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Abstract: Idiopathic Parkinson’s disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic,
multisystemic, and degenerative diseases associated with aging, with eventual epidemiological
co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial
alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular
level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary
cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose
concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed
increased organic and amino acid levels related to mitochondrial metabolism with respect to controls,
and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids

Antioxidants 2020, 9, 1063; doi:10.3390/antiox9111063 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0001-8973-9933
http://www.mdpi.com/2076-3921/9/11/1063?type=check_update&version=1
http://dx.doi.org/10.3390/antiox9111063
http://www.mdpi.com/journal/antioxidants


Antioxidants 2020, 9, 1063 2 of 17

levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids;
p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated
with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic,
oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls
was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions.
Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival.
Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may
underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed
mitochondrial impairment, resulting in the accumulation of organic and amino acids related to
mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic
defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the
comorbidity between iPD and T2DM.

Keywords: T2DM (type 2 diabetes mellitus); iPD (idiopathic Parkinson’s disease); mitochondria;
metabolome

1. Introduction

In Western countries, increased life expectancy has led to a rise in chronic and age-related diseases,
resulting in a decrease in quality of life of the elderly population and representing an important
sociosanitary burden [1–3]. Parkinson’s disease (PD) and diabetes mellitus (DM) are among the most
prevalent 21st century epidemics. The world prevalence of PD is 1% of the population over 65 years,
with an expected 50% increase for 2040 [4]. The world prevalence of diabetes was estimated to be 6.4%
in 2010 and is expected to rise to 10.4% in 2040, of which 90% is represented by type 2 DM (T2DM) [5].
Clinical manifestations in idiopathic PD (iPD) and T2DM are secondary to the decrement of biological
products as a result of cell death in the target tissue of the disease. Both diseases affect multiple organs
and molecular alterations appear years before clinical diagnosis is made [6–8]. Thus, for either iPD or
T2DM, preventive measures and disease modifying therapies are a main target in research [7].

PD is characterized by the decrease of dopamine release, resulting from the loss of dopaminergic
neurons in the substantia nigra, associated with movement disorders. The main risk factor for PD is
ageing and, despite the small proportion of PD cases of genetic origin (3–10%), in the majority of cases,
PD is a result of several environmental factors, such as exposure to pesticides, brain injury, use of beta
blockers, and well-water drinking [9].

T2DM is characterized by chronically elevated blood glucose concentration, which arises from
a combination of insufficient insulin secretion and a reduced sensitivity of target cells and tissues
to insulin. Obesity and sedentarism are the main risks factor for T2DM, and approximately 50% of
diabetics show additional complications by the time they are diagnosed [10].

The comorbidity of iPD and T2DM has been described in numerous epidemiological studies [11–13].
Despite initial controversy [14,15], the established risk for presenting iPD in T2DM patients is 38% [16].
It is also known that T2DM may predispose to a PD-like pathology and induce a more aggressive
phenotype when coexisting with PD [17]. In fact, T2DM is a well-known established risk factor for
developing iPD [12].

Recent evidence points toward shared deregulated molecular pathways between PD and DM such as
protein misfolding and depot, endoplasmic reticulum stress, oxidative damage, or inflammation [13,18,19].

Among these, growing evidence supports metabolic and mitochondrial dysfunction to play a
critical role in the development of both diseases [11–13,15,18,20]. Specifically, mitochondrial respiratory
chain (MRC) dysfunction, oxidative stress, altered mitochondrial dynamics, and morphology have
been reported in iPD [21]. Similarly, insulin resistance is associated with increased oxidative stress,
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mitochondrial DNA mutations, and mitochondrial dysfunction [18]. In fact, mitochondria are the
focus of preclinical therapies as pivotal players in the development for T2DM and iPD [22].

While metabolic and mitochondrial dysfunction clearly play a role in both iPD and T2DM,
scarce studies have explored if such metabolic and mitochondrial deregulation may underlie the
epidemiologic co-morbidity that exists between both diseases [12].

There is a crucial need to fully understand the molecular basis of the epidemiologic comorbidity
between iPD and T2DM and if it may be associated with a further worsening of the bioenergetic deficits
characteristic of both diseases.

