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Abstract

A mechanism for the formation and crystallization processes of bone-like apatite grown on 

non-stoichiometric silicocarnotite (SC) is here proposed. Single-phase SC powders and 

ceramics were obtained from fixed mixtures of hydroxyapatite and bioactive glass 45S5. The 

bioactive behavior of SC was assessed by immersion in Hank´s solution at different times. 

Afterward, a systematic theoretical-experimental study of the structural properties at the 

micro and nanoscale using TEM was performed and correlated with SEM, EDX, XRD, and 

Raman techniques to determine the apatite mineralization process from the SC phase. The 

initial stage of apatite formation from SC was identified as the hydration and further 

polymerization of silanol groups, resulting in a silica-based hydrogel, which plays a critical 

role in the ionic exchange. As a result of the adsorption of ionic species from the medium 

into the silica-based hydrogel, the precipitation of crystalline apatitic structures starts through 

the emergence of newly formed SC nanocrystals, which act as a template for the 

crystallization process of a substituted apatite with SC-like structure. Then, due to the 

polymorphism between SC and HAp structures, the apatite layer retains the SC periodic 

arrangement following an epitaxial-like growth mechanism. Identification of the apatite layer 

formation mechanism is critical to understand its physical and chemical properties, which 

controls the long-term dissolution/precipitation rate of bioactive materials and their 

performance in the biological environment.

Keywords: Silicocarnotite bioceramic, Apatite mineralization process, Crystal growth, 

Transmission electron microscopy.
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1. Introduction

Third generation biomaterials allow processes of living tissue renewal and regeneration 

through stimuli at a molecular level and the combination of bioactive and resorbable 

properties of materials 1–3. Bioceramics belonging to the Ca2SiO4-Ca3(PO4)2-NaCaPO4 

ternary system have been recognized to have improved bioactive, biocompatible, osteogenic 

and angiogenic properties compared to other conventional calcium phosphate ceramics such 

as hydroxyapatite and -tricalcium phosphate, and similar to bioactive glasses 4–6. These 

characteristics make this ternary system suitable to develop potential materials to be used in 

bone tissue engineering applications 6–9, e.g., fabrication of 3D scaffolds. The 

biocompatibility and biodegradability of the material combined with a 3D porous structure 

result in a biomimetic implant with favorable mechanical properties 10,11.

One of the phases of this complex ternary system is the Ca5-x(PO4)2+x(SiO4)1-x; x ≤ 0.3 phase, 

also known as silicocarnotite (SC), which crystallizes in an orthorhombic structure, with a 

Pnma space group and lattice parameters a = 6.737 Å, b = 15.5080 Å, and c = 10.132 Å 

exhibiting a wide range of solid solution with CaO, SiO2 and P2O5 12–16. 

SC is also considered a highly silicate-substituted HAp Ca10(PO4)6-x(SiO4)x(OH)2-x 

polymorphism with x = 2.0 resulting in the Ca5(PO4)2SiO4 stoichiometry. The lattice 

parameters (a, b, c) and cell volumes (V) of both crystalline structures have been compared 

as follows:aSC ≈ cHAp, bSC≈ 3* aHAp, and cSC ≈ aHAp and VSC ≈ 2VHAp 
12. 

Similarities between SC and HAp structures have enabled the synthesis of SC, starting from 

a silicon-substituted apatite precursor using mechanochemical or aqueous precipitation 

methods 12,17–19. In both cases, the structure of HAp is destabilized due to the formation 

of hydroxyl vacancies into the hexagonal channel leading to SC formation 12,19. On the 

other hand, the sol-gel process or solid-state reaction synthesis routes have also been used to 

obtain a stoichiometric SC phase 20–24. Regarding the biological properties of SC ceramics, 

in-vitro studies have demonstrated the enhancement and acceleration of the osteogenic 

differentiation process of bone cells in comparison with HAp 20,25,26. 
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Despite the promising characteristics of SC, there is a limited number of publications related 

to the bioactive behavior of this bioceramic and its effect on cell responses. The importance 

of the material´s bioactivity lies in the fact that the formation of a bone-like apatite and the 

ionic exchange are key characteristics to generate an environment that promotes osteogenesis, 

resulting in a natural bonding interface between the surrounding tissue and the bioactive 

material 27,28. The microstructural characteristics related to the apatite crystal formation, 

such as size, structure, and morphology affect the biological performance of the material. For 

instance, needle-like apatite nanocrystals have shown a higher in-vivo osteoinductive 

potential and degradation compared to large plate-like crystals. Moreover, accelerated 

osteoinduction and bone healing capacity were observed on smaller and carbonate plate-like 

apatites 28.

The mechanism of bone-like apatite formation for Si-containing ceramics in a variety of 

compositions has been widely reported, including the case of bioactive silicate glasses 29–31. 

The presence of Si has been proved to have a significant influence on the nucleation rate and 

formation kinetics of apatite due to a faster dissolution of silicate ions that later form a 

hydrated layer formed by a silica hydrogel on the surface, which provides favorable sites for 

apatite nucleation 31,32. For SC, Serena et al. reported the formation of bone-like apatite on 

monophasic SC material, finding a layer formed by agglomerates of a silica-phosphate 

amorphous phase. This layer contains nanometric precipitates of apatite-like phase following 

the bioactive response of calcium silicate/phosphate biomaterials, and the formation of HAp, 

CaO–SiO–H2O–gel (C-S-H gel) and CaO–SiO–PO4-H2O–gel phase (C-S-P-H gel) based on 

the CaO–SiO2–P2O5–H2O phase diagram 32.

