parameters and their computational handle may be more expensive as well. Therefore, 

using TFNs supposes a balance between the simplicity of crisp or modal interval proba-

bilities and more complex representations of uncertain quantities such as GFNs or IFNs. 

It should be noted that there are several scientific fields in which MCs are in use. In 

the field of economics and finance, we can observe applications within Leontief’s input-

output model, credit risk measurement, asset price volatility modeling, life insurance, etc. 

In addition, MCs have shown their usefulness in many other areas: industrial engineering 

(e.g., queuing theory), computer science (e.g., computer performance evaluation and web 

search engines), healthcare (e.g., pandemics transmission or evolution of ICU patients), 

etc. Hence, although our developments are carried out within a non-life insurance context, 

most of the results can be applied to any problem modeled by means of MCs when the 

transition probabilities (or the parameters that define them) are not precisely known.  

The paper is organized as follows. Section 2 describes briefly how BMSs work. Sec-

tion 3 shows the basic concepts of FNs and FMCs used throughout the paper. In Section 

4, a methodologic approach is proposed to fit a fuzzy BMS (FBMS) when the number of 

claims within a period, �, follows a Poisson distribution with fuzzy parameter �. This 

methodology is applied to the Irish BMS. A sensitivity analysis is conducted in Section 5. 

Finally, in Section 6, the work ends with a summary of its main contributions and potential 

extensions. 

2. Markovian Bonus-Malus Systems in Non-Life Insurance 

A BMS is a usual way to deal with risk aversion and moral hazard in some types of 

insurance, e.g., automobile third-party liability insurance [1]. BMSs classify insureds in � 

classes in such a way that the percentage of the base-premium to be paid by the �th class, 

�� , satisfies �� < ����, � = 1,2, … , � − 1. In a BMS, the transition between classes is gov-

erned by a set of rules defined over the insured’s number of claims in the current period. 

To summarize, it can be said that every BMS is determined by three elements (see Table 

1): 

 The initial class, where new insureds are assigned, ��. 

 The premium scale � = (��, … , ��). 

 The transition rules, that is to say, the rules that define the conditions for an insured 

in one class to be transferred to another class in the next period. 

Table 1. Elements of a bonus-malus system (BMS). 

Class Premium Level Class after � Claims 

� �� � = � � = � … � ≥ � 

� ��     

⋮ ⋮     

�� ���
     

⋮ ⋮     

1 ��     

Source: Own elaboration based on [10]. 

Let us model the insured’s class at time � as a discrete stochastic process (��)�∈ℕ, 

being its state space the classes � = {1,2, … , �} ⊂ ℕ. Furthermore, as it is usually done in 

the literature (e.g., [10]), we consider that the BMS is a finite MC, i.e., �(���� = ����| �� =

��, �� = ��, … , �� = ��) = �(���� = ����| �� = ��), ∀��, ��, … , ���� ∈ �. An insurer uses a fi-

nite Markovian BMS when the following conditions hold [1]: 

 

Transition rules 
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 There exists a finite number of classes such that each insured stays in one class 

through each period. 

 The premium for each insured depends only on the class where they stay. 

 The class for a given period is determined by the class in the preceding period and 

the number of claims reported in that period. 

A finite MC is said to be homogeneous if �(���� = �| �� = �) does not depend on 

�. In this case, transition probabilities ��� = �(���� = �| �� = �), i.e., probabilities of mov-

ing from class � to class � in one-step (period), can be collected in a transition matrix 

� = ����� with order �. The elements ��� satisfy ��� ≥ 0 and ∑ ���
�
��� =1. 

If ���
(�)

�
�∈�

 denote the probabilities of initially being in state � ∈ �, the probabilities 

of being in state � ∈ � after � periods, ���
(�)

�
�∈�

 are: 

��
(�)

= ��
(���)

· � = ��
(���)

· � · � = ⋯ = ��
(�)

· �� (1)

where �� is represented by �(�) = ����
(�)

� and ���
(�)

 are the probabilities of moving from 

state � to state � in � period. From Equation (1), it follows that: 

���
(�)

= ���
(�)(���, … , ���, ���, … , ���, … , ���, … , ���) (2)

for some continuous functions ���
(�)

, i.e., the elements in �� are some functions of the el-

ements in �. 

A homogeneous MC is regular if each state is accessible from any other state, either 

in one step or more, i.e., there exists � ∈ ℕ such that ���
(�)

> 0 ∀ �, �. One of the features 

that characterize regular MCs is its stationary distribution, which represents the probabil-

ity of the chain being at each state after a large number of periods, namely, lim
�→�

�� = �, 

where the rows of � are identical. So, any regular MC with transition matrix � has a 

stationary distribution, �, such that: 

� = � · � (3)

The vector � = ����
���,�,…,�

 can be interpreted as the probability that an insured be-

longs to class �, � = 1,2, … , � after � periods, � → ∞. That vector does not depend on the 

insured’s initial class, ��. So, two main outputs in a BMS are: 

 The stationary distribution of ��, �, as defined in Equation (3). 

 The mean asymptotic premium, �∗, i.e., the average premium paid by the insured in 

that stationary distribution, defined as: 

�∗ = � ��

�

���

�� (4)

The mean asymptotic premium, �∗ is a concept of the utmost importance because it 

has been intensively used to assess the efficiency of a BMS (e.g., [1,6,30,31]). 

BMSs consider the number of claims, �, as a discrete RV. In our paper, as it is com-

monplace in actuarial literature, � is supposed to follow a Poisson distribution with pa-

rameter �, �~Po(l), ([1,7–12]). Therefore: 

�(� = �) =
��

�!
��� (5)

where �(·) stands for a probability measure. 

Poisson RVs are often used in actuarial modeling due to their interesting arithmetical 

properties. Furthermore, the risk parameter � can be fitted specifically to each insured 

taking into account relevant rating factors (e.g., gender, age, and social status) by using a 

generalised linear model (GLM) ([5,8,32]). 

If � is modeled with (5), ��� is a function of the risk parameter �, ℎ��(�), in such a 

way that the BMS probabilities in the one-step transition matrix are: 
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ℎ��(�) = ��� =  �
��

�!
������(�)

¥

���

 (6)

where ���(�) = 1 if � causes the transition from � to � and 0 otherwise. 

Numerical application 1. Let � = 0.04 in Equation (5) for the Irish BMS in Table 2. 

The transition matrix, �, that corresponds to this BMS is: 

⎝

⎜
⎜
⎜
⎛

�(� = 0) 0 �(� = 1) 0 0 �(� ≥ 2)

�(� = 0) 0 0 �(� = 1) 0 �(� ≥ 2)

0 �(� = 0) 0 0 �(� = 1) �(� ≥ 2)

0 0 �(� = 0) 0 0 �(� ≥ 1)

0 0 0 �(� = 0) 0 �(� ≥ 1)

0 0 0 0 �(� = 0) �(� ≥ 1)⎠

⎟
⎟
⎟
⎞

 (7)

From (3), � = (0.916232, 0.037394, 0.038921, 0.003861, 0.002523, 0.001069)  and, 

by considering Equation (4), the mean asymptotic premium is �∗ = 51.423. 

Table 2. Irish bonus-malus system. 

Class Premium Level Class after � Claims 

� �� � = � � = � � ≥ � 

6 100 5 6 6 

5 90 4 6 6 

4 80 3 6 6 

3 70 2 5 6 

2 60 1 4 6 

1 50 1 3 6 

Source: [10]. 

