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Abstract

The main goal of this work is to investigate if there is any explicit relationship
between the Shannon index, widely used as an ecological diversity measure,
and other diversity indices. The thesis focuses on defining the Shannon index
rigorously and comparing it with two species abundance models: the broken
stick model, and the geometric series model. Such relationships leads us
to think of new methods to estimate biodiversity indices and define a new
diversity measure.
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Chapter 1

Introduction

The research project I present is motivated by the theory one can read in the
widely cited book Measuring Biological Diversity (Magurran, 2004). How-
ever, in this thesis we have done simulations to better enlight the topics
discussed. We will start by introducing rigorously the population and esti-
mation of the well known Shannon index and its properties. Then we will try
to find explicit relationship between this index and two of the most popular
biological diversity models: the geometric series and the broken stick model.

The motivation for choosing this topic for my bachelor thesis comes from
my stay at the University of Tromsø (UiT, Norway), where I took a course
in Computer Intensive Statistics. It was there that I saw the opportunity to
apply mathematics to biological studies - something that has always peaked
my interests. Thus, after this Erasmus exchange I took the course Statistics
for Biosciences at the Faculty of Mathematics and Statistics (UPC), where I
asked professor Jan Graffelman for a topic for my bachelor thesis. I wanted
something related to biodiversity from a mathematical point of view. While
choosing the topic, some of the questions were “Why is the Shannon index so
important in biodiversity studies?” “How does it work with empirical data?”
“Are there any explicit relationships between the Shannon index and some
biodiversity models worked in class?”
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1.1 Objectives

Magurran states that “most diversity measures are not explicitly associated
with named species abundance models” (Magurran, 2004). This statement
motivated our main goal: Study whether there are any explicit rela-
tionship between the Shannon index and other diversity indices.

In addition, the other tasks of this thesis are:

• Deepen our understanding of the Shannon index and its behaviour with
empirical and simulated data.

• Work on the Geometric series and the Broken stick model.

• Estimate parameters of the biodiversity models using the maximum
likelihood method.

• Simulate biodiversity data.

• Apply the theory to empirical data.

1.2 Outline

We will start by introducing some history and theory regarding the basic
concepts related to biodiversity. In the third chapter we will introduce two
different graphics for visualizing empirical biodiversity data which will be
used in the following chapters. Chapter four introduces Shannon index and
its properties together with a simulation study. This will enable us to better
understand this index in order to properly compare it with the biological
models. The fifth chapter deals with the analytical task of finding explicit
relationship between the Shannon index and the Broken stick and geometric
models. In the last chapter, we apply the concepts discussed in the previous
chapters to empirical data. This will give us an idea of how and where to
apply the knowledge explained to biodiversity studies.
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Chapter 2

History and background

2.1 What is Biodiversity?

Biodiversity means the variability among living organisms from all sources:
inter alia, terrestrial, marine and other aquatic systems and the ecological
complexes of which they are part. This includes diversity within and between
species and of ecosystems (United Nations Environment Program, 2019).

The term biodiversity, which has the same meaning of ‘biological diversity’,
encompasses the variety of biological life at more than one scale. It is not only
the variety of species (both plant and animal), but also the variety of genes
within species and the variety of ecosystems in which the species reside. In
this project we will be centered in the variety of species or species diversity.

The relevance of this subject in the scientific community is illustrated in
Figure 2.1, where we have represented the number of papers published using
the term biodiversity or biological diversity during the last three decades.
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Figure 2.1: The increasing use of the words biodiversity and biological diver-
sity in published papers indexed in the Web of Science between 1985 and
2019.

2.2 How to measure Biodiversity?

Biodiversity studies are often of comparative nature, and the purpose of
these studies are often to compare or rank communities, or to assess whether
diversity has changed over time (Graffelman, 2018).

General ecology concepts

The ecological concepts that we will encounter while measuring biodiversity
are the following :

• Taxa: Group where the species are classified into.

• Species abundance: The total number of individuals in an area, pop-
ulation, or community. Relative abundance refers to the total number
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of individuals of a taxa compared with the total number of individuals
in an area, population, or community.