Notwithstanding the progress reported so far, an in-depth study, not only of the multilayer 

apatite formation but also of its crystallization and maturation processes is required to 

determine the importance of the resemblance of this layer to the mineral phase of bone and 

the effect of mimicking the chemical and nanostructural features of bone on the cell-material 

interactions. Regarding the chemical composition of natural bone,  it is well known that small 

contents of ions such as Na and Mg may contribute to an accelerated mineralization process 
33,34. 
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In the present contribution, a mechanism of formation and maturation of bone-like apatite 

grown from non-stoichiometric SC ceramics, with Na and Mg contents, is proposed based 

on an integrated analysis of the structural, chemical, and morphological characteristics. 

2. Material and methods

2.1. Sample preparation

Non-stoichiometric SC ceramics were prepared following a processing route reported 

elsewhere 16. Briefly, HAp (Cinvestav, Mexico) 35 and bioactive glass 45S5 (Vitryxx®, 

Germany) powders were ball milled (SPEX 8000D) then pressed using a die with 10 mm in 

diameter and sintered at 1220 ºC for 4 h in a chamber furnace (Thermolyne 46100, 

Thermofisher Scientific). Phase formation was confirmed by Rietveld refinements of XRD 

patterns and Raman spectroscopy. 

2.2. Bioactivity and degradation assessment

Bone-like apatite formation was assessed following the protocols and characterization 

techniques established in a previous study 36. Summarizing, SC ceramics were immersed in 

25 mL of a modified Hank's solution (H8264, Sigma-Aldrich, Germany) for periods of 0, 6, 

14, and 28 days at 37 ºC in static conditions, replacing the solution every 3rd day. Samples 

were characterized before and after immersion using an X-ray diffractometer (XRD), Raman 

spectroscopy, SEM/EDX, and TEM to identify the structural, chemical, and morphological 

changes related to apatite formation at the nano and microscale.

SC degradation was evaluated in pH conditions similar to the physiological environment 

according to ISO 10993 standard, Part 14: “Identification and quantification of degradation 

products of ceramic materials” 37. Ceramics were ground to obtain a homogeneous powder 

of 325-400 mesh size. Finally, the SC powder was exposed to a buffer solution of 

TRIS(hydroxymethyl)aminomethane with HCl with a pH of 7.4 at 37 °C ± 1°C for 120 ± 1 

h. The quantification of degradation products of SC was carried out using an inductively 

coupled plasma optical emission spectrometer (ICP-OES, Optima 8300, Perkin Elmer).

2.3. Characterization

2.3.1. Morphological and chemical changes

Morphological changes at the surface and cross-section of the samples, before and after 
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bioactivity tests were assessed using a scanning electron microscope JSM–7610F (JEOL) 

with a secondary electron (SE) detector at 1 kV electron acceleration voltage for the surfaces 

and 10 kV for the backscattering detector (BSE) for the cross-sections characterization. 

Before SEM measurements, samples were coated with a thin layer of gold-palladium to 

improve their conductivity. A freshly fracture surface was employed for cross-section 

evaluation. On the other hand, changes in chemical composition were monitored using an 

EDX analyzer (Bruker) coupled with the SEM.

2.3.2. Structure

Grazing incidence X-ray diffraction (GXRD) at an angle of 1° was performed to address the 

structural characteristics of the ceramics before and after exposure to Hank´s solution. A 

Siemens D-500 diffractometer equipment with monochromatic CuKα radiation (λ = 1.5406 

Å) operating at 30 kV and 20 mA was used. The studied region was established in a 2θ scale 

using steps of 0.02° intervals with a counting time of 2 s at each step. The crystallographic 

parameters such as phase wt.%, crystallite size, and lattice parameters of the bone-like apatite 

and SC phase were obtained by Rietveld refinements of the XRD patterns using GSAS® and 

following the methodology reported elsewhere 35.

Local transformations of the SC crystalline phase into apatite were monitored by HRTEM 

using a JEOL J2010F transmission electron microscope equipped with a field emission 

electron gun and operated at 200 kV. For the HRTEM image simulation, atomic models were 

created using RHODIUS 38, and images were simulated using the TEM-SIM software 39. The 

procedure reported in 36 was employed for TEM samples preparation and measurement. In a 

brief description, SC ceramics were ground in an agate mortar, and the resulting powder was 

exposed to Hank´s solution for 0, 6, and 28 days. The exposed samples were afterward dried 

in a muffle at 37 ºC for 24 h and finally dispersed in ethanol and deposited on a Cu holder. 

The same procedure reported in 36 was employed for sample preparation and measurement. 

Raman spectroscopy measurements were performed before and after bioactivity tests using 

a confocal Raman microscope (Bruker SENTERRA) with a 532 nm excitation source, in the 

350-3600 cm-1 frequency range, at a spectral resolution of 0.5 cm-1 and an integration time 

of 40 s.

3. Results and discussion
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A systematic study was performed at the micro- and nano-scale levels on SC samples before 

and after Hank´s solution immersions to address structural and microstructural changes 

taking place during the biomineralization process.

