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Inhibition of 11β-HSD1, a key enzyme in the 
stress management, improves cognition by 
RL-118 drug treatment
Puigoriol-Illamola D1,2,*, Vázquez S3,4, Griñán-Ferré C1,2, Pallàs M1,2

In recent years, stress and stress-coping mechanisms constitute a growing public healthcare 
issue concerning modern society. Experiencing stress engenders a great complex mechanism 
named stress response, which consists of a rapid release of catecholamines by the sympathetic 
nervous system, followed by a slower response in which hormones, mainly glucocorticoids (GCs), 
are synthesized and released to the bloodstream. Once the stressful stimulus is perceived, the 
hypothalamus secretes the corticotropin-releasing hormone (CRH), which acts on the pituitary 
gland, activating the release of adrenocorticotropic hormone (ACTH) that binds to the adrenal 
glands, promoting GC secretion and conforming the hypothalamus-hypophysis-adrenal (HPA) 
axis. Under normal conditions, GC secretion follows a robust circadian oscillation with a peak 
around the onset of the active period of the day, i.e., about 1 hour before arising [1]. This basal 
level of GC secretion is important in exerting tonic effects upon metabolic, immune and neuronal 
pathways, involving gluconeogenesis stimulation, protein degradation and lipolysis increase, 
priming of neural regions involved in sensory processing, attention and adaptive responding, as well 
as accounting for immunosuppressive and anti-inflammatory actions [2]. However, when stressful 
exposure is prolonged, the HPA axis deregulates and GC secretion is exacerbated. This excessive 
GC concentration leads to several metabolic, neurological and behavioral alterations, notably 
cognitive impairment and affective dysfunctions. GC activity is regulated by 11β-hydroxysteroid 
dehydrogenase type 1 (11β-HSD1) enzyme, which inhibition has been proved to restore metabolic 
and behavioral alterations, as well as enhance cognitive abilities. In fact, cortisol, the main active 
GC in humans, has been postulated as a potential biomarker for neurodegenerative disorders [3], 
like Alzheimer’s disease (AD) in which aging is the major risk factor. Although it is completely 
assumed that stress directly influences the frailty phenotype in aged people, there are strikingly few 
measures to restrain stressful lifestyles in order to reduce the progression of pathological towards 
successful aging. Therefore, the study of stress effects on cognition and its relationship with aging 
is of the utmost importance to unveil what challenged we might have to cope with as a society in 
a not so far future.

In consequence, and considering that aging leads to gradual decline of cognitive abilities and 
is the primary risk factor for AD, we firmly believe that it is necessary taking a step forward in the 
study of the molecular mechanisms underlying neurodegeneration and find a different approach 
of the disease to achieve an appropriate treatment. Additionally, it has been described that chronic 
stress in midlife exerts persisting effects leading to cognitive and affective dysfunctions in old age via 
mechanisms that depend, at least in part, on brain GCs generated locally by 11β-HSD1 [4]. Thus, 
11β-HSD1 may be an essential factor in the regulation of the HPA axis and may itself be relevant 
to age-related diseases susceptibility, severity or outcome [5]. In line with this, elderly who exhibit 
learning and memory decline showed high GC levels and correlated with greater hippocampal 
atrophy [6]. Moreover, a recent clinic study published a positive correlation between increased 
brain 11β-HSD1 expression with advancing age [7]. Not only in humans, but also in rodents 
its expression was increased in aged mice and its overexpression accelerated age-related cognitive 
decline, while 11β-HSD1-knockout mice resisted age-dependent cognitive loss [8-10].

Another type of chronic stress exposure is metabolic stress induced by a high-fat diet (HFD). 
In recent years, interest in the impact of nutrition in health has grown since obesity is one of the 
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features of modern society. Mainly, obesity constitutes a risk factor 
for many disorders, including diabetes, hypertension, cardiovascular 
alterations, mild cognitive impairment and AD. As mentioned, 
prolonged GC overexposure has been linked to metabolic 
disturbances development and 11β-overexpression in rodents 
displays a phenotype mimicking human metabolic syndrome, which 
can be prevented by its inhibition, proposing that intracellular 
metabolism of GCs by 11β-HSD1 is critical to the development of 
insulin resistance rather than the circulating GCs [11-13]. 