Taking advantage of the validation of fibroblasts as a reliable cell model for the study of PD [23–26],
we have designed an in vitro model to test weather hyperglycaemia characteristic of T2DM may
worsen metabolic and mitochondrial phenotype contributing to reported comorbidity between PD
and T2DM.

2. Materials and Methods

2.1. Study Design and Population

A single-site, cross-sectional, observational study was conducted. Fourteen age and gender paired
subjects were included: seven iPD patients and seven healthy unrelated controls (C). No significant
differences in age and gender were observed between cases and controls (Table 1). All iPD patients
met the U.K. Brain Bank Criteria for the diagnosis of PD [27]. Subjects with other comorbidities
(including T2DM) were excluded from the study [28]. Both patients and controls signed the informed
consent to participate in the study, previously approved by the Clinical and Research Ethical Committee
of our institution, in accordance with the Declaration of Helsinki (code HCB/2015/0562).

Table 1. Epidemiological characteristics of patients and controls included in the study. SEM, standard
error of the mean.

Group N
Gender Age

Male Female Range Mean SEM

iPD 7 4 3 46–66 58.57 3.08

Control 7 2 5 41–69 54.86 4.00

Total 14 6 8 41–69 56.71 2.48

No significant differences in age and gender were observed between cases and controls. iPD: idiopathic Parkinson’s disease.

2.2. Fibroblasts Culture

Fibroblasts were obtained from the alar surface of the nondominant arm of the subjects by a
6 mm skin punch biopsy and mutation screening was performed to discard genetic contribution to the
disease, as previously described [29].

Cells were grown in 25 mM glucose Dulbecco’s Modified Eagle’s medium (DMEM from Gibco,
Life Technologies™, Burlington, ON, Canada) supplemented with 10% heat-inactivated fetal bovine
serum and 1% penicillin-streptomycin at 37 ◦C, in a humidified 5% CO2 air incubator, until 80%
optimal confluence was reached. After cell expansion, cells were exposed for 10 days to two different
glucose conditions to assess metabolic and mitochondrial contribution to disease: a ‘pre-diabetogenic’
high glucose (HG) environment containing 25 mM of glucose (equivalent to 450 mg/dL) or to a
normoglycemic environment containing 5 mM of glucose (equivalent to 90 mg/dl; low glucose, LG).
Fresh media was provided every third day (three times in total in the 10-day lapse period), and cells
were prevented from reaching more than 80% confluence. Fibroblasts were then harvested with 2.5%
trypsin (Gibco, Life technologies™, Burlington, ON, Canada and centrifuged at 500× g for 8 min for
further analysis.



Antioxidants 2020, 9, 1063 4 of 17

Metabolic and mitochondrial phenotyping was performed in iPD and C fibroblasts between
passage 5 and 10. The oxygen consumption rate (OCR), which requires assessment of live cells,
was performed in parallel including iPD and C in both glucose concentrations. Fixation of cells for
immunofluorescent quantification of mitochondrial dynamics was also performed with fresh material
at this time point. Cell pellets were kept at −80 ◦C until the rest of the experimental procedures
were performed.

2.3. Targeted Metabolomic Characterization

Fibroblast preparation for metabolomic assessments required a minimum of 1 million cells,
which were thawed, resuspended in 200 µL of phosphate buffered saline (PBS), and centrifuged
(1500× g; 10 min) to collect the supernatant, where amino acids and organic acids were quantified.

Organic acids were extracted in fibroblasts with ethyl acetate and diethyl ether and derivatized
with bis(trimethyl-silyl) trifluoro-acetamide (BSTFA), as previously reported [30]. The trimethylsilyl
derivatives obtained were separated by gas chromatography (Agilent 7890A, Wilminton, DE, USA) and
detected in a mass spectrometer (Agilent 5975C, Wilmington, DE, USA). The results were expressed as
nanomoles of organic acid per milligram of protein (nmol/mg protein).

Amino acids were quantified in fibroblasts by ultra-performance liquid chromatography (UPLC)
coupled to tandem mass spectrometry, as previously reported [31]. Briefly, amino acids were separated
in a Waters ACQUITY UPLC H-class chromatograph and quantified with a Waters Xevo TQD
triple-quadrupole mass spectrometer using positive electrospray ionization conditions in the MRM
(multiple reaction monitoring) mode. The results were expressed as nanomoles of amino acid per
milligram of protein (nmol/mg protein).