3.1. Morphological and chemical analysis

Fig. 1 shows micrographs recorded with SEM at different magnifications of the surface of 

SC ceramics before and after 6 days of immersion in Hank´s solution. The surface of as-

sintered SC ceramics is shown in Fig. 1a, where the typical combination of faint 

microstructure with cracks and pores, is observed 16. Micrographs with higher magnification 

are shown in Fig. 1b, evidencing the presence of protuberances and blurred grain boundaries. 

Homogeneous chemical composition was confirmed, measuring point-by-point using EDX 

in several areas of the ceramic surface. The correspondent values are reported in Table 1. 

After 6 days of immersion (Fig. 1c), a considerable increase in superficial cracks and a 

decrease in surface porosity from 5.32  0.29 to 1.27  0.10 % measured by images analysis 

using the ImageJ® software were detected. Moreover, the appearance of nodular structures 

with diameters around 750 nm is also noticed, which are randomly distributed all over the 

surface. 

In contrast, nodular structures of about 80 nm were observed during the apatite mineralization 

process for stoichiometric SC ceramics 32, and are considerably lower than the diameter of 

the structures found in the present work. This effect can be associated with the non-

stoichiometry of the SC phase used in this study and the ability to exchange other ionic 

species. These nodular structures represent the early stages of bone-like apatite formation or 

immature apatite, which is composed of either amorphous calcium phosphates or calcium 

silicates and can be considered the basic units of the apatite 27,32,35,40. The inset of Fig. 1d 

shows the texture of these nodules and their coalescence to form dune-like apatite aggregates. 

The composition of the apatite nodules that have grown from the hydrated layer is 

homogeneous along the surface, covering the entire surface and filling the native porosity of 

the ceramic. EDX measured higher Mg and P contents, and a generalized decrease in Si, Na, 

and Ca contents in comparison to initial ceramic was also observed in Table 1. The 

coalescence and growth process of dune-like apatite aggregates continues with the immersion 

time, as it is observed after 14 days of exposure to Hank´s solution (Fig. 2a.). 
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At this time point, the dune-like apatite agglomerates reached sizes around 3 m (~ 4 times 

bigger than the size measured at 6 days). The micrograph of Fig. 2b shows changes in the 

morphology of these agglomerates and their microstructure in comparison with the sample 

immersed by 6 days (Fig. 1d) at the same magnifications. At this stage, agglomerates are 

formed with thousands of plate-like crystals (Fig. 2d). Moreover, a cross-section of SC 

ceramics is shown in Fig. 2c, where a dense bone-like apatite layer of about 1.7 m in 

thickness has grown. The growth behavior, surface roughness, and size values of these dune-

like apatite aggregates match with those reported in previous studies 41–43. In the case of 

polydopamine-coated tricalcium silicate (TCS) disks after 14 days of immersion in simulated 

body fluid (SBF) solution, it was suggested the formation of a bone-like apatite layer on the 

hydrated TCS followed by a layer-by-layer growing mechanism 41–43.

After 28 days of immersion, a similar microstructure to the one observed at 14 days is noticed 

(Fig. 3a) with slight differences in the size of the dune-like apatite agglomerates (diameters 

close to 4 m) leading to vanished boundaries between them (Fig. 3b). The densification and 

thickness of the bone-like apatite scale grown on the SC surface are shown in cross-section 

in Fig. 3c and 3d, where the dense scale is presumably formed by stacking layers of about 3 

m dune-like agglomerates. Additionally, in Fig. 3d the cross-section of a hollow dune 

suggests the coalescence of agglomerates followed by their densification. 

On the other hand, the cross-section image of Fig. 4a shows not only the apatite layer at the 

surface but also filling the internal pores of SC ceramics due to the penetration of the fluid 

through the native open porosity of sample, which allows ion-exchange and interdiffusion 

phenomena after 6 days of immersion. A closer look into the internal pores shows an 

immature apatite characterized by the presence of elongated nanocrystals with a lens-like 

morphology distributed within the pores. These morphological features have been previously 

reported and attributed to the Mg content into the crystalline phase 44,45. After 28 days of 

immersion, a densified apatite is detected inside the pores showing morphological 

characteristics similar to the apatite observed at the surface (see Fig. 4b). These micrographs 

confirmed that the formation of apatite in the internal ceramic pores is due to interdiffusion 

phenomena observable in depths of at least 25 m in the ceramic. This interdiffusion 
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mechanism that leads to apatite formation into the ceramics pores agrees with that reported 

for SC ceramics 32.

SEM micrographs and EDX measurements suggest a mechanism of apatite formation similar 

to the reported for other calcium silicates and calcium silicophosphates, in which the 

precipitation of immature dune-like apatite is developed after the dissolution and hydration 

of silicon-rich species promoting the nucleation sites for the dissolved Ca2+, PO4
3- and other 

ions 31,41. Once smooth apatite nodules are formed after 6 days, mature apatite results in 

rounded structures made out of thousands of nanocrystals, as observed in Fig. 1d and 2d. 

This behavior is a continuous process involving the growth and coalescence of agglomerates 

resulting in the apatite thickness layer increase reaching around 3 m after 28 days (see Fig. 

3a and c). 