Notwithstanding, it has been suggested a causal role of stress 
in the onset and progression of age-related cognitive decline and 
neurodegenerative disorders like AD, as sustained GC overexposure 
has been related to amyloid-β (Aβ) formation increase and 
hyperphosphorylated tau accumulation - hallmarks of AD - 
and adversely affect behavior [7,14-16]. Accordingly, in clinics, 
cortisol levels were inversely correlated with cognitive performance 
and hippocampal volume [17], and a rare single nucleotide 
polymorphism in the 11β-HSD1 gene has been reported to increase 
sporadic AD risk [18], supporting that local tissue levels of GCs may 
be a significant risk factor for AD development. 

Taking into account all the detrimental effects of excessive GCs 
and the essential role of 11β-HSD1 mediating them, 11β-HSD1 
inhibitors have been identified and developed. Despite, in the recent 
years there has been a focus of attention upon targeted 11β-HSD1 
inhibition in the context of metabolic disease, involving insulin 
resistance and type 2 diabetes mellitus (T2DM), its interest for 
neurodegenerative diseases treatment has increased. Early clinical 
studies demonstrated that a 11β-HSD1 inhibitor (UE2343) is well 
tolerated and is, therefore, a suitable candidate to improve memory 
in patients with AD [19,20]. In view of these results, Leiva et al. 
[21] synthesized a new family of potent 11β-HSD1 inhibitors, 
featuring unexplored pyrrolidine-based polycyclic structure. The 
most potent compounds were characterized in terms of cellular 
potency, isoenzyme selectivity, human microsomal stability and 
predicted brain penetration to select a candidate, which was named 
RL-118 and was selected for in vivo experiments in an animal model 
of aging, senescence-accelerated mouse prone 8 (SAMP8) (Table 1).  

In consequence, we designed and performed different 
experimental approaches with the aim of determining RL-118 
potential beneficial effects in SAMP8 animal, evaluating the 
underlying mechanisms of RL-118 modulating 11β-HSD1 action in 
different pathways underpinning neurodegeneration, and assessing 

its role in preventing the negative impact of chronic stress, induced 
by HFD feeding. 

In an attempt to address this issue, different projects were 
established. In particular, 3 animal studies using SAMP8 mice. On 
the one hand, although the 11β-HSD1 inhibition in the human 
embryonic kidney (HEK) 293 cells by RL-118 drug was determined, 
we assessed whether the drug could decrease GCs levels in an animal 
model. In rodents, the main active GC is corticosterone. Therefore, 
SAMP8 were divided into 2 groups, control and treated with RL-
118, and 2 hours after acute treatment, animals that received RL-
118 drug showed lower corticosterone levels in blood and brain 
tissues, so that, effectively, RL-118 was able to cross the blood-brain 
barrier (BBB) and exert its activity reducing GC action [22]. 

Afterwards, we designed a study to investigate whether the 
drug might modulate cognitive abilities to enhance age-related 
cognitive decline. To address that proof of concept, we used 
aged SAMP8 animals, divided them into control and under RL-
118 treatment, treated them for 4 weeks and submitted several 
behavioral tests. Particularly, we conducted the open field and 
the object location tests (OFT and OLT, respectively). Behavioral 
results showed that RL-118 drug decreased recklessness and anxiety-
like behavior, as well as increased spatial memory, meaning that 
the drug had a neuroprotective effect. In addition, the mechanisms 
underlying neuroprotection were studied in the hippocampal tissue. 
Interestingly, we found that autophagy was promoted with RL-118 
treatment, indicating that the drug favored the cellular mechanism to 
clean harmful material, which positively correlated with behavioral 
improvement and negatively correlated with pro-inflammatory and 
oxidative stress (OS) mediators. Not only neuroinflammation and 
OS were reduced after RL-118 treatment, but also AD hallmarks 
[23].  