2.4. Mitochondrial Characterization

MRC and citrate synthase (CS) enzyme activities were measured at 37 ◦C by spectrophotometry,
following standardized procedures [32], as reported elsewhere [8,33]. All enzymatic activities were run
in parallel with internal quality controls. Complex II (CII), Complex IV (CIV), and glycerol-3-phosphate
dehydrogenase (G3PDH) enzyme activities were then normalized by CS to express enzymatic
activities per mitochondrial content, as CS is widely considered as a reliable marker of mitochondrial
mass. Changes in absorbance were registered in a HITACHI U2900 spectrophotometer through the
UV-Solution software v2.2 (Tokyo, Japan) and expressed as nanomoles of consumed substrate or
generated product per minute and milligram of protein and mitochondrial content (nmol/minute·mg
protein.CS).

Mitochondrial respiration and oxygen consumption rates (OCRs) were measured following the
manufacturer’s protocols with two different technologies: OroborosTM high resolution respirometry [34]
and Agilent SeahorseTM XF24 Analyzer (Wilmington, DE, USA) using the Cell Mito Stress Test [35].
Punctual differences in the technical procedures were made, in order to adapt the experimental
procedure to each methodology, which are further described in the Supplementary Materials.
OCR values were normalized to total cell protein content and mitochondrial mass, measured by
CS enzymatic activity (pmol/min.ug protein.CS).

Lipid peroxidation was quantified by the spectrophotometric measurement of malondialdehyde
(MDA) and 4-hydroxyalkenal (HAE) as indicators of reactive oxygen species (ROS) damage into
cellular lipid compounds, as reported elsewhere [36]. The results were normalized per mitochondrial
content (µM MDA and HAE/mg protein.CS).

Mitochondrial morphology was assessed by immunocytochemistry using confocal microscopy,
as previously described [8]. Briefly, a minimum of three fibroblasts from each subject were analysed
using a semi-automatic custom-made macro [37] for Image J software [38]. The mitochondrial network
of each cell was subjected to particle analysis and the following parameters were assessed: aspect ratio
(AR) (major axis/minor axis) and form factor (FF), which was calculated as the inverse of the circularity
(circ−1; 4π·area/perimeter2). AR and FF values correspond to mitochondrial length and branching,
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respectively. As mitochondria elongate and become more branched, AR and FF values increase as a
sign of mitochondrial health [39]. On the other hand, decreased values of AR and FF are indicative of
circular, unbranched, isolated, and thus pathologic mitochondria.

2.5. Statistical Analysis

Statistical analysis was performed using two softwares: the GraphPad Prism Software (version 8.3.1
for Mac, San Diego, CA, USA, www.graphpad.com) and the Statistical Package for the Social
Sciences (SPSS, version 21, IBM SPSS Statistics; SPSS Inc., Chicago, IL, USA). Differences among
groups were sought by non-parametric tests after filtering for outlier values in the datasets.
Specifically, Kruskal–Wallis and Mann–Whitney U statistical tests for independent samples were
used, when required, together with Holm–Sidak comparison. Significance was accepted for asymptotic
two-tailed p-values below 0.05 (for a confidence interval of α = 95%) and the results were expressed as
means ± the standard error of the mean (SEM).

3. Results

3.1. Targeted Metabolomic Characterization

Measurement of organic acid and amino acid levels in iPD-fibroblasts showed unbalanced
metabolic fluxes related to mitochondrial function.

Organic acids related to mitochondrial energetic metabolism were increased in iPD patients,
suggesting the deregulation of the intermediary metabolism (Figure 1).

At standard glucose concentration (5 mM), classical biomarkers of mitochondrial diseases such as
lactic acid, and the main components of the Krebs’s cycle (citric, malic, succinic, and 2OH-glutaric
acid), tended to increase in iPD samples. Similar trends were observed in the metabolites derived
from Kreb’s cycle related to amino acid or fatty acid metabolism (as ethylmalonic or glutaric acid) and
the biomarkers from free fatty acid β-oxidation (including adipic, suberic, and sebacic dicarboxylic
acids). The accumulation of all these metabolites is frequently associated with MRC dysfunction and,
specifically the increase in lactic acid levels, with the activation of anaerobic glycolysis in detriment of
MRC function.