In this paper, we will consider that the risk parameter � cannot be determined pre-

cisely. Uncertainty may be the result of different causes: stochastic variability, inaccuracy, 

incomplete information, etc. Stochastic variability can be described by using RVs or sto-

chastic processes, but inaccuracy and incomplete information can be captured by means 

of intervals or FNs. Given that any interval can be interpreted as the �-cut of a FN, in this 

work it is assumed that � is a FN.  

3. Fuzzy Numbers and Fuzzy Markov Chains 

3.1. Fuzzy Numbers 

A fuzzy number is a fuzzy set �� on the referential set ℝ that satisfies (i) �� is nor-

mal, (ii) ��  is convex, and (iii) the � -cuts of �� , �(�) = ��(�), �(�)�, are closed and 

bounded (compact) intervals ∀� ∈ [0,1]. The lower and upper bounds of the FN �(�) 

are: 

�(�) = ��(�), �(�)� = �inf
�∈ℝ

{���(�) ≥ �} , sup
�∈ℝ

{���(�) ≥ �}� (8)

FNs can be interpreted as the extension of the concept of a real number. 

A triangular fuzzy number represented as �� = (��/��/��), is a FN whose �-cuts, 

∀� ∈ [0,1], are, from Equation (8): 

�(�) = ��(�), �(�)� = [�� + (�� − ��)�, �� − (�� − ��)�] (9)

from where, if needed, the membership of �� could be obtained. The core of �� is �� and 

can be understood as the most reliable value of this TFN. i.e., the possibility of ��  is 1. 

The support of �� is [��, ��]. TFNs are used in countless practical applications including 

actuarial ones [22] because they are easy to handle arithmetically and they are well 

adapted to the way humans think of uncertain quantities. Moreover, when the 
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information about a variable is vague and imprecise, the parsimony principle leads us to 

represent that information as simply as possible. The linear shape of TFNs meets that re-

quirement. For instance, the uncertain quantity “approximately 0.04” can be represented 

in a very natural way as the TFN (0.038/0.04/0.042). 

Likewise, let it be a TFN ��: 

�� > � (or ≥ �) if �� > � (�� ≥ �) ∀� ∈ ℝ (10)

�� < � (or ≤ �) if �� < � (�� ≤ �) ∀� ∈ ℝ (11)

Let �  be a continuous real-valued function of �-real variables � = (��, ��, … , ��), 

�(�) = �(��, ��, … , ��). If ��� are not crisp numbers, but FNs ���  with �–cuts ��(�) =

���(�), ��(�)�, � = 1,2, … , �, a FN ��  is induced via � such that �� = �����, ���, … , ����. It is 

often difficult to obtain a closed expression for the membership function of �� . However, 

following [33], the �-cuts of �� , �(�), in the usual case where ��(�), … , ��(�) are not 

interactive, i.e., the variables that they quantify have an independent behavior, can be ob-

tained as: 

�(�) = {�(�)|� = (��, ��, … , ��)Î���(�)} (12)

where ���(�) stands for the rectangular domain: 

���(�) = ���Î���(�), ��(�)�, � = 1,2, … , �� (13)

So, the lower (upper) bounds of �(�), �(�) (�(�)), are the global minimum (maxi-

mum) of �(�) within the rectangular domain in Equation (13), that is to say: 

�(�) = min
�,�

������, �(��)�   and   �(�) = max
�,�

������, �(��)� (14)

being ��, � = 1,2, … , 2�, a vertex of the domain (13) and �(��), � = 1,2, … , �, an extreme 

value of the function � within this domain that takes this value at point � = ��. 

Therefore, if �(��, ��, … , ��) is monotonic, the lower and upper bounds of �(�), 

�(�) and �(�), are in one of the 2� vertexes of (13). Without loss of generality, let us 

suppose that � increases with respect to ��, � = 1,2, … , �, � ≤ �, and decreases in the last 

� − � variables, [34] demonstrates that: 

(�(�) = ��(�), �(�)� = �� ���(�), ��(�), … , ��(�), ����(�), ����(�), … ��(�)� , (15)

� ���(�), ��(�), … ��(�), ����(�), ����(�), … , ��(�)�� 

If ��(�), … , ��(�) are interactive, (15) cannot be used to evaluate �(�). However, 

according to [35], the general formulation to obtain the lower and upper bounds of �(�) 

from Equations (12)–(14) is still valid but now the number of vertexes, �, is less than 2�. 

In [35], the authors study the role of interactive fuzzy variables in decision-making prob-

lems and analyze some particular cases. Concretely, when �(�) is the mathematical ex-

pectation function, ��  is the probability of the �th outcome, and it is quantified as a FN, 

the domain in Equation (13) turns into: 

���(�) = ��� ∈ ���(�), ��(�)�, � ��

�

���

= 1� (16)

and Equation (14) becomes: 

�(�) = min
�

�������   and   �(�) = max
�

������� (17)

due to the fact that �(�) is a linear function. 

It is worth noting that the result ��  of evaluating a non-linear � with the TFNs ��� is 

not necessarily a TFN. However, often ��  admits a good triangular approximation 

through the secant approach. It builds up the shape of the triangular approximate FN 
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�� � to ��  by means of the secant lines that unite the 0-cut and the 1-cut of �� . Such that �� � 

is a TFN as: 

�� ≈ ��� = (��/��/��) = ��(0)/�(1) = �(1)/�(0)� (18)

This approximation, as shown in [36], works pretty well for nonlinear monotonic 

functions of TFNs such as product, division, power, etc. Likewise, [37,38] show that this 

approach fits satisfactorily common actuarial and financial calculations with TFN param-

eters, e.g., the present value of a stream of fuzzy cash-flows. Keeping the triangular shape 

of the initial data when handling FNs is quite interesting. According to [39], complex 

shapes of FNs can generate problems with calculations in computer work or interpreting 

results intuitively. [40] state that a triangular approximate is a kind of defuzzification that 

is richer than just transforming a FN into a crisp representative value. If defuzzification is 

carried out too early, a great loss of information occurs, so it is preferable to drag all the 

fuzzy information in the calculations for as long as possible. The triangular approximation 

involves a compromise between simplification in computation and interpretation, and not 

oversimplifying the value of fuzzy parameters. In addition, TFNs have a very intuitive 

interpretation and, therefore, from the insurance industry point of view, a triangular ap-

proximate to actuarial variables and parameters could be very useful in decision-making 

processes. 

3.2. Fuzzy Markov Chains 

Fuzzy set literature has provided three approaches to MC under fuzziness, namely 

FMC. The first one, due to [41], supposes fuzzy probabilities and proposes calculating the 

matrices ��, ∀� > 1, by applying Zadeh’s extension principle [42]. The second approach, 

in [43], consists of defining the matrix that governs the transition between states by means 

of a fuzzy relation. In the third one, [2], like [41], suppose that the probabilities of the one-

step transition matrix are FNs. However, Buckley and Eslami’s framework of FMCs uses 

restricted matrix multiplication to operate with probabilities in such a way that the con-

straint of being a well-formed probability distribution always holds. That is to say, they 

take into account the interdependence between the probabilities of a distribution function, 

similarly to Equations (16) and (17). This paper follows this last approach. 