The morphological changes observed at the ceramics surface and cross-sections can be 

correlated with variations in chemical composition, as reported by Zhang et al. in 46 for CaO-

MgO-SiO2-based ceramics. For these cases, the dissolution of Ca2+, Mg2+, and Si4+ ions were 

followed by the adsorption of inorganic compounds (Ca2+, Mg2+, SiO3
2-, CO3

2- ) through the 

silica hydrogel layer and the Mg present in the ceramics reduced the local concentration of 

Na+, Ca2+, and Si4+ ions, well as the degradation rate. In the SC case, a similar phenomenon 

was observed after 6 and 28 days of immersion, where a continuous increase in the content 

of Mg and Cl and a simultaneous decrease of Na, Ca, and Si were detected. The resulting 

bone-like apatite has a Ca + Na + Mg / P + Si ratio of 1.69,  as a result of the maturation and 

crystallization process. The gradients of the elemental composition of the apatite layer values 

are reported in Table 1.

3.2. Structural characterization

X-Ray Diffraction 

The X-ray diffraction patterns (Fig. 5a) were analyzed by Rietveld refinement using GSAS® 

to determine structural parameters and, therefore, to track the structural changes that led to 

apatite formation (Fig. 5b). The refinements were performed using two theoretical patterns: 

SC PDF 40-393 with Pnma space group and lattice parameters a = 6.737 Å, b = 15.5080 Å, 

c = 10.132 Å to determine the structural changes as a function of the immersion time and 
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HAp PDF 9-432 with P63/m space group and lattice parameters a = b = 9.432 Å, c = 6.881 

Å, to quantify the apatite formation. 

Structural changes were investigated at different periods of immersion in Hank´s solution 

between 0 to 28 days. After the immersion, a continuous loss in the intensity of SC peaks 

was noticed (Fig. 5a). The main effects were visible on the peaks in the region between 32.5º 

and 35º, with the almost total disappearance of the (133) plane after 28 days of immersion. 

Moreover, the formation of a new peak around 26º is observed after 14 days, which 

corresponds to the (002) plane of the HAp, indicating the presence of a new apatite phase 

formed from the SC phase. After 28 days, a slight broadening of the main peak of the SC 

phase in the range of 31.62 to 31.68, corresponding to the (033) plane, suggests the presence 

of a second peak identified as the (211) plane of the HAp. The analysis by Rietveld 

refinement confirmed increments in the apatite content from 30, 55, and 65 wt.% after 6, 14, 

and 28 immersion days, respectively (Fig. 4b). Moreover, apatite crystallite size started with 

values below 100 nm at 6 days, tripling its size, after 28 days of immersion. 

The most important feature to notice at this point for the apatite mineralization process from 

the SC phase is the absence of the amorphization stage observed in other silicon calcium 

phosphates and bioactive glasses  9,47–49. Instead, the shape of the peaks indicates the presence 

of highly crystalline phases even after 28 days of immersion for the SC ceramics; considering 

that the apatite thickness is around 3 m, the fact that the diffraction peaks of SC phase 

correspond to the ceramic substrate can be neglected (Fig. 3c). 

Although this effect can be observed in different literature reports, no clear explanation has 

been delivered so far. Therefore, complementary studies based on TEM and Raman 

spectroscopy measurements and analyses were undertaken in this work. 

Transmission electron microscopy

SC powder was studied before and after immersion in Hank’s solution by HRTEM and 

SAED in the TEM to determine the influence of the original SC crystalline structure on the 

bone-like apatite formation and its crystallization process at the nanometric scale. 

SC particles before immersion are presented in Fig. 6 and Fig. 7. Fig. 6a shows a particle 

with rounded edges and a size larger than 200 nm. The same area was analyzed by SAED 
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(Fig. 6b), and the pattern was indexed according to the [101] zone axis of the SC structure 

(space group #62 Pnma, PDF 40-393), evidencing the existence of a single crystalline phase. 

Fig. 7a and b revealed a highly periodic arrangement of atoms; in both cases, lattice fringes 

correspond to a d = 0.28 nm lattice spacing. 

After 6 days of immersion, SC particles interacted with Hank's solution generating two 

different zones (Fig. 8). A first region is composed of an amorphous layer at the edges or 

outer sides of the SC particles, which corresponds to the hydrated silica layer, C-S-P-H gel, 

that allows the ionic exchange between the ceramics and the physiological medium. 

The amorphous nature of the zone marked by arrows in Fig. 8a was determined by the 

absence of electron-diffraction patterns and is evidence of the early stage of the apatite 

formation. A second region is distinguished in the center of Fig. 8a by the presence of a 

crystalline zone with a periodic arrangement in which the lattice fringes are highly defined 

and can be understood either as a stacked array of same-oriented crystals or by a single crystal 

(Fig. 8b). This zone is the result of the crystallization process of C-S-P-H gel, the ionic 

species adsorbed and its size matches with the crystallite size determined by Rietveld 

refinement after 6 days of immersion for both the SC and the apatite phases, which is around 

80 nm (see Fig. 5b and c). FFT analysis of Fig. 8b shown in Fig. 8c shows the spots 

corresponding to the crystalline zone. This result is in contrast to the TEM observations in 

other calcium phosphates or calcium silicophosphates 36 after 6 days of immersion, where 

several crystals are randomly distributed in the amorphous matrix or hydrated layer. It has 

been reported that this geometry of the growing crystals increases their length with CO3
2- ion 

contents 50.