A high glucose concentration (25 mM) further accentuated such trends, as observed by the
significant increase of citric, suberic, and sebacic acids (p = 0.01, p = 0.03, and p = 0.03, respectively).
Such an increment suggests a worsened phenotype for iPD-fibroblasts in high-glucose conditions.

The accumulation of all these metabolites feeding mitochondrial metabolism is frequently
associated with mitochondrial dysfunction, specifically the increase in lactic acid levels, with the
activation of anaerobic glycolysis in detriment of mitochondrial function.

Moreover, as technical controls, nucleotides and organic acids non-related to mitochondrial energy
metabolism (including uracil and pyroglutamic acid) were conserved among patients and controls in
both glucose conditions.

Similarly, all amino acids related to mitochondrial function were increased in iPD patients,
mimicking the same pattern as organic acids (Figure 2).

At standard glucose concentration (5 mM), alanine, glutamate, aspartate, arginine, and ornithine,
the classic amino acids related to mitochondrial metabolism, showed trends towards an increase in
iPD-fibroblasts, being statistically significant in the case of glutamate and aspartate (p = 0.03 and
p = 0.008, respectively).

Exposure to a high glucose concentration (25 mM) further confirmed such trends, as observed
by the significant increase of all mitochondrially-related amino acids (p-values between 0.006 and
0.05 cut-offs). Such an increase suggests the worsening of the phenotype in the case of high glucose
exposition, as previously observed with organic acid metabolites.

www.graphpad.com
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(iPD, grey bars) vs. controls (C, white bars), especially in high glucose (25 mM) exposition. As 
technical controls, the levels of nucleotides and organic acids non-related to mitochondrial energy 
metabolism (including uracil and pyroglutamic acid) were measured and found to be conserved 
among patients, controls, and glucose conditions, suggesting that only mitochondrial-related organic 
acids were affected. 
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Figure 1. Organic acid levels in fibroblasts of idiopathic Parkinson’s disease (iPD) patients vs. controls
exposed to low or high glucose concentration (5 vs. 25 mM). Levels of organic acids related to
mitochondrial metabolism were increased in fibroblasts from idiopathic Parkinson’s disease patients
(iPD, grey bars) vs. controls (C, white bars), especially in high glucose (25 mM) exposition. As technical
controls, the levels of nucleotides and organic acids non-related to mitochondrial energy metabolism
(including uracil and pyroglutamic acid) were measured and found to be conserved among patients,
controls, and glucose conditions, suggesting that only mitochondrial-related organic acids were affected.

The accumulation of all these metabolites feeding mitochondrial metabolism is frequently
associated with mitochondrial dysfunction.

Once again, only mitochondrial-related amino acids were affected, while amino acids not related
to mitochondrial metabolism (such as tyrosine or phenylalanine) were measured (as technical controls)
and found to be conserved among iPD patients, controls, and glucose concentrations.

Overall, these findings show increased levels of organic acids and amino acids related to
mitochondrial function in iPD-fibroblasts, especially when exposed to high glucose concentration,
suggesting that impaired mitochondrial function is exacerbated in ‘pre-diabetogenic’ conditions.
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Figure 2. Amino acids levels in fibroblasts of iPD patients vs. controls exposed to low or high glucose
concentration (5 vs. 25 mM). Levels of amino acids related to mitochondrial metabolism were increased
in fibroblasts from idiopathic Parkinson’s disease patients (iPD, grey bars) vs. controls (C, white bars),
especially in high glucose exposition. As technical controls, amino acids not related to mitochondrial
metabolism (such as tyrosine or phenylalanine) were measured and found to be conserved among iPD
patients, controls, and glucose concentrations, suggesting that only mitochondrial-related amino acids
were affected.

3.2. Mitochondrial Characterization

Mitochondrial phenotyping at the enzymatic, oxidative, respiratory, and morphologic level
confirmed such an hypothesis.