Let us assume that some probabilities ���  in the one-step transition matrix � = ����� 

are uncertain and are quantified by means of the FNs ���� , with �-cuts ���(�). Now we 

have a fuzzy transition matrix �� = ������, with 0 ≤ ���� ≤ 1. See Equations (10) and (11). 

Of course, some elements in �� may be crisp since crisp numbers are a particular case of 

a FN. FMCs defined by [2] have uncertainty in the transition probabilities but not in the 

set of outcomes, that is discrete. So, the following constraint on ����  is added: 

∑ ���(1)�
��� = 1. 

To compute the �-period transition matrix, ��(�), and the fuzzy stationary distribu-

tion, �� , the following process is implemented: 

Step 1. For a given � ∈ [0,1] , obtain the matrix of intervals �(�) = ����(�)� =

����(�), �������(�)�. 

Step 2. Define the domain of a row � of this matrix, ����(�), as: 

����(�) = �×���
� ���(�)� ∩ � (19)

where × stands for the cartesian product and � = �(��, ��, … , ��)| ∑ ���
�
��� = 1, ��� ≥ 0�. 

Step 3. Define the domain of the matrix �(�), for the given � ∈ [0,1], as: 

���(�) = �×���
� ����(�)� (20)

This domain defines a set of matrices that satisfy that each row sums up 1 with a 

possibility level of at least �. So, each matrix � = �����, ��� ∈ ���(�), is a crisp MC. 
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Step 4. Since ����(�) in Equation (19) are compact sets, ���(�) in Equation (20) 

is also compact. So, any continuous function applied to its elements has a compact image. 

Then, if Equation (2) is applied, such an image for that � is a compact interval. This in-

terval is set as the �-cut of the FN ����
(�)

, i.e., ���
(�)(�) = ���

(�)
����(�)�, which is surely nor-

mal [2]. 

To determine ���
(�)(�)  we must find the lower and upper bounds, ���

(�)(�)  and 

���
(�)(�) by solving: 

���
(�)(�) = min����

(�)(�)|� ∈ ���(�)� (21)

and 

���
(�)�����

(�) = max����
(�)(�)|� ∈ ���(�)� (22)

Notice that Equations (21) and (22) can be easily solved in low-dimensional problems. 

However, in more complex problems it is necessary to use an algorithm (see, e.g., [44]) or 

a heuristic constrained optimization technique [45]. 

Finally, by performing Steps 1–4 ∀� ∈ [0,1], the FNs ����
(�)

 can be obtained. 

In regards to the fuzzy stationary state, (���, … , ���), its �-cuts ��(�) = ���(�), ��(�)� 

can be determined from Equation (3) as: 

��(�) = min���|� = ��, (���, … , ���) ∈ ���(�)� (23)

��(�) = max���|� = ��, (���, … , ���) ∈ ���(�)� (24)

4. Implementing a Markovian Fuzzy Bonus-Malus System Governed by a Fuzzy Pois-

son Discrete Random Variable 

In this Section, we propose an integral methodology to develop a FBMS under the 

hypothesis that �~Po����. It embeds the fitting of the risk parameter � as a TFN, the ob-

taining of fuzzy transition matrix and the triangular approximate of the stationary distri-

bution calculated by using Equations (23) and (24), and also the determination of the fuzzy 

mean asymptotic premium in Equation (4). 

Step 1. Fit the risk factor � as a TFN. 

We point out three different options to estimate this parameter. 

Option 1 

Given that � has an intuitive interpretation since it is the mean number of claims in 

one period, it may be quantified as a FN based on experts’ opinions. For example, an ex-

pert may judge that a concrete type of driver generates approximately one claim every 5 

years and so the TFN l� = 0.2� = (0.18/0.2/0.22) can be considered. Imprecise or subjec-

tive quantitative predictions can often come from a pool of experts, leading to a set of 

fuzzy quantifications. This set of fuzzy opinions can be aggregated simply by their arith-

metic mean or other more sophisticated methods (see [46–48] for full details).  

Option 2 

Papers [49,50] consider a standard 1 − a statistical confidence interval as the ob-

served a-cut of the FN, for some increasing values of � ≤ a < 1, where � is an arbitrary 

value near 0 (it is often chosen to be 0.001, 0.005 or 0.01). In [50] it is suggested that by 

placing those confidence intervals one on top of the other, a FN close to triangular-shaped 

is obtained. So, we point out two alternatives to apply that idea: 

a) Given that � is the mean value of a Poisson RV, the interval estimates of � can 

be used as the a-cuts of l� . Let us denote as �∗ the mean number of claims in a 

pool of similar contracts, �� the standard deviation of � and � the number of 

policies in the pool. The 1 − a statistical confidence interval for the mean num-

ber of claims is: 
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��∗ − �
���

�
�

,����

��

√�
, �∗ + �

���
�
�

,����

��

√�
� (25)

where �
�

�

�
,����

 stands for the (1 −
�

�
)-percentile of a Student � with � − 1 de-

grees of freedom and �� the standard deviation of the sample. So, l� can be fit-

ted through its a-cuts by doing, from Equation (25): 

�(�) = ��(�), �̅(�)� = ��∗ − �
���

�
�

,����

��

√�
, �∗ + �

���
�
�

,����

��

√�
� (26)

b) Papers [49,51] propose making fuzzy predictions from statistical linear regres-

sion models. In [49] it is stated that a 1 − a statistical confidence interval of co-

efficients adjusted with a linear regression may be interpreted as the a-cut of a 

FN for these coefficients. Therefore, let us suppose that a GLM estimate of � is 

determined, as usual, by: 

ln� = � ����

�

���

 (27)

being �� , � = 1, … , � , the coefficients and ��  the explanatory variables (e.g., 

age, gender, and driving experience in a car insurance context) that are crisp non-

negative observations (in fact, they are usually modeled as dichotomic variables). 

For the estimate of each coefficient, it is possible to generate a FN ��� whose a-

cuts, ��(�), � = 1, … , �, are: 

��(�) = ���(�), ��(�)� = ���
∗ − �

�
�
�

,������
���

, ��
∗ + �

�
�
�

,������
���

� (28)

where ��
∗ is the GLM point estimate of ��  and ���

 the standard deviation of 

that estimate. So, from the fuzzy function ��  = �∑ ��� ��
�
��� , and bearing in mind 

Equations (15) and (28), the following FN �� is induced: 

�(�) = ��(�), �̅(�)� = ��
∑ ��(�)��

�
��� , �∑ ��(�)��

�
��� � (29)

A similar approach may be developed from the results in [51]. However, in this 

case, it must be taken into account that their approach to making fuzzy predic-

tions from a statistical regression is built up from the interval predictions of re-

siduals instead of using interval estimates of coefficients. So ��  = �∑ ����
�
��� ���  

where �̃ is a fuzzy error term induced from the residuals of the conventional 

regression and, so: 

�(�) = ��(�), �̅(�)� = ��∑ �����e(�)�
��� , �∑ �����e(�)�

��� � (30)

Equations (26), (29) and (30) do not give a TFN. However, �� can be approximated as 

a TFN simply by using Equation (18). 

Option 3 

Fuzzy Regression Methods (FRMs) have been applied in several actuarial issues to 

fit relevant variables [52] for a comprehensive description of application areas). In this 

way, [53] fits the term structure of interest rates, [54,55] predicts claim provisions, and 

[25,28] adjusts the Lee-Carter mortality law. 