For powders after 28 days of immersion (see Fig. 9 and Fig. 10), crystals with lengths 

between 200 and 1000 nm were observed with a different morphology from that before 

immersion. The edge of the larger crystals is composed of elongated and thin nanocrystals 

(Fig. 9b) that overlap and form thicker crystals (Fig. 9c), as showed in the darkest areas, 

which have less pointed edges. These crystals are overlapped in a highly periodic 

arrangement of a crystalline lattice evidenced in Fig. 10. The pattern contrasts generated by 

the periodic arrangement in the HRTEM images (Fig. 10a and b) changed in comparison with 

the SC powder before immersion (see Fig. 6). It is important to remark that the SAED pattern 
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in Fig. 10c can be successfully indexed using either the SC structure (space group #62, Pnma) 

oriented along the [101] zone axis or the apatite structure (space group #176, P63/m) oriented 

along the [120] zone axis.  

The lattice fringes associated with a d = 0.527 nm determined in the inset of Fig. 10a are 

similar to the theoretical values of dSC (101) = 0.561 nm and dHAp (101) = 0.526 nm. In the case 

of the lattice fringes associated with a d = 0.847 nm are similar to the theoretical values of 

dSC (011) = 0.848 nm and dHAp (100) = 0.815 nm. Despite the clear formation of apatite on the 

surface of SC, the typical interplanar distances of apatite grown from other corresponding 

calcium phosphates or silicophosphates d = 0.34 nm and which are associated with the 

orientation of plane (002) are not observed, being this effect usually observed in natural 

mineralization processes 36,51.

Because of the importance of a more thorough understanding of better the nature of this 

phenomenon, and clarify the presence of SC, apatite, or the coexistence of both, HRTEM 

image simulations using a multislice approach were conducted using the TEM-SIM software 
39, based on atomic models created using the RHODIUS 38 software. The atomic models were 

built up at different growth thicknesses from 0, 1, 2, 4, 6 and 8 nm of an apatite layer (to 

imitate different growth times) on a constant 2 nm SC layer, aligned along the coherent zone 

axes found in the experimental images (see Fig. 10a). The interaction with the simulated 

electron beam was carried out perpendicular to the assembly of both layers simulating images 

of HRTEM taken experimentally at the apatite side. After comparing the HRTEM simulated 

images with the experimental ones, it can be seen that the simulated image corresponding to 

the initial SC layer presents a hexagonal contrast pattern, which is in good agreement with 

the experimental image of the powder before immersion (see Fig. 11b and h). As the 

thickness of the apatite layer in the model increases, the hexagonal contrast transforms into 

horizontal stripes in a preferential direction in the simulation (see Fig. 11d-g). This result is 

consistent with the stripe contrast observed in the experimental HRTEM image obtained from 

the powder after 28 days of immersion (Fig. 11i). Based on these results, the possibility of 

indexing the electron pattern obtained for the SC powders after 28 days of immersion in 

Hank's solution is associated with the apatite formation mechanism, which mimics the 

original SC structure.
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Raman spectroscopy

Raman spectra of SC ceramics recorded before and after immersion in Hank´s solution during 

6, 14, and 28 days, in the range of 350–3600 cm-1, are presented in Fig. 12. The spectrum of 

HAp has been incorporated for comparative purposes, in which the main vibrational modes 

of the HAp phase were identified; the PO3
4- group at a wavenumber around 440 cm-1 (ν2 

symmetric bending mode), 600 cm-1 (ν4 antisymmetric bending mode), 967 cm-1 (ν1 

symmetric stretching mode) and 1070 cm-1 (ν3 antisymmetric stretching mode) 13,16,32. For 

the SC phase before the immersion, the most intense band around the 953 cm−1 showed the 

combined contribution of phosphate and silicate: the symmetric stretching mode of silicate 

and the ν1 mode of the phosphate group. Representative silicate bands are observed in the 

range of 848-850 and 587 cm−1 associated with the ν1 and ν2 vibrational modes of the SiO4
4− 

13,32.

As the immersion time increases, the intensities of all the vibration modes of the SiO4
4− group 

are clearly attenuated. Moreover, the characteristic band of the CO3
2- group is visible at about 

1090 cm-1 after 6 days of immersion, which has been associated with carboapatite phases 
13,32.On the other hand, vibrations of –PO3 and –PO2 groups in phosphate amorphous phases 

can contribute to this band broadening between 1000 and 1300 cm-1. Finally, other broadband 

is observed around 1450 cm-1, which can be related to the presence of CO3
2- groups and Si-

containing apatite phases. Some authors have assigned this band around 1490 cm-1 to a 

carbonate ion in a carbonated hydroxyapatite phase 28,52–54. It is important to note that despite 

the low intensity of the band at 855 cm-1, which is characteristic of SC, the characteristic 

position of the SiO4
4- mode is kept. It is also worth to remark that the OH-  vibration mode at 

3574 cm-1, typical of HAp is not observed at any immersion time, and the main peak of the 

Raman spectra for all samples after immersion showed the same position as the SC sample 

before immersion. The remaining band at 848 cm-1 associated with the SiO4
4- group suggests 

that in the formed apatite the SiO4
4- substitute the OH-, which explains the absence of 

hydroxyl group. This substitution in the apatite structure has already been reported elsewhere 
12,17,19.
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Finally, comparing the spectra of the HAp with the SC samples immersed in Hank’s solution, 

it can be seen that the spectra coincide more with the vibration modes of the SC than those 

from HAp, including the apatite from SC after 28 days in Hank´s solution.

3.3. Mechanisms of apatite formation and first stages of maturation from SC

During immersion, specific morphological changes are noticeable at the SC ceramic surface 

as a result of the interaction with the physiological medium promoting a Si-rich hydrated 

layer, which provides favorable sites for the nucleation of an apatitic structure 32. This silica 

hydrogel formed due to the polymerization of diverse silanol groups (i.e., -Si-O-H) results 

from the dissolution of silicate ions and its bonding with OH- groups (see Fig. 7).