• Species richness: The number of species within a given sample, com-
munity, or area.

• Species evenness: The uniformity of abundance between species in
a community.

• Assemblage: A collection of species inhabiting a given area, the in-
teractions between the species, if any, being unspecified.

• Ecosystem: A dynamic complex of plant, animal and micro-organism
communities and their non-living environment interacting as a func-
tional unit.

• Niche: The way a species makes a living “profession” role a species
plays in a community.

• Diversity index (or measure): A single statistic that incorporates
information on richness and evenness.

(United Nations Environment Program, 2019)

Diversity measures

There are many different diversity indices. Each index measures certain
components of diversity, such as richness and evenness of a collection of
species.

We cite some of the most popular diversity measures, which are not nec-
essarily the best:

• The Shannon index (H ′) was introduced by Ramon Margalef, who was
the first to apply the Communication Theory of Claude Shannon to
ecology studies (Margalef, 1957), (Shannon, 1948).

• The Simpson index (D), which is less used than the Shannon index,
but considered to be one of the most robust diversity measure available
(Simpson, 1949).

• The Margalef diversity index (DMg) to estimate richness (Margalef,
1974).
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• The k parameter of the geometric model (Magurran, 2004).

• The α parameter of the Fisher’s log series (Fisher et al., 1943).

In this project we will focus on the Shannon index and the parameter k of
the geometric model.

Species abundance models

There is a vast range of species abundance models. They attempt to math-
ematically describe the relationship between the number of species and the
number of individuals in those species. (Magurran, 2004) We cite some of
the most popular species abundance models:

• The broken stick model (MacArthur, 1957).

• The geometric model (He and Tang, 2008).

• The Tokeshi’s model (Tokeshi, 1993).

• The Fisher’s logarithmic series (Fisher et al., 1943).

• The log normal distribution (Preston, 1948).

In this project we will focus on the broken stick model and the geometric
model.
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Chapter 3

Graphics for biodiversity

In this chapter, we will introduce two graphics for visualizing the species
abundance distribution in different ways. These methods are specially useful
for showing how abundance models are fitted to empirical data, which will
be explained in Chapter 6. Graphics are central for interpreting the data
distribution, which is a common first step in any ecological study. Each
graphic emphasizes a different characteristic of the species abundance distri-
bution. We subsequently present the rank-abundance plot and the frequency
distribution.

3.1 Rank/abundance plot

One of the best known and most informative methods is the rank/abun-
dance plot (Krebs, 1989), also referred to as the whittaker plot. Species
are plotted in sequence from most to least abundant along the x axis. Their
abundances are typically displayed in a logarithmic scale, such that species
whose abundance span several orders of magnitude can be easily accommo-
dated in the same graph. The shape of the rank-abundance plot is often used
to infer which species abundance model best describes the data (Magurran,
2004).

Example 1. This example illustrates how a rank-abundance plot looks like
while using some empirical data. We plot the abundance distribution of 6815
individuals of the insects group of Macrolepidoptera, caught in light traps in
the UK. There are 197 different species (Lewis et al., 1967).
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Figure 3.1: Abundance distribution of Macrolepidoptera individuals caught
in light traps in the UK.

3.2 Frequency distribution

This plotting method is more useful when fitting the log series model to
the data. A frequency distribution has the number of species on the y
axis, that are displayed in relation to the number of individuals per species.
A variant of this plot is typically employed when the log normal is chosen.
Sometimes the abundance classes of the x axis are presented on a log scale
(Magurran, 2004).

Example 2. We plot now the same data as the example of the Macrolepi-
doptera in the section before, but in a frequency distribution plot.
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Figure 3.2: Frequency distribution of Macrolepidoptera individuals caught in
light traps in the UK.
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Chapter 4

The Shannon index

In this chapter, we present the Shannon index. We divide it into three parts:
1) Shannon index definition, 2) Estimation of the Shannon index, 3) Shannon
index evenness measure, and 4) A simulation study of the Shannon index.