To fit ��, the fuzzy extension of the log-Poisson regression by [55] may be used. It 

combines the conventional Poisson GLM and the minimum fuzziness principle by [56]. In 

this case, the coefficients in Equation (27) are supposed to be TFNs ��� = ����
/���

/���
�, 

� = 1, … , �. These coefficients are fitted in two stages. At the first stage, the centres ���
 

are adjusted as in a conventional log-Poisson regression for � = 1, … , �. At the second 

stage, the spreads of ��� , ���
− ���

 and ���
− ���

 and, consequently, ���
 and ���

, � =

1, … , � , are fitted by solving a quadratic programming problem that minimizes the 
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fuzziness of the system allowing that estimates on the dependent variable contain its ob-

served values. 

Once the parameters ��� have been estimated, obtaining ��  = �∑ ��� ��
�
���  is straightfor-

ward (see Equation (29)). 

Let us remark again that although ��� is a TFN, �� is not. Nevertheless, �� can be ap-

proximated as a TFN ��′ = (��/��/��) with Equation (18): 

�� = �∑ �����
�
��� ,  �� = �∑ �����

�
���    and  �� = �∑ �����

�
���  (31)

Step 2. Obtain the fuzzy transition matrix. 

We now suppose that after performing any of the options in Step 1, and the corre-

sponding triangular approximate, the risk parameter is given as the TFN �� = (��/��/��), 

with a-cuts, ∀� ∈ [0,1], �(�) = ��(�), �(�)� = [�� + (�� − ��)�, �� − (�� − ��)� ].  

Fuzzy transitions probabilities come from the fuzzified version of Equation (6): 

ℎ������ = ���� =  �
���

�!
�������(�)

¥

���

 (32)

To obtain the �-cuts of ���� by using Equation (15), it is necessary to determine the 

sign of the first derivative of ℎ��(�). Let us show the case of the Irish BMS whose transition 

matrix is Expression (7), and ���  is either zero, �(� = 0) , �(� = 1) ,  �(� ≥ 1)  or 

�(� ≥ 2). Then: 

�(� = 0) = ��� (33)

�(� = 1) = ���� (34)

�(� ≥ 1) = 1 − ��� (35)

�(� ≥ 2) = 1 − (1 + l)��� (36)

So, in Equations (33)–(36), 
��(���)

��
< 0 , 

��(���)

��
> 0 , 

��(���)

��
> 0 , 

��(���)

��
> 0  and 

therefore: 

�(� = 0)(�) = ����(�), ���(�)� (37)

�(� = 1)(�) = ��(�)���(�), �(�)���(�)� (38)

�(� ≥ 1)(�) = �1 − ���(�), 1 − ���(�)� (39)

�(� ≥ 2)(�) = �1 − �1 + �(�)� ���(�), 1 − �1 + �(�)� ���(�)� (40)

Similarly, any other probabilities for different FBMSs could be calculated. Notice that 

the FNs whose �-cuts are Equations (37)–(40) do not have a triangular shape but they 

admit a triangular approximation by using the secant approach described in Section 3.1. 

If this is done, we obtain: 

��(� = 0) ≈ �����/����/����� (41)

��(� = 1) ≈ �������/������/������� (42)

��(� ≥ 1) ≈ �1 − ����/1 − ����/1 − ����� (43)

��(� ≥ 2) ≈ �1 − (1 + ��)����/1 − (1 + ��)����/1 − (1 + ��)����� (44)

Numerical Application 2. Example 3 in [11] (p. 846) considers � = [0.038, 0.042] in 

Equation (6), and obtains the modal interval version of this crisp transition matrix: 

� = �

�(� ≥ 1) �(� = 0) 0

�(� ≥ 1) 0 �(� = 0)

�(� ≥ 1) 0 �(� = 0)
� 
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Let us suppose that this interval is the 0-cut of the fuzzy estimate of a triangular �� in 

a Poisson FBMS (i.e., �(0) = [0.038, 0.042] ) and �(1) = 0.04 , that is to say, �� =

(0.038/0.04/0.042). By considering Expression (32) and using Equations (41)–(44), the 

fuzzy transition matrix, ��, which corresponds to a FMC, is: 

�� = �

(0.037287/0.039211/0.041130) (0.958870/0.960789/0.962713) 0

(0.037287/0.039211/0.041130) 0 (0.958870/0.960789/0.962713)

(0.037287/0.039211/0.041130) 0 (0.958870/0.960789/0.962713)
�. 

From this matrix, elements different from 0 in the associated matrix �(�) = ����(�)� 

are, from Equation (9): 

�(� = 0)(�) = ���(�) = ���(�) = ���(�) = [0.958870 + 0.001919�, 0.962713 − 0.001924�] 

�(� ≥ 1)(�) = ���(�) = ���(�) = ���(�) = [ 0.037287 + 0.001924�, 0.041130 − 0.001919�]. 

Numerical Application 3. In example 4 of [11] (p. 848), it is considered the risk factor 

� = [0.038, 0.042] for an Irish BMS. Like in our numerical application above, again, this 

interval is the 0-cut of the triangular fuzzy estimate for ��  and �(1) = 0.04 , i.e., �� =

(0.038/0.04/0.042). So, the triangular approximates by Equations (41)–(44) to the proba-

bilities of the transition matrix in Expression (7) and induced by Equation (32) are: 

���� = ���� = ���� = ���� = ���� = ���� = ��(� = 0) ≈ (0.958870/0.960789/0.962713) 

���� = ���� = ���� = ��(� = 1) ≈ (0.036583/0.038432/0.040273) 

���� = ���� = ���� = ��(� ≥ 1) ≈ (0.037287/0.039211/0.041130) 

���� = ���� = ���� = ��(� ≥ 2) ≈ (0.000704/0.000779/0.000858) 

��� = 0 otherwise 

Let us remark that approximates in Equations (41)–(44) produce small errors of the 

real values by Equations (37)–(40). Table 3 shows that when approximating ��(� ≥ 1) 

with Equation (43), the errors incurred on the lower and upper bounds of its �-cuts are 

negligible since they are never over 0.001%. Moreover, notice that we measure the perfor-

mance of the calculations on a scale of eleven grades of possibility. Following [38], this 

scale provides sufficient discernment without being excessive since we are using impre-

cise data and, therefore, more precision is not necessary for a FN representation. 

Table 3. α-cuts of p�(N ≥ 1), it’s triangular approximate, p��(N ≥ 1), and errors. 

 �(� ≥ �)(�) �′(� ≥ �)(�) Error* 

� �(� ≥ �)(�) �(� ≥ �)(�) �′(� ≥ �)(�) �′(� ≥ �)(�) ���(�) ���(�) 

1 0.03921 0.03921 0.03921 0.03921 0.000% 0.000% 

0.9 0.03902 0.03940 0.03902 0.03940 0.000% 0.000% 

0.8 0.03883 0.03959 0.03883 0.03959 0.001% 0.001% 

0.7 0.03863 0.03979 0.03863 0.03979 0.001% 0.001% 

0.6 0.03844 0.03998 0.03844 0.03998 0.001% 0.001% 

0.5 0.03825 0.04017 0.03825 0.04017 0.001% 0.001% 

0.4 0.03806 0.04036 0.03806 0.04036 0.001% 0.001% 

0.3 0.03786 0.04055 0.03786 0.04055 0.001% 0.001% 

0.2 0.03767 0.04075 0.03767 0.04075 0.001% 0.001% 

0.1 0.03748 0.04094 0.03748 0.04094 0.000% 0.000% 

0 0.03729 0.04113 0.03729 0.04113 0.000% 0.000% 

Source: Own elaboration. * ���(�) =
��(���)(�)���(���)(�)�

�(���)(�)
 and ���(�) =

��(���)(�)���(���)(�)�

�(���)�(�)
. 
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Step 3. Determine the fuzzy stationary distribution function. 