An apatite growth formation mechanism from SC has been established by Serena et al. 32, 

considering the hydration process of the CaO-SiO2-P2O5 system in which the presence of 

H2O results in the destabilization of SC leading to the formation of an apatite-like structure, 

calcium silicate and portlandite in Ca2SiO4-rich SC, while in Ca3(PO4)2-rich SC, the 

hydration results in the formation of HAp, CaO–SiO–H2O–gel (C-S-H gel) and CaO–SiO–

PO4-H2O–gel phase (C-S-P-H gel). Moreover, the SC obtained in this work from the 

HAp/BG mixture is a Ca3(PO4)2-rich, as was previously reported in 16. Based on this, after 

immersion in Hank´s solution, the formation of apatite-like structures, C–S–H, and C-S-P-H 

hydrogels, due to SC hydration, will be expected. The processes of precipitation and 

crystallization in different apatite structures are the result of a dynamic ionic exchange 

between the exposed material and ionic species available in the physiological medium. 

Rietveld refinement results in Fig. 5b indicates the formation of a bone-like apatite as 

expected from the hydration process. At the same time, the presence of the SC phase is also 

evidenced. Since the bone-like apatite layer observed after 14 days of immersion (see Fig. 

2c) presents a homogeneous thickness along the entire surface of about 2 μm, there is no 

possibility that the XRD SC peaks observed in Fig. 5a originate from the SC original surface. 

These experimental observations lead us to raise the following hypothesis: The SC phase 

observed after the immersion process is a result of the adsorption of ionic species from the 

medium into the C-S-P-H gel, giving the conditions for the SC precipitation process. Being 

these new SC crystals, the structural template that conduces to the growth of a bone-like 
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apatite with similar SC crystallographic characteristics. This mechanism is presented in Fig. 

13.

Based on this, the following reasoning is proposed to describe the bone-like apatite growth 

from SC. It is known that the C-S-H and C-S-P-H gels act as precipitation media for the 

crystalline formation of apatitic structures such as HAp and SC, considering that a highly 

silicate-substituted HAp Ca10(PO4)6-x(SiO4)x(OH)2-x with x = 2.0 results in an SC 

Ca5(PO4)2SiO4 stoichiometry 12,13. 

Comparing both crystallographic structures, it can be observed that they share the same 

FWSC = FWHAp (1 formula weight, 265 Å3) and have a ρSC ≈ ρHAp 12,13. Additionally, the 

relationships between their lattice parameters are aSC ≈ cHAp, bSC≈ 3* aHAp, and cSC ≈ aHAp 

and VSC ≈ 2VHAp. These similarities between both structures give the conditions for epitaxial 

growth. The HRTEM image simulations support this affirmation in Fig. 11; the simulated 

structures assembly at different HAp thickness model the experimental mineralization 

process, which results in the epitaxial bone-like apatite growth, mimicking the SC structure. 

This growth behavior allows indexing the SAED pattern in both crystalline structures. With 

these bases, we propose that the crystallization process of C-S-P-H gel into SC acts as a pre-

conditioning matrix to guide the crystallization of highly silicate-substituted HAp. This 

statement might explain the lack of changes in the XRD patterns after immersion (see Fig. 

5) and the remnant vibrational mode of SiO4
4- in the Raman spectrum and the absence of the 

OH- group (see Fig. 12). 

The closeness and similarity between both structures promote the growth of a bone-like 

apatite structure aligned to the main crystallographic planes of SC minimizing the nucleation 

barrier and accelerating its crystallization process as observed after 6 days of immersion (Fig 

5) in comparison with the crystallization process of other calcium phosphates in HAp 36. Both 

phases exhibit very close main diffraction peaks, as can be observed in Fig. 5a; the main peak 

of SC is located in the range of 31.62 and 31.68  (2θ) with interplanar distances between 

0.283 and 0.282 nm, while one of the HAp main peaks is at 31.78 with an interplanar 

distance of 0.281 nm. 

Additionally, results of crystallite size and lattice strain associated with the a parameter of 
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SC remaining phase after 6, 14, and 28 immersion days are presented in Fig. 5c. Before and 

after ceramic´s immersion, SC crystalline phase was identified with strains in its lattice 

parameters calculated using equation 1. The SC phase quantified by Rietveld refinement as 

a function of the immersion time shows an abrupt decrease of the a lattice parameter after 6 

days of immersion approaching its theoretical value.

  (1)𝑠𝑡𝑟𝑎𝑖𝑛 = (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 ― 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 )𝑥100

The obtained values suggest substitutions in the atomic positions, which correspond to Ca2+ 

for Na+ or Mg2+, and Si4+ for P5+ due first to the non-stoichiometric Ca3(PO4)2-rich SC phase 

produced from a solid solution 16 and second, the crystallization of C-S-P-H hydrogel into 

SC nanocrystal with average size of a about 70 nm. 