Considering the positive effect of the present drug in reverting 
age-related cognitive decline, our aim was to evaluate in adult mice 
whether RL-118 had a neuroprotective effect on cognition when 
animals were exposed to chronic stress situation, represented by 
HFD-induced metabolic stress approach. 4 groups were established: 
control fed with normal diet (ND), ND-fed treated with RL-118, 
HFD-fed and HFD-fed treated with RL-118. Since weaning, 
mice consumed their dietary condition. At the age of 4 months, 
drug treatment started for 4 weeks and afterwards, behavioral 
tests assessing behavioral and cognitive abilities were performed: 
the three-chamber test (TCT), the novel object recognition test 

Table 1: Biological profile of RL-118 drug. Percentage inhibition was determined compared to a non-inhibitor control. HEK293 cells transfected with 
the full-length gene coding for human either 11β-HSD1/2 was used. The microsomal stability was determined using human liver microsomes (HLM) 
and central nervous system (CNS) + predicted positive blood-brain barrier (BBB) penetration by parallel artificial membrane permeability assay 
(PAMPA) [21]. 

Characteristic RL-118

HEK human HSD1 inhibition at 10µM (%) 100

Human HSD1 IC50 (µM) 0.03

Human HSD2 IC50 (µM) <0.1

HLM parent (%) 94

PAMPA-BBB Pe (10-6cm s-1) <30 (CNS+)
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(NORT) and the Morris water maze (MWM). 

Briefly, our results highlight an improvement in metabolic 
parameters, such as glucose intolerance and triglyceride concentration, 
as well as activation of metabolic pathways related to energy sensing 
like sirtuin 1 (SIRT1)/ peroxisome proliferator-activated receptor 
gamma coactivator (PGC) 1α/ AMP-activated protein kinase 
α(AMPKα) signaling route. SIRT1/PGC1α/AMPKα axis is regulated 
by fibroblast growth factor 21 (FGF21) expression. Hormones just 
as FGF21 and GCs play crucial roles in coordinating the adaptive 
starvation response. Explicitly, it has been demonstrated that FGF21 
modulates energy homeostasis of glucose and lipid through activation 
of SIRT1/PGC1α/AMPKα axis, mainly through liver kinase B1 
(LKB1) activation, resulting in enhanced mitochondrial activity 
[24,25]. In addition, SIRT1 reduces fat accumulation, decreases the 
risk of visceral obesity and, noteworthy, it has been described that 
reduces the activity of GC receptors (GR), thus attenuating GCs 
role in metabolic disorders [26]. Consistently, our results determined 
that HFD feeding decreased their expression, although treatment 
with RL-118, thus inhibiting the 11β-HSD1 enzyme, significantly 
increased FGF21 and LKB1 protein levels under both dietary 
conditions [27,28]. In line with these results, it has been described 
that while aging, FGF21 expression increases, but cells apparently 
become insensitive to it [29]. Herein, we hypothesized that RL-118 
treatment could reverse FGF21 resistance, as its protein levels were 
increased in treated with HFD and RL-118, as well as some of its 
downstream mediators like AMPKα phosphorylation, suggesting 
an improvement in nutrient sensing and mitochondrial function. 
Accordingly, mice that received HFD pronouncedly increased 

their body weight gain and consumed more calories than ND-fed 
mice, thus supporting that HFD contributes to glucose tolerance 
impairment. Despite the studies affirming the use of 11β-HSD1 
inhibitors for the treatment of metabolic syndrome [13] although 
in accordance with previous results, in our project RL-118 drug did 
not improve glucose metabolism under normal conditions, though 
it did in mice receiving concomitant HFD. In addition, these results 
could be explained by a significant reduction in 11β-HSD1 and GR 
protein levels in the groups that received drug treatment, indicating 
that when GCs exposure is normalized, metabolic disturbances 
improve. These results are in line with reports describing a reduction 
in 11β-HSD1 and GR gene expression in diet-induced obese mice 
after treatment with carbenoxolone, a 11β-HSD1 inhibitor [30]. 