Once the fuzzy transition matrix associated with the FBMS has been obtained, to de-

termine the fuzzy stationary state, Steps 1 to 4 in Section 3.2 should be applied and, there-

fore, optimization problems in Equations (23) and (24) must be solved. Notice that alt-

hough the probabilities ��� , � = 1, … , � , are obtained by solving complex optimization 

problems, the results of the numerical applications 4 and 5, that have been obtained with 

the R package FuzzyStatProb by [13] (see Figures 1 and 2) suggest that its triangular ap-

proximate by using Equation (18), ���
� = ����/���/���� = ���(0)/��(1) = ��(1)/��(0)� 

provides a satisfactory fitting. 

Numerical Application 4. Now we compute the fuzzy stationary distribution 

(���, ���, ���) for the fuzzy transition matrix in numerical application 2. In order to do so, 

we use the R package FuzzyStatProb described in [13], which is based on the use of Equa-

tions (23) and (24). The pseudo-codes and codes used are included in Appendixes 1 and 

2, respectively, and the result of (���, ���, ���) in Figure 2. 

It should be remarked that the probabilities obtained by [11] (p. 847) are intervals 

whose values are the 0-cuts of the probabilities in our FMC. 

 

Figure 2. Results of Numerical Application 2. Source: Own elaboration 

Numerical Application 5. Let us consider the Irish BMS in numerical application 3. 

Table 4 shows the supports and cores of the fuzzy stationary state ���, � = 1, … ,6 when 

considering fuzzy probabilities in Equations (37)–(40). The pseudo-codes and the codes of 

the R package FuzzyStatProb that have been used to get these results are included in Ap-

pendixes 1 and 2, respectively. Figure 3 depicts the graphical representation of ���, � =

1, … ,6. 

Table 4. Results of the Irish BMS when �� = (0.038/0.04/0.042)—supports and cores 

Stationary prob-

abilities 
� = � � = � 

��� ⌈0.912318, 0.920394⌉ 0.916232 

��� ⌈0.035705, 0.039075⌉ 0.037394 

��� ⌈0.037080, 0.040717⌉ 0.038921 

��� ⌈0.003519, 0.004186⌉ 0.003861 

��� ⌈0.002275, 0.002758⌉ 0.002523 

��� ⌈0.000954, 0.001190⌉ 0.001069 

Source: Own elaboration.  
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Figure 3. Results of the Irish BMS when �� = (0.038/0.04/0.042)—graphical representation. Source: Own elaboration 

The shape of the fuzzy stationary distribution suggests that their triangular approx-

imate must work quite well. Table 5 shows that the relative deviations of the lower and 

upper bounds of the approximate of ���, ��
� (�), with respect to the respective bounds of 

��(�) are always under 1%. Therefore, the above intuition is confirmed in the case of ���. 

We have also observed that this fact also applies to the other stationary probabilities in 

the numerical application. So, it can be written: 

��� ≈ (0.912318/0.916232/0.920394). 

��� ≈ (0.035705/0.037394/0.039075). 

��� ≈ (0.037080/0.038921/0.040717). 

��� ≈ (0.003519/0.003861/0.004186). 

��� ≈ (0.002275/0.002523/0.002758). 

��� ≈ (0.000954/0.001069/0.001190). 

It is worth pointing out that the intervals fitted for the stationary state in [11] (p. 848) 

are the 0-cuts of ���, � = 1, … ,6, in the fuzzy version of the Irish BMS. 
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Table 5. �-cuts of ���, it’s triangular approximate, ���
� , and errors. 

 ��(�) ��
� (�) Error* 

� ��(�) ��(�) ��
� (�) ��

� (�) ���(�) ���(�) 

1 0.00386 0.00386 0.00386 0.00386 0.000% 0.000% 

0.9 0.00381 0.00390 0.00383 0.00389 0.345% 0.188% 

0.8 0.00379 0.00393 0.00379 0.00393 0.092% 0.082% 

0.7 0.00375 0.00398 0.00376 0.00396 0.368% 0.405% 

0.6 0.00371 0.00400 0.00372 0.00399 0.442% 0.145% 

0.5 0.00368 0.00403 0.00369 0.00402 0.289% 0.194% 

0.4 0.00364 0.00408 0.00366 0.00406 0.324% 0.474% 

0.3 0.00360 0.00411 0.00362 0.00409 0.537% 0.484% 

0.2 0.00356 0.00413 0.00359 0.00412 0.655% 0.272% 

0.1 0.00354 0.00418 0.00355 0.00415 0.406% 0.550% 

0 0.00352 0.00419 0.00352 0.00419 0.000% 0.000% 

Source: Own elaboration. * ���(�) =
���(�)���

� (�)�

��(�)
 and ���(�) =

���(�)���
� (�)�

��(�)
. 

Two considerations are worth highlighting: 

 FBMSs generalize the results of crisp and modal interval BMSs as can be checked by 

comparing the results of numerical applications 1 and 5. The results of the crisp case 

are exactly the 1-cut of estimates from FBMSs whereas the estimates obtained by [11] 

(p. 848) coincide, except in the order of the interval lower and upper bounds in some 

cases, with the 0-cut of the results by our FBMSs. Likewise, operating by means of �-

cuts allows obtaining the simulations of intermediate scenarios between that of max-

imum fuzziness (generated by the 0-cut of ��) and that with maximum reliability (that 

comes from �(1)), as well as their grade of possibility. This information can be ex-

tremely useful to the decision-maker since it makes easier the sensitivity analysis for 

each possible value of Poisson parameter �. 

 Although a TFN �� does not produce triangular probabilities ����
(�)

 and ���, their tri-

angular approximates work pretty well. We consider this result interesting for two 

reasons: 

a) The calculations can be done easily with less computational effort. For exam-

ple, in the two first rows of Table 5, we have performed the calculations on a 

scale with eleven grades of possibility. So, 20 optimization programs have 

been solved for a single probability (10 minimizing programs for the lower 

bounds of �-cuts � = 0, 0.1, … , 0.9, and other 10 maximizing programs for 

the respective upper bounds). Likewise, obtaining the 1-cut implies nothing 

but solving a conventional Markov chain. This computational effort is re-

duced drastically by using the triangular approximate in Equation (18), which 

leads us to obtain the results in columns 3 and 4 of Table 5. In this case, it is 

enough to solve 2 optimization programs (1 minimizing program for the 

lower bound of the 0-cut and 1 maximizing for the upper one) and also, of 

course, evaluating a conventional BMS in �� . The interest in this result is am-

plified by the fact that the Irish BMS is relatively simple (there are 6 classes) 

and so it embeds only 36 ����
(�)

 and 6 probabilities ���. However, BMSs often 

have more than 20 classes (e.g., Belgian or German BMSs). 

b) From the perspective of an actuary, a triangular approximate of the fuzzy 

probabilities can be very useful. A TFN provides an estimate of the most fea-

sible, minimum, and maximum probability that can be interpreted intuitively 

without any knowledge of fuzzy set theory (FST). Therefore, the triangular 

approximates presented in this paper could facilitate the use of FBMSs in the 

insurance industry. 
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Step 4. Obtain the mean asymptotic premium, �∗. 