Specifically, MRC enzymatic activities from CII and G3PDH (fed by Kreb’s cycle and-oxidation
pathways) tended to decrease in iPD-fibroblasts (Figure 3), probably generating the accumulation
of organic acids and amino acids related to mitochondrial metabolism. Interestingly, CIV activity
trended to increase in iPD fibroblasts, significantly when exposed to high glucose (p = 0.01), probably
to overcome CII-G3PDH impairment. As a result of CII-G3PDH MRC reduction in iPD-fibroblasts,
oxidative stress levels, also considered a secondary product of MRC function, trended to decrease in
iPD-patients. Additionally, in high glucose, iPD cells manifested decreased metabolic plasticity when
compared with controls to adapt to different glucose conditions.

Mitochondrial respiration, measured by OroborosTM (Innsbruck, Austria) and SeahorseTM

technologies (Wilmington, DE, USA) (Figures 4 and 5), confirmed the dysfunction of MRC previously
observed at the enzymatic and oxidative level.
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 Figure 3. Mitochondrial enzymatic and oxidative stress levels in fibroblasts of iPD patients vs. controls
exposed to low or high glucose concentration (5 vs. 25 mM). Mitochondrial respiratory chain (MRC)
enzymatic activities were decreased in fibroblasts from idiopathic Parkinson’s disease patients (iPD,
gray bars) vs. controls (C, white bars) except for Complex IV (CIV) activity, which trended to increase in
iPD fibroblasts, significantly when exposed to high glucose (p = 0.01), probably to overcome Complex
II (CII)-glycerol-3-phosphate dehydrogenase (G3PDH) impairment. As a result of CII-G3PDH MRC
reduction in iPD-fibroblasts, oxidative stress levels, as a secondary product of MRC function, trended to
decrease in iPD-patients. In high glucose fibroblasts of iPD patients showed decreased metabolic
plasticity than controls to adapt to different glucose conditions. CS, citrate synthase.
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 Figure 4. Mitochondrial oxygen consumption by Oroboros technology in fibroblasts of iPD patients vs.
controls exposed to low or high glucose concentration (5 vs. 25 mM). Mitochondrial respiration measured
through the Mitostress test and OroborosTM technology confirmed decreased mitochondrial activity in
fibroblasts from idiopathic Parkinson’s disease patients (iPD, gray bars) vs. controls (C, white bars),
which additionally showed reduced mitochondrial plasticity with respect to controls to adapt to
different glucose conditions. ETC: electronic transport chain capacity; ATP: adenosine triphosphate.
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Figure 5. Mitochondrial oxygen consumption by Seahorse in fibroblasts of iPD patients vs. controls
exposed to low or high glucose concentration (5 vs. 25 mM). Mitochondrial respiration measured
through the Mitostress test and SeahorseTM technology confirmed decreased mitochondrial activity
in fibroblasts from idiopathic Parknson’s disease patients (iPD, grey bars) vs. controls (C, white
bars), which additionally showed reduced mitochondrial plasticity with respect to controls to adapt to
different glucose conditions.

OCR measures obtained by OroborosTM technology (Figure 4) showed that basal (or routine) and
maximal (ETC) respiration (after uncoupling), reserve capacity, and as ATP-linked respiration trended
to decrease in iPD-fibroblasts.

Mitochondrial respiration measured by SeahorseTM technology (Figure 5) confirmed such trends
by the decrease of basal respiration, coupling, maximal, spare, and mitochondria working capacities
in iPD-fibroblasts.

In all cases, iPD-fibroblasts showed reduced mitochondrial plasticity with respect to controls to
adapt to different glucose conditions.

Changes in mitochondrial morphology were expected after subjecting fibroblasts to different
glucose concentrations. In line with this, increased glucose concentration significantly decreased the
aspect ratio and form factor from control fibroblasts (p = 0.001 and p = 0.05, respectively), accounting for
less elongated and branched mitochondria. On the contrary, iPD-fibroblasts were unable to adapt to
high glucose exposition (Figure 6) and showed conserved mitochondrial morphology, regardless of the
media, confirming their metabolic and morphologic rigidity.
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Figure 6. Mitochondrial dynamics (morphology and network) in fibroblasts of iPD patients vs.
controls exposed to low or high glucose concentration (5 vs. 25 mM). Upper panel: Representative
images of mitochondrial network of fibroblasts of iPD patients vs. controls, in both glucose
conditions. Note the preserved mitochondrial mitochondrial porphology and network in iPD cells,
compared to controls, able to adapt to different glucose concentrations. Lower panel: Mitochondrial
morphology did not change in fibroblasts from idiopathic Parkinson’s disease patients (iPD, grey bars)
vs. controls (C, white bars) in accordance with glucose exposition, confirming their metabolic and
morphologic rigidity.
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Overall, fibroblasts from iPD patients showed a disarranged mitochondrial activity and
morphology and manifested the inability to adapt to the different glucose conditions, in opposition to
fibroblasts of controls, with preserved bioenergetic plasticity.