4.1 Shannon index, H
The Shannon index was originally defined to describe information entropy.
However, it has been applied in many other fields such as in ecology where it
has been widely used for measuring ecological diversity. It was first defined
by Claude Shannon in 1948 (Shannon, 1948).

Definition 1 (Shannon index, H). Given a vector of probabilities θ =
(θ1, . . . , θS), such that

∑S
i=1 θi = 1, H is defined as the following sum:

H := −
S∑
i=1

θiln(θi)

4.2 Shannon index estimation, H ′

In order to define the estimation of the Shannon index in an ecological con-
text, we have set some variables and assumptions:

Variables

• N := #individuals
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• S := #species

• ni := #individuals of the ith species (abundance of each species)

Assumptions

The assumptions made while estimating the Shannon index (in this context)
are:

1. The abundance of individuals follows a multinomial distribution X =
(X1, . . . , XS) ∼MN(N, θ1, ..., θS), where 0 ≤ θi ≤ 1.

2. We estimate the true value of θi by the maximum likelihood (ML)
method (Pielou, 1969).

3. The true number of species S, present in the assemblage under study,
is assumed to be known, and the number N of sampled individuals is
determined in advance.

Estimation of θ

Given these assumptions, we calculate the ML estimator of θ by applying
the method of Lagrange multipliers (Arfken and Weber, 2005):

• Probability mass function of the multinomial distribution.

P (X1 = n1, ..., XS = nS) =
N !

n1! . . . nS!
θn1
1 . . . θnS

S , 0 ≤ θi ≤ 1

• Likelihood function

L(θ|n1, ..., nS) =
N !

n1! . . . nS!
θn1
1 . . . θnS

S

• Calculation of the maximum likelihood estimator of θ
We use k to denote the multinomial coefficent:

N !

n1! . . . nS!
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logL(θ|n1, ..., nS) = log(k) + n1 log(θ1) + · · ·+ nS log(nS)

= log(k) +
S∑
i=1

ni log(θi)

We define f(θ, n1, ..., nS, λ) = log(k) +
∑S

i=1 ni log(θi) + λ
(

1−
∑S

i=1 θi

)
∂f

∂λ
= 1−

S∑
i=1

θi ⇒
S∑
i=1

θi = 1

∂f

∂θi
=
ni
θi
− λ = 0⇒ λ =

ni
θi
⇒ ni = λθi , ∀i = 1, ..., S

Then, since
∑S

i=1 θi = 1 and N =
∑S

i=1 ni, we have

N =
S∑
i=1

ni =
S∑
i=1

λθi = λ⇒ ni
θi
−N = 0⇒ θ̂i =

ni
N

Now we prove θ̂i = ni

N
is a maximum:

∂2f

∂θ2i
= −ni

θ2i
≤ 0

Finally, we calculate H ′ by applying the Principle of functional invariance
(Márquez and Julià, 2011) and that θ̂iML = ni/N :

H ′ = ĤML = −
S∑
i=1

θ̂iln(θ̂i) = −
S∑
i=1

ni
N

ln
ni
N

Observation. We observe that θ̂i = ni

N
is an unbiased estimator of θi:

E(θ̂i) = E
(ni
N

)
=
E(ni)

N
=
Nθi
N

= θi , since Xi ∼ B(N, θi) (Sanz iSolé, 1999)

Now, we are ready to define the estimation of the Shannon index broadly
used in Ecology.
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Definition 2 (Shannon index estimation, H ′). Given a set of N indi-
viduals grouped in S species and given the value ni as the abundance of each
species. We can calculate the Shannon index, denoted by H ′:

H ′ := −
S∑
i=1

pi ln(pi)

where pi := ni

N
is the proportion of individuals found in the ith species.

Note. From now on, we will say “Shannon index” to refer to the sample
estimate of the Shannon index, H ′.

Properties. Important properties of the Shannon index:

1. H ′ ≥ 0.

2. H ′max = ln(S).

3. E(H ′) = −
∑S

i=1 θi ln(θi)− S−1
2N

+
1−

∑
θ−1
i

12N2 +
∑

(θ−1
i −θ

−2
i )

12N3 + . . .