In order to obtain the asymptotic mean premium, we have to evaluate the fuzzy ver-

sion of Equation (4), ��∗ = ∑ ��
�
��� ���. Bearing in mind Equations (12)–(14), (16) and (17), 

we first consider the domain: 

���(�) = ��� ∈ ���(�), ��(�)� , � ��

�

���

= 1 � (45)

and then the set ��∗ = ∑ ��
�
��� �� |�� ∈ ���(�)�. The �-cuts of ��∗, �∗(�) = ��∗(�), �∗(�)�, 

are obtained by solving: 

�∗(�) = min ��∗ = � ��

�

���

��  |�� ∈ ���(�), ��(�)� , � ��

�

���

= 1 � (46)

�∗(�) = max ��∗ = � ��

�

���

��  |�� ∈ ���(�), ��(�)� , � ��

�

���

= 1 � (47)

which are linear programming problems and so solvable, e.g., with the simplex algorithm. 

In fact, the problem to solve in this case is the same as that in [35]. 

A triangular approximate for ��∗, ��∗� = (��
∗/��

∗/��
∗ ), can be obtained by using the 0-cut 

and the 1-cut obtained from Equations (46) and (47) or, alternatively, if these results have 

not been previously calculated, by considering the TFNs ����
/���/���

� , � = 1, … , �, and 

solving the following linear problems: 

��
∗ = min ��∗ = � ��

�

���

��  |�� ∈ ��� �
, ���

� , � ��

�

���
= 1 � (48)

��
∗ = max ��∗ = � ��

�

���

��  |�� ∈ ����
, ���

� , � ��

�

���
= 1 � (49)

In this latter way, 20 linear problems that come from Expressions (46) and (47) when 

��∗ is performed with a scale of eleven grades of possibility are reduced to 2 linear pro-

grams. Moreover: 

��
∗ = � ��

�

���

���  (50)

Numerical Application 6. Let us consider again the Irish BMS in numerical applica-

tion 3, i.e., �~Po�(0.038/0.04/0.042)�. By using the premium level of each class (see Ta-

ble 2), we obtain the �-cuts of the fuzzy mean asymptotic premium, ��∗ , from Equations 

(45)–(47). These results are in Table 6, which also show the �-cuts of its triangular approx-

imate, ��∗�, by Equations (48)–(50). From that table, it can be seen that ��∗ is practically 

triangular since the errors by �′(�) in fitting �(�) are negligible. Notice that the triangu-

lar approximate ��∗� provides a straightforward generalization of both the point estimate 

by a crisp BMS, 51.423, as well as the modal interval estimate in [11] (p. 849), [51.344, 

51.498].  
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Table 6. α-cuts of b�∗, it’s triangular approximate b�∗� and its errors 

 �∗(�) �∗�(�) Error* 

� �∗(�) �∗(�) �∗’(�) �∗′(�) ���(�) ���(�) 

1 51.423 51.423 51.423 51.423 0.000% 0.000% 

0.9 51.415 51.430 51.415 51.430 0.000% 0.000% 

0.8 51.407 51.438 51.407 51.438 0.000% 0.000% 

0.7 51.399 51.445 51.399 51.445 0.000% 0.000% 

0.6 51.391 51.453 51.391 51.453 0.000% 0.000% 

0.5 51.383 51.460 51.383 51.460 0.000% 0.000% 

0.4 51.375 51.468 51.375 51.468 0.000% 0.000% 

0.3 51.367 51.475 51.367 51.475 0.000% 0.000% 

0.2 51.359 51.483 51.359 51.483 0.000% 0.000% 

0.1 51.352 51.491 51.352 51.491 0.000% 0.000% 

0 51.344 51.498 51.344 51.498 0.000% 0.000% 

Source: Own elaboration. * ���(�) =
��∗(�)��∗�(�)�

�∗(�)
 and ���(�) =

��∗(�)��∗�(�)�

�∗(�)
. 

5. Sensitivity Analysis 

In this Section, we evaluate the sensitivity of the errors of the triangular approximates 

seen in Section 4 with respect to the parameter �. The following assumptions are consid-

ered: 

 The core of �� may be low (0.04), medium (0.5), or high (0.96). 

 The uncertainty of ��, which can be measured by its spreads, is symmetrical, i.e., left 

and right spreads are equal. This uncertainty can take two possible values: 0.002 or 

0.015. 

 We use the Irish BMS in Table 2. 

Only results for ��(� ≥ 1) and ��� are shown. Furthermore, in order to avoid very 

long calculations, we have performed them on a scale with five grades of possibility. How-

ever, it can be verified that for other transition and stationary probabilities, and for a 

greater scale of grades of possibility, the conclusions to be drawn are practically the same. 

Table 7 shows that: 

 The goodness of triangular approximates is always better than acceptable as can be 

checked in Table 7. In the worst case, for ��� , � = 0.5  and risk parameter �� =

0.025/0.04/0.055, errors are below 5%. 

 Errors (as defined for Tables 3 and 5) increase with respect to the uncertainty of risk 

parameter and decrease with respect to the value of its core. 

Table 7. �-cuts of ��(� ≥ 1) and ���, their triangular approximate and errors for different parameters �� 

 �� = (�. ���/�. ��/�. ���) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����)) 

 �(� ≥ �)(�) Error ��(�) Error 

� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.03921 0.03921 0.000% 0.000% 0.00386 0.00386 0.000% 0.000% 

0.75 0.03873 0.03969 0.001% 0.001% 0.00376 0.00395 0.044% 0.041% 

0.5 0.03825 0.04017 0.001% 0.001% 0.00367 0.00405 0.060% 0.054% 

0.25 0.03777 0.04065 0.001% 0.001% 0.00358 0.00415 0.046% 0.039% 

0 0.03729 0.04113 0.000% 0.000% 0.00352 0.00419 0.000% 0.000% 

 �� = (�. ���/�. ��/�. ���) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����) 

 �(� ≥ �)(�) Error ��(�) Error 
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� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.03921 0.03921 0.000% 0.000% 0.00386 0.00386 0.000% 0.000% 

0.75 0.03560 0.04281 0.057% 0.047% 0.00318 0.00460 2.985% 1.955% 

0.5 0.03198 0.04639 0.085% 0.058% 0.00257 0.00540 4.958% 2.208% 

0.25 0.02834 0.04996 0.072% 0.040% 0.00202 0.00626 4.757% 1.420% 

0 0.02469 0.05351 0.000% 0.000% 0.00153 0.00717 0.000% 0.000% 

 �� = (�. ���/�. ��/�. ���) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����) 

 �(� ≥ �)(�) Error ��(�) Error 

� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.39347 0.39347 0.000% 0.000% 0.15618 0.15618 0.000% 0.000% 