4. Discussion

Idiopathic PD and T2DM are increasingly prevalent diseases that are epidemiologically associated
and share some altered molecular deregulated pathways [11,17,40]. Metabolic and mitochondrial
dysfunction have been frequently found to be deregulated in both pathologies. T2DM has been
suggested to accelerate mitochondrial dysfunction as a result of exhaustion of the bioenergetic
metabolism needed to catabolize the excess of glucose. Interestingly, the relevant bibliography on
this field stands for the opposite causal relationship; that is, mitochondrial dysfunction would
precede (and eventually cause) T2DM [41]. On the other side, T2DM has been suggested to
condition iPD progression because of the toxicity that may cause excessive glucose in neuronal
functionalism, among others [42]. Consequently, T2DM treatments have been proposed to condition
PD progression [43]. However, little is known on the mechanistic and synergic effect that deregulated
pathways may have to support epidemiologic and molecular overlapping between iPD and T2DM.
The present study aimed to explore whether the hyperglycaemia characteristic of T2DM may worsen
the metabolic and mitochondrial phenotype of iPD fibroblasts, thus highlighting how these pathologic
features may explain iPD–T2DM comorbidity.

The systemic effects of deregulated metabolism have been previously described by other
studies [6,44], and are relevant in the dissection of the molecular pathways that may lead to the
development of treatment strategies [22]. However, none of these studies conducted the potential
deregulation of these pathways in iPD-T2DM comorbidity. Despite that neural metabolism and
mitochondrial function may be different from that of peripheral tissues, the study of metabolomic
and mitochondrial function in fibroblasts is currently validated for the study of neurogenerative
diseases, including iPD [45]. Fibroblasts have also been used as a widespread cell model for the study
of T2DM [46]. The present work was performed in fibroblasts derived from iPD patients that were
exposed to different glucose concentrations, in order to mimic diabetogenic conditions and explore the
potential worsening of the molecular phenotype.

In standard glucose conditions (5 mM), fibroblasts from iPD patients showed a basal mitochondrial
pathological phenotype accompanied by the accumulation of energetic metabolites related to organic
and amino acid metabolism. These pre-existent mitochondrial and metabolic dysfunction results
in a defective capacity to adapt to stressful situations, such as the increase in glucose concentration,
characteristic of T2DM [13,15,18]. In fact, the present findings unveil the poor resilience of iPD
fibroblasts when exposed to high glucose conditions, as opposed to controls, which showed wider
plasticity in metabolic and mitochondrial performance. When exposed to high glucose concentrations,
iPD fibroblasts worsened their basal pathologic metabolic and mitochondrial status.

Metabolic (including mitochondrial) flexibility is defined as the ability to perform efficient
switches in metabolism, depending on the environmental demand (feeding/fasting cycles) [47].
Such capacity seems down warded in iPD fibroblasts, in concomitance with increased risk for T2DM
development. Remarkably, iPD fibroblasts showed increased lactate production in detriment of
decreased mitochondrial oxidative metabolism. Lactate is a classical marker for the diagnosis of
primary mitochondrial diseases, but also a sign of upregulated glycolytic metabolism. Interestingly,
T2DM patients also show increased levels of plasmatic lactate [48,49], confirming both the rise of
glycolytic metabolism and the metabolic co-morbidity between both diseases.