In agreement with previous projects, OS and neuroinflammation 
were increased in HFD animals [31] but attenuated after RL-118 
treatment. Of note, RL-118 treatment not only decreases ROS 
concentration, but also favors the ER stress response, which is 
involved in increasing antioxidant defense mechanisms through 
the nuclear erythroid-related factor 2 (NRF2). In reference to 
neuroinflammation, RL-118 drug reduced nuclear factor κB (NF-
κB) protein levels, which is involved in pro-inflammatory cytokine 
expression. Accordingly, pro-inflammatory mediators gene expression 
was reduced after RL-118 treatment as well as microglia activation, 
assessed by Iba-1 expression, in the mice hippocampus. Interestingly, 
11β-HSD1 inhibitor treatment enhancement of these markers 
was notably higher in animals that also received HFD feeding, 
demonstrating that when SAMP8 mice are under stress conditions, 
the drug can exert its beneficial effects.  

Figure 1: Schematic representation of the molecular pathways affected after HFD feeding and the protective role of RL-118 drug. Chronic stress has 
an aversive impact on cognitive and behavioral abilities, increases OS and neuroinflammatory markers, promotes AD hallmarks as well as attenuates 
the UPR and energy-sensing mechanism. By contrast, 11β-HSD1 inhibition by RL-118 boosts the opposite actions (in red it can be observed the 
unfavorable effects, whereas in green the beneficial. A positive sign indicates activation or increment, while a negative sign inhibition or decrease, 
and both signs changes related to both, increases and reductions). 
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Remarkably, drug treatment altered endoplasmic reticulum (ER) 
stress response in both dietary groups, especially in the HFD mice. In 
accordance, HFD-fed treated with RL-118 group showed increased 
Beclin1 protein levels, thus promoting autophagy [23]. ER stress and 
autophagy jointly form the unfolded protein response (UPR) to react 
against misfolded proteins and promote cellular clearance through 
different mechanisms. 

Also, RL-118 treatment induced a reduction of tau 
hyperphosphorylation and Aβ formation regardless of the diet 
[7,23,32]. In reference to AD hallmarks, not only Aβ formation 
and tau hyperphosphorylation markers have been evaluated but 
also others controlling them, like glycogen synthase kinase 3 
(GSK3-β). It has been reported that GC treatment reduces GSK3-
βexpression and function [33].  Consistent with this, it regulates 
Aβproduction by down-regulating the activity of the α-secretase and 
interfering with the γ-secretase activity, thus resulting in Aβ-induced 
neurotoxicity reduction [34]. Additionally, GSK3-β participates in 
tau phosphorylation and on the contrary, growing evidence indicates 
that hyperphosphorylated tau activates it, through an increase in OS, 
neuroinflammation and apoptosis [35]. In consequence, beneficial 
effects on social behavior and cognitive performance were found 
in treated mice, supporting the therapeutic strategy that GC excess 
attenuation by selective 11β-HSD1 inhibition for the treatment of 
age-related cognitive decline and AD through improving metabolic 
and eventually cognitive disturbances caused by HFD [22]. 

In conclusion, stress modulates a broad constellation of cellular 
mechanisms involved in aging and neurodegeneration. Under 
stressful situations, GCs release is increased, generating an adaptive 
response. However, when stress is constant, the synthesis and release 
of GCs, which in physiological conditions is regulated by strict 
control of the HPA axis, become altered in such a way that large 
amounts of GCs are released and produce detrimental effects, in 
particular, on cognition. The metabolic stress induced by HFD has 
contributed to increasing the deregulation of the HPA axis and thus, 
GC excess and detrimental molecular mechanisms underpinning 
neurodegeneration. However, this alteration does not occur only 
under stressful situations, but also as we age. It is widely recognized 
that as we age, the body’s ability to adapt decreases. Taking into 
consideration all these reasons, the implication of 11β-HSD1 in the 
senescence demonstrated. RL-118 treatment, inhibiting 11β-HSD1 
and therefore reducing GCs exposure, led to cognitive improvement 
and decreased OS, neuroinflammation and AD neurodegeneration 
markers. By contrast, RL-118 increased the UPR response, energy-
sensing mechanisms and synaptic plasticity markers assessed; 
therefore, providing a protective cellular and effect (Figure 1). Of 
note, RL-118 treatment was able to restore most of the deleterious 
effects produced by HFD. Consequently, 11β-HSD1 could be 
a feasible target to fight against cognitive decline in age-related 
pathologies.
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