0.75 0.39317 0.39377 0.000% 0.000% 0.15617 0.15618 0.000% 0.000% 

0.5 0.39286 0.39408 0.000% 0.000% 0.15617 0.15618 0.001% 0.001% 

0.25 0.39256 0.39438 0.000% 0.000% 0.15617 0.15618 0.000% 0.000% 

0 0.39226 0.39468 0.000% 0.000% 0.15617 0.15618 0.000% 0.000% 

 �� = (�. ���/�. �/�. ���) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����) 

 �(� ≥ �)(�) Error ��(�) Error 

� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.39347 0.39347 0.000% 0.000% 0.15618 0.15618 0.000% 0.000% 

0.75 0.39119 0.39574 0.003% 0.003% 0.15615 0.15618 0.024% 0.023% 

0.5 0.38890 0.39800 0.004% 0.004% 0.15611 0.15620 0.032% 0.030% 

0.25 0.38661 0.40025 0.003% 0.003% 0.15604 0.15623 0.024% 0.022% 

0 0.38430 0.40250 0.000% 0.000% 0.15596 0.15625 0.000% 0.000% 

 �� = (�. ���/�. ��/�. ���) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����) 

 �(� ≥ �)(�) Error ��(�) Error 

� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.61711 0.61711 0.000% 0.000% 0.09850 0.09850 0.000% 0.000% 

0.75 0.61692 0.61730 0.000% 0.000% 0.09842 0.09857 0.000% 0.000% 

0.5 0.61672 0.61749 0.000% 0.000% 0.09835 0.09864 0.000% 0.000% 

0.25 0.61653 0.61768 0.000% 0.000% 0.09827 0.09872 0.000% 0.000% 

0 0.61634 0.61787 0.000% 0.000% 0.09820 0.09879 0.000% 0.000% 

 �� = (�. ����/�. ��/�. ����) 

 ��′(� ≥ �) = (�. �����/�. �����/�. �����) ���
� = (�. �����/�. �����/�. �����) 

 �(� ≥ �)(�) Error ��(�) Error 

� �(� ≥ 1)(�) �(� ≥ 1)(�) ���(�) ���(�) ��(�) ��(�) ���(�) ���(�) 

1 0.61711 0.61711 0.000% 0.000% 0.09850 0.09850 0.000% 0.000% 

0.75 0.61567 0.61854 0.001% 0.001% 0.09794 0.09905 0.003% 0.003% 

0.5 0.61422 0.61997 0.002% 0.002% 0.09738 0.09962 0.004% 0.003% 

0.25 0.61278 0.62139 0.001% 0.001% 0.09683 0.10018 0.003% 0.003% 

0 0.61132 0.62281 0.000% 0.000% 0.09628 0.10074 0.000% 0.000% 

Source: Own elaboration. 

Table 8 shows the mean asymptotic premiums for the cores of �� considered in Table 

7 and the most uncertain scenario (left and right spread equal to 0.015). It can be checked 

that triangular approximates ��∗� always reach a practically perfect match to ��∗, i.e., er-

rors (as defined for Table 6) are very close to 0.  
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Table 8. α-cuts of b�∗, it’s triangular approximate and errors for different parameters λ�. 

 �� = (�. ���/�. ��/�. ���) �� = (�. ���/�. �/�. ���) �� = (�. ����/�. ��/�. ����) 

 ��∗� = (��. ���/��. ���/��. ���) ��∗� = (��. ���/��. ���/��. ���) ��∗� = (��. ���/��. ���/��. ���) 

 �∗(�) Error �∗(�) Error �∗(�) Error 

� �∗(�) �∗(�) ���(�) ���(�) �∗(�) �∗(�) ���(�) ���(�) �∗(�) �∗(�) ���(�) ���(�) 

1 51.422 51.422 0.000% 0.000% 81.396 81.396 0.000% 0.000% 93.246 93.246 0.000% 0.000% 

0.75 51.270 51.579 0.012% 0.012% 81.215 81.574 0.004% 0.004% 93.200 93.292 0.001% 0.001% 

0.5 51.121 51.739 0.016% 0.016% 81.033 81.751 0.005% 0.005% 93.153 93.338 0.001% 0.001% 

0.25 50.977 51.904 0.012% 0.012% 80.848 81.925 0.004% 0.004% 93.106 93.383 0.001% 0.001% 

0 50.836 52.073 0.000% 0.000% 80.662 82.098 0.000% 0.000% 93.058 93.427 0.000% 0.000% 

Source: Own elaboration 

6. Summary and Further Research 

BMSs are often modelled by means of MCs with crisp probabilities. In this paper, it 

is considered that transition probabilities of Markovian BMSs are not crisp but uncertain. 

This uncertainty is captured by using a FN, thus giving rise to the concept of FBMSs. 

FBMSs modeling is based on the concept of FMC by Buckley and Eslami in [12]. As a 

result, conventional BMSs can be understood as a particular case of our model where tran-

sition probabilities are singletons. The model in [11] represents the uncertainty by means 

of modal intervals. Since its results can be interpreted as the 0-cuts of ours, that model can 

also be seen as a particular case of our FBMS. 

We assume, as it is often done in actuarial literature, that the number of claims in a 

period is a Poisson RV. Nonetheless, due to uncertainty, its parameter � is not a real num-

ber but a TFN. So, to implement the model presented in the paper, it is necessary, firstly, 

to structure available information of the behavior of that RV. From this information, the 

Poisson parameter can be fitted by means of a TFN. Three alternatives to do so are pro-

posed. Subsequently, by using �-cut arithmetic, transition probabilities, the stationary 

distribution function, and the mean asymptotic premium of the FBMS are obtained by 

means of their �-cuts. The lower and upper bounds of these �-cuts can be understood as 

the result of a sensitivity analysis of the BMS that evaluates two extreme scenarios with 

possibility �. That output can be very useful in actuarial decision-making processes since 

it provides a set of sensitivity analyses that is structured on the basis of their grade of 

reliability. 

Although the mean number of claims, �, is assumed to be a TFN, the outputs from 

our FBMS do not maintain that shape. However, in the numerical applications developed 

within the framework of the Irish BMS, we have verified that all the outputs obtained 

from a triangular � are well approximated by a TFN that maintains the support and core 

of the original FN. This result is quite interesting. On the one hand, other more complex 

shapes of FNs can produce drawbacks in information modeling, such as problems with 

calculations in computer implementation. In this regard, we have observed that the num-

ber of optimizing problems to be solved in order to obtain transition probabilities, the 

stationary distribution, and the mean asymptotic premium is reduced drastically. Like-

wise, TFNs are very attractive from an insurance decision-making perspective since TFNs 

admit a very intuitive interpretation even without any knowledge of FST. At least, a TFN 

provides an estimate of the maximum, minimum, and most feasible values of a variable. 

Therefore, we feel that the triangular approximations introduced in this document would 

make it easier to use FMCs in the implementation of BMSs by the insurance industry. 

Our methodologic approach can be extended, with the necessary adaptations, to 

other assumptions for the RV number of claims. Likewise, as far as we are concerned, 

there are several topics that may be the object of further research. Firstly, a wider investi-

gation on how to apply a fuzzy Poisson regression in a BMS context must be carried out. 