The destabilization of original SC lattice leads to the release of the SiO4
4- ions which will 

later promote the silanol network formation and in conjunction with the absorption of media 

ions (i.e., Na+, Ca2+, P5+, Mg2+, and Si4+) form the new precipitated SC nanocrystals with a 

Ca5-x(PO4)2+x(SiO4)1-x stoichiometry. Once the new precipitated SC is established, this 

provides the conditions for the continuous growth of a layer-by-layer epitaxial apatitic 

structure through the dynamic ionic exchange with the physiological media. As a result, a 

dense multi-substituted bone-like apatite layer is built up in a chemically-graded structure 

due to the decrease of the chemical activity of the SiO4
4- ions through the apatite layer. The 

formation of SiO4
4- vacancies in the new precipitated SC structure (Ca5(PO4)2SiO4) gives 

place to the incorporation of either OH- or CO2
3-, forming a multi-substituted apatite 

Ca10−xNax(PO4)6−y−2z(SiO4)y+z(CO3)x+z(OH)2−y 12,55 preserving the crystal structure of SC. 

This stoichiometry has been obtained in the synthesis of silicon-substituted hydroxyapatite 

that, in some cases, resulted in SC formation 12,55.

Two phenomena can co-occur, or one precedes the other, but both result in a highly 

substituted apatite formation that is structurally similar to SC. As its thickness increases, it 

generates HAp diffraction peaks that do not appear in the SC structure, such as the (002) 

plane, forming a structure that presents the superposition of the main peaks of both phases 

and is highly crystalline.
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3.4. Degradation

Ionic species concentrations in TRIS and Hank´s solutions before and after 120 h of 

immersion of SC powders are summarized in Table 2. Both solutions were kept at constant 

temperature (37 ºC) and pH (7.4) to evaluate the effect of the solution composition on the 

degradation behavior of as-fabricated SC powder. As observed in Table 2, the TRIS solution 

contains a very low ions concentration compared to Hank´s solution, so it is expected that 

the presence of certain ions affects the dissolution reaction of the tested material 56. After the 

degradation test in the TRIS solution, the leached ions with higher concentrations are Ca2+ 

and Na+. 

For crystalline ceramics, the degradation process starts with the ionic exchange between ionic 

species in water, particularly H+ and alkali components 56. Therefore, considering the 

composition of SC and the selective dissolution process of the different ionic species, high 

concentration values of metallic ions are expected. On the other hand, for Hank´s solution, 

only Si and Mg concentrations are higher compared to the composition of the control 

solution, a similar phenomenon has been associated with the formation of the alteration layer 

typically in the corrosion of glasses and crystalline ceramics. Three different stages are 

proposed to describe the degradation mechanism of this kind of materials: stage 1) ionic 

exchange between the ionic species in the aqueous media and ionic components of the 

ceramic exposed, stage 2) hydrolysis of network forming species, and stage 3) dissolution of 

the hydrolyzed species 56.

According to the current experimental observations, the initial ionic exchange occurs upon 

the SC ceramics to get in contact with Hank´s solution promoting different chemical reactions 

such as hydration or ion exchange (stage 1). Once the initial contact with Hank´s solution 

takes place, a hydrolysis process occurs to form the C-S-P-H gel, as a result, the ion exchange 

and different redox reactions still under debate (stage 2). Finally, the dissolution of the 

different species contained in the C-S-P-H gel gives the condition for the precipitation of a 

highly substituted apatite with SC-like structure (stage 3). Furthermore, the Si concentration 

increase in Hank´s solution after 120 h is attributed to the dissolution of silica hydrogel as a 

result of the incorporation of ions such as Na and Ca for the process of the apatite formation.
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It has been reported that the formation of the apatite layer in silicate ceramics follows a 

dissolution–precipitation mechanism. Once the alkali components are released, the 

hydrolysis of network silica forming species (silica hydrogel) starts allowing the 

incorporation of ions from the solution 56,57. 

In the biological aspect, the leached ions concentration in both solutions is among the ranges 

considered non-cytotoxic. In the case of Si4+ ions, some literature reports have shown that 

concentrations from 1 to 100 ppm promote osteogenic differentiation of stem cells in the 

absence of any external osteoinductive factors 58. 

On the other hand, it has been reported that Si4+, Ca2+, and Mg2+ bioactive ions work together 

to regulate cell behavior and achieve different effects. The combination of these ions 

presented both positive and negative synergistic effects with a concentration-dependent 

manner 46. An optimal value for osteogenic differentiation was reported with concentration 

values of 104.69, 13.13, and 33.36 ppm for Ca, Mg, and Si ions, respectively. Additionally, 

an inhibitory effect was found with contents of 119.15, 10.99, and 45.08 ppm for Ca, Mg, 

and Si, respectively 46. Considering that the concentrations measured in Hank´s solution are 

close to the reported values, further biological studies are needed to determine the effect of 

the ionic release of SC on cell response.

4. Conclusions

The apatite-growth mechanism from SC is proposed in this work, based-on the dissolution-

precipitation-crystallization mechanism of the SC phase in a physiological medium. The 

apatite mineralization process was studied for an SC ceramic through bioactivity assays in 

Hank’s solution and different immersion times. As a consequence of dissolution, Si species 

are released from the ceramic surface and subsequently combined with OH- ions of Hank’s 

solution medium, leading to the silica-gel polymerization process, which entails the 

formation of C-S-P-H gel. The adsorption of ionic species within Hank’s solution, such as 

Ca and P, that combined with the Si present in the gel, promotes the formation of newly 

formed SC nanocrystals by precipitation. These nanocrystals have an apatite structure and 

serve as a template for the crystallization process of multi-substituted bone-like apatite. Due 

to the similarities between the SC and HAp structures, an epitaxial-like growth is here 
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confirmed from the apatite layer retaining the SC periodic arrangement. The apatite 

mineralization mechanism is critical to understand the physical and chemical properties of 

the bone-like apatite layer, which controls the long-term dissolution/precipitation rate of 

bioactive materials and their performance in the biological environment.