Whether metabolic alterations are causative or a consequence of mitochondrial dysfunction
remains elusive. However, the accumulation of those organic acids and amino acids exclusively
related to mitochondrial metabolism supports the hypothesis that metabolite accumulation is
triggered by deficient mitochondrial function, as described in the integrated mitochondrial
stress response [50]. Supposing that mitochondrial dysfunction preludes metabolic disturbances,
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mitochondrial targets could set the path for novel therapeutics on iPD and T2DM management.
For instance, mitochondrial dynamics has been proven to be one of the most important mechanisms
for rapid adaptation to the constant changes of environment, including nutrient bioavailability [42].
In neurodegeneration, the capacity of mitochondria to fuse with one another, supporting the better
performance of the MRC, is one of the new targets of early treatment [51,52]. The present study shows
an absence of mitochondrial adaptation to changes in glucose concentrations, including morphologic
adaptations, which may be relevant in terms of efficiency of the MRC, mitochondrial DNA maintenance,
and mitophagy. Further studies and novel therapeutic options may address these questions.

Metabolic and mitochondrial alterations have already been reported in several tissues of iPD
and T2DM patients [53,54]. However, the present data demonstrate for the first time the aggravation
of the metabolic and mitochondrial phenotype from iPD fibroblasts in a high glucose environment,
mimicking T2DM. Although a causal relationship between metabolic or mitochondrial alterations
and iPD–T2DM comorbidity is not demonstrated herein, its association is indirectly shown by the
global pattern of metabolite accumulation in iPD fibroblasts and the lack of mitochondrial plasticity
when exposed to high glucose concentrations. Further studies should assess if alternative pathways of
glucose metabolism are affected in iPD cells as glucose entrance or insulin resistance.

Metabolic and mitochondrial disturbances in iPD patients may limit energetic fuel to support the
rest of the biologic pathways essential for cell survival. Such bioenergetic failure in iPD seems to be
aggravated by T2DM comorbidity, worsening cell fate and explaining the comorbidity between both
diseases. These outputs set the paths for potential development of novel therapeutic approaches for PD
and T2DM targeting mitochondria, which may be tested in the present model of study of fibroblasts.
Perhaps an interesting line of investigation is mitochondrial-targeted protectors such as melatonin for
early stages in PD [55] or growth hormone (GH) and insulin growth-factor 1 (IGF-1) supplementation
in T2DM [56], but further studies are needed in this respect.

Of note, the present study contains some limitations. First, the model of study for iPD–T2DM
comorbidity does not recapitulate some of the manifold molecular alterations that occur in iPD and
T2DM, such as disrupted lipid metabolism, increased oxidative stress, or increment of inflammatory
response. These deregulations are probably present in the target tissue of disease, but not in the
current cell model of fibroblasts, probably because of idiosyncratic metabolic and stress response
particularities of considered cells [57]. In line with this, fibroblasts are a validated model for the study
of both iPD and T2DM, but we cannot discard the possibility of greater metabolic and mitochondrial
extent of alterations in other tissues more dependent on aerobic metabolism or directly targeted to the
present diseases such as dopaminergic neurons or β-pancreatic cells [49]. The concomitant analysis
of fibroblasts from T2DM patients or those presenting both iPD–T2DM diseases would be of high
interest in further studies, as the measurement of other metabolic or mitochondrial parameters. Finally,
one of the greatest challenges of this model of study, and other human-tissue derived models, is the
great variability among the studied populations. This biological variability together with technical
fluctuations and reduced sample size probably weakens the seeking of statistical significations in the
present study. Perhaps the analysis of larger cohorts of patients and controls would be optimal for
drawing conclusions.

In summary, the present findings demonstrate that systemic metabolic and mitochondrial
alterations are present in individuals with iPD, accounting for a decreased capacity to successfully
adapt to stressful events throughout life, including a sustained increase of glucose concentration in the
extracellular environment. Advances on novel therapeutic targets and potential treatments for iPD
and T2DM management would be of great value to face these challenging global health problems,
to ameliorate the quality of life of patients, and to reduce the associated sociosanitary burden.
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5. Conclusions

Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation
of organic and amino acids related to mitochondrial metabolism, especially when exposed to high
glucose conditions.

Mitochondrial and metabolic defects down warding cell plasticity to adapt to increased glucose
bioavailability may explain the comorbidity between iPD and T2DM.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/11/1063/s1,
Mitochondrial oxygen consumption (Seahorse) and Mitochondrial oxygen consumption (Oroboros).
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