Secondly, a more in-depth evaluation of the goodness of triangular approximations to 
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BMS probabilities and the mean asymptotic premium is needed. In this respect, a wider 

range for the values of �, a greater number of classes in the BMS, and other methods to fit 

triangular approximates must be tested. Thirdly, it is also needed to extend our model to 

the case in which fuzzy uncertainty in the BMS does not only appear in the number of 

claims but also their cost. Moreover, to model �, instead of TFNs, other types of FNs, such 

as GFNs or IFNs, could be considered. We are aware that these tools allow capturing un-

certainty with more nuances than FNs. However, their fitting has a greater cost than TFNs 

since it implies adjusting more parameters. Additionally, implementing computational 

operations with them is more expensive. This last issue is crucial in our context, especially 

in complex BMSs like, e.g., the German one. So, we feel that applying FNs suppose a bal-

ance between the simplicity of crisp or interval probabilities and more complex represen-

tations of uncertain quantities such as GFNs or IFNs. Finally, to evaluate the efficiency of 

a BMS, it is usually calculated the elasticity of the mean premium (4) with respect to the 

risk parameter �. To do so, numerical simulations for point values of � within the refer-

ence interval [0,1] are implemented (see, e.g., [2]). The use of fuzzy logic may be of interest 

in this concern. For example, that reference interval can be granulated into linguistic labels 

such as “low risk”, “medium risk” and so on, similarly to that proposed by [27] and [57]. 

Therefore, elasticity evaluations may be made on the basis of linguistic labels instead of 

point values on [0,1]. Fuzzy linguistic Markov chains, presented by [58], may be the start-

ing point for this. 
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Appendix 1. Pseudo-Codes of Numerical Applications 2 and 4 

# ---------------------------------- 

# Numerical Application 2 

# ---------------------------------- 

 
��(� ≥ 1) ← (0.037287/0.039211/0.041130) 
��(� = 0) ← (0.958870/0.960789/0.962713) 
 

�� ← �

��(� ≥ 1) ��(� = 0) 0

��(� ≥ 1) 0 ��(� = 0)

��(� ≥ 1) 0 ��(� = 0)
� 

 

�����  ← FuzzyStationaryDistribution(��) 

 

Plot����� for � = 1,2,3 

 

 

# ---------------------------------- 

# Numerical Application 4 

# ---------------------------------- 
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��(� = 0) ← (0.958870/0.960789/0.962713) 
��(� = 1) ← (0.036583/0.038432/0.040273) 
��(� ≥ 1) ← (0.037287/0.039211/0.041130) 
��(� ≥ 2) ← (0.000704/0.000779/0.000858) 
 

�� ←

⎝

⎜
⎜
⎜
⎛

��(� = 0) 0 ��(� = 1) 0 0 ��(� ≥ 2)

��(� = 0) 0 0 ��(� = 1) 0 ��(� ≥ 2)

0 ��(� = 0) 0 0 ��(� = 1) ��(� ≥ 2)

0 0 ��(� = 0) 0 0 ��(� ≥ 1)

0 0 0 ��(� = 0) 0 ��(� ≥ 1)

0 0 0 0 ��(� = 0) ��(� ≥ 1)⎠

⎟
⎟
⎟
⎞

 

 

�����  ← FuzzyStationaryDistribution(��) 

 

Plot����� for � = 1,2, … ,6 

 

 

Appendix 2. R Codes of Numerical Applications 2 and 4 

# ---------------------------------- 

# Numerical Application 2 

# ---------------------------------- 

library(FuzzyNumbers) 

library(FuzzyStatProb) 

 

a = TriangularFuzzyNumber(0.037287, 0.039210, 0.041130) 

b = TriangularFuzzyNumber(0.958870, 0.960790, 0.962713) 

zero = TriangularFuzzyNumber(0, 0, 0) 

allnumbers = list(a = a, b = b, zero = zero) 

 

transitions = matrix(data = c("a", "b", NA, "a", NA, "b", "a", NA, "b"), nrow = 3, byrow = T) 

states = c("01", "02", "03") 

rownames(transitions) = states 

colnames(transitions) = states 

stationary = fuzzyStationaryProb(data = transitions, options = list(regression = "linear", 

fuzzynumbers = allnumbers)) 

 

m <- matrix(1:3, nrow = 1, ncol = 3, byrow = TRUE) 

layout(mat = m, heights = c(0.25, 0.25, 0.25, 0.25)) 

 

for (state in states){ 

  cat("State ", state, "\n") 

  fz = stationary$fuzzyStatProb[[state]] 

  acuts = stationary$acuts[[state]] 

  print(acuts[acuts$y == 0.001,]) 

  print(acuts[acuts$y == 0.999,]) 

  par(mar = c(4, 4, 2, 1)) 

  plot(fz, col = "blue", main = paste("State ", state),  

       cex.lab = 1.1, lwd = 2, xaxt = "n") 

  left = supp(fz)[1] 

  right = supp(fz)[2]  

  center = core(fz)[1] 

  at = round(c(left, right, center), digits = 4) 
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  axis(1, at = at, labels = FALSE) 

  text(x = at, y = par("usr")[3] - 0.1,  

       labels = at, srt = 35, xpd = NA) 

  points(acuts) 

  print("---------------") 

} 

 

# ---------------------------------- 

# Numerical Application 4 

# ---------------------------------- 

 

pN0 = TriangularFuzzyNumber(0.958870, 0.960789, 0.962713) 

pN1 = TriangularFuzzyNumber(0.036583, 0.038432, 0.040273) 

pNgt1 = TriangularFuzzyNumber(0.037287, 0.039211, 0.041130) 

pNgt2 = TriangularFuzzyNumber(0.000704, 0.000779, 0.000858) 

 

allnumbers2 = list(pN0 = pN0, pN1 = pN1, pNgt1 = pNgt1, pNgt2 = pNgt2) 

 

transitions2 = matrix(data = c( "pN0", NA, "pN1",   NA,    NA, "pNgt2", "pN0", NA,   

NA, "pN1",    NA, "pNgt2", NA, "pN0",   NA,    NA, "pN1", "pNgt2", NA,    NA, 

"pN0",   NA,    NA, "pNgt1", NA,    NA,  NA,  "pN0",    NA, "pNgt1", NA,    NA,  

NA,     NA, "pN0", "pNgt1" ), nrow = 6, byrow = T) 

states2 = c("01", "02", "03", "04", "05", "06") 

 

rownames(transitions2) = states2 

colnames(transitions2) = states2 

 

stationary2 = fuzzyStationaryProb(data = transitions2, options = list(regression = "linear", 

fuzzynumbers = allnumbers2)) 

 

m <- matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE) 

layout(mat = m, heights = c(0.25, 0.25, 0.25, 0.25)) 

for (state in states2){ 

  cat("State ", state, "\n") 

  fz = stationary2$fuzzyStatProb[[state]] 

  acuts = stationary2$acuts[[state]] 

  print(acuts[acuts$y == 0.001,]) 

  print(acuts[acuts$y == 0.999,]) 

  par(mar = c(4, 4, 2, 1)) 

  plot(fz, col = "blue", main = paste("State ", state),  

       cex.lab = 1.1, lwd = 2, xaxt = "n") 

  left = supp(fz)[1] 

  right = supp(fz)[2]  

  center = core(fz)[1] 

  at = round(c(left, right, center), digits = 5) 

  axis(1, at = at, labels = FALSE) 

  text(x = at, y = par("usr")[3] - 0.1,  

       labels = at, srt = 35, xpd = NA)   

  points(acuts) 

  print("---------------") 

}  
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