The obtained results and the proposed mechanism for apatite crystallization have an interest 

not only from the materials science point of view but also from the biological perspective, as 

a starting point for further investigations to correlate the structural, morphological and 

chemical changes observed in the SC ceramics with specific responses at the cell and 

molecular level.
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Figure caption

Figure 1. Microstructural characteristics at different magnifications of SC ceramics (a,b) 

before and after (c,d) 6 days of immersion in Hank´s solution.

Figure 2. Morphological features of the apatite layer grown on SC ceramics after 14 days of 

immersion in Hank´s solution. a) Ceramic´s surface covered by plate-like crystals observed 

with more detail in (b, d). c) Cross-section of the apatite layer using a backscatter electron 

detector, suggesting a composition gradient along with the layer due to the contrast.

Figure 3. SEM micrographs at the (a,b) surface and (c,d) cross-section of the apatite layer 

formed on SC ceramics after 28 days of exposure to Hank´s solution.

Figure 4a. Cross-section of SC ceramics after 6 days of immersion in Hank´s solution 

showing the apatite layer growing at the interface and inside the internal pores.

Figure 4b. Cross-section of SC ceramics after 28 days of immersion in Hank´s solution 

showing the apatite layer growing at the I) interface and (II) filling the internal pores.

Figure 5. XRD pattern of a) SC ceramics after 0, 6, 14, and 28 days of immersion and XRD 

pattern of HAp for comparative purposes. b) Content (wt.%) and crystallite size of the apatite 

grown on SC ceramics after different immersion periods and c) strain and crystallite size in 

the remaining SC phase.  

Figure 6. a) High-resolution TEM image and b) SAED pattern of the same SC zone, before 

bioactivity test. 

Figure 7. a, b) High-resolution TEM images, (inset a) FFT and c) inverse FFT of SC before 

bioactivity test. 

Figure 8. High-resolution TEM images of SC after 6 days of exposure in Hank´s solution, 

showing in a) morphology of the particles composed by a C-S-P-H gel and b) crystalline 

zones. c) FFT image of the crystalline zone in b. 

Figure 9. High-resolution TEM images of different areas of SC particles after 28 days of 

immersion showing a) a general view, b) elongated and overlapped crystals and c) dense 

crystal.
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Figure 10. High-resolution TEM images of bone-like apatite grown from SC after 28 days 

of exposure in Hank´s solution, showing in a) the microstructure of the apatite particles and 

inverse FFT (inset), b) highly crystalline zones and c) SAED pattern of a).

Figure 11.  Top panel: a) atomic model of the interface between SC and apatite oriented 

along the coherent zone axes found from experimental images, b-g) schematics of the 

different stages of apatite growth modeled and resulting HRTEM simulated images. Bottom 

panel: on the left, inverse FFT filtered HRTEM image from the sample before immersion, 

and on the right, inverse FFT filtered HRTEM image of the sample after immersion. The 

trend in contrast change in the simulations with the increasing apatite thickness matches the 

observed experimental contrast.

Figure 12. Raman spectra of SC ceramics after different immersion periods in Hank´s 

solution and Raman spectra of HAp for comparative purposes. 

Figure 13. Schematic representation of the mechanism of bone-like apatite formation from 

SC bioceramics
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Table caption

Table 1. EDX measurements of SC ceramics before and after 6, 14, and 28 days of immersion 

in Hank´s solution.

Table 2. The concentration of ionic species before and after degradation test of SC in TRIS 

and Hank´s solutions.
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Table 1

SEM /EDX (wt.%)

Sample O Na Mg Si P Cl Ca

Control 40.608 ± 0.117 3.388 ± 0.058 0.195 ± 0.023 2.148 ± 0.020 17.412 ± 0.050 36.217 ± 0.087

6 days 35.654 ± 6.623 2.924 ± 0.965 1.408 ± 1.122 1.615 ± 0.467 19.683 ± 3.387 0.112 ± 0.097 38.604 ± 4.437

14 days 41.515 ± 2.486 1.618 ± 0.243 3.777 ± 0.309 0.159 ± 0.131 21.741 ± 0.496 1.126 ± 0.246 30.065 ± 2.598

28 days 37.030 ± 0.941 2.180 ± 0.422 1.821 ± 0.330 0.452 ± 0.300 23.800 ± 0.793 1.971 ± 0.312 34.896 ± 0.941

Page 29 of 44

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

Table 2

Tris solution Hank´s solution

Ionic species 0 hours
[ppm]

120 hours
[ppm]

0 hours
[ppm]

120 hours
[ppm]

[Ca] 0.514 ± 0.118 129.349 ± 5.660 51.513 ± 1.583 36.834 ± 0.655

[Si] 0.142 ± 0.004 13.864 ±0.011 0.321 ± 0.156 6.791 ± 0.106

[Mg] 0.175 ± 0.039 13.419 ± 0.281 20.148 ± 0.416 23.831 ± 0.670

[P] 0.709 ± 0.189 11.231 ± 1.173 25.791 ± 0.682 3.461 ± 2.633

[Na] 5.653 ± 3.763 45.977 ± 2.527 3298.687 ± 50.358 2488.394 ± 28.296
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