4. V ar(H ′) ≈
∑S

i=1 pi(ln(pi))
2−(

∑S
i=1 piln(pi))

2

N
+ S−1

N2 .

5. H ′ has a normal distribution for large samples.

6. H ′ captures richness and evenness of species.

7. For empirical data, H ′ often varies from 1.5 to 3.5.

Proof. We will prove the first two properties and make some comments on
the rest of them.

1. We know that all pi ∈ [0, 1] in the case there are no individuals for
a certain species, pi = 0 for some i, the value of the corresponding
summand 0 ln(0) is taken to be 0, which is consistent with the limit:

lim
pi→0+

pi ln(pi) = 0

Thus, abundance 0 does not contribute.
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2. We want to see that H ′ reaches its maximum at the value pi = 1
S

. First,
we use Lagrange multipliers (Arfken and Weber, 2005) to maximize the
Shannon index:

f(pi, λ) = −
S∑
i=1

pi ln(pi) + λ(1−
S∑
i=1

pi)

∂f

∂λ
= 1−

S∑
i=1

pi = 0

∂f

∂pi
= (−1) ln pi + (−pi)

1

pi
− λ = − ln pi − 1− λ = 0⇒ pi = e−1−λ

∂2f

∂p2i
= − 1

pi
< 0

Then, since
∑S

i=1 pi = 1, we have

S∑
i=1

pi =
S∑
i=1

e−1−λ = Se−1−λ = Spi = 1⇒ pi =
1

S
(4.1)

Thus, if pi = 1
S

, then H ′max is:

H ′max = −
S∑
i=1

1

S
ln(

1

S
) = −S 1

S
ln(

1

S
) = − ln(

1

S
) = ln(S)

3. From (Peet, 1974) and (Bowman et al., 1971) we know the expansion
of the first moment of H ′ up to fourth order. We also derived E(H ′)
up to second order. See Appendix A.

4. The V ar(H ′) is known to be
∑S

i=1 pi(ln(pi))
2−(

∑S
i=1 piln(pi))

2

N
+ S−1

N2 (Hutch-
eson, 1970) and (Bowman et al., 1971), but it is not derived here.

5. Due to the maximum likelihood estimators which are known to be
asymptotically normal and unbiased (Márquez and Julià, 2011).

6. • It captures richness because if there is a higher number of species
S, then the value of H ′ increases.
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• It captures evenness because we can divide H ′ by the maximum
value H ′max and then we get J ′ (that we define later) which gives a
value of how differently distributed are the species. Communities
with higher values of J ′ means they are more even.

7. Here we have to refer to the ecologist from Barcelona Ramon Margalef,
1972, who this is, in practice, the range. (Margalef, 1957).

Observation. We saw that pi is the maximum likelihood estimator of the
true value of θi. This approximation produces a biased result for the Shannon
index as we don’t know the true value of N and S. Then, H ′ should be obtained

from the E(H ′) ≈ −
∑
θi ln(θi) − S−1

2N
+

1−
∑
θ−1
i

12N2 (Peet, 1974). In practice,
however, this error is rarely significant. A more substantial source of error
arises when the sample does not include all the species in the community, as
we commented before, it is almost impossible to know the true value of S in
an empirical study.

4.3 The Shannon evenness measure J ′

Here, we introduce another widely used measure of biodiversity: the Shannon
evenness measure, which captures the evenness of a sample. And it is defined
as it follows.

Definition 3 (Shannon evenness measure, J ′).

J ′ :=
H ′

Hmax

=
H ′

ln(S)

Observation. Observe the values that J ′ can take are between 0 and 1,
J ′ ∈ [0.1].

Example 3. This example is to get some idea of what has been explained in
this section. In the following table we see five different samples with N = 50
individuals differently distributed, which means the Shannon and the Shannon
evenness indexes have different values in each case. When we calculate J ′,
S is assumed known.
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Sample sp1 sp2 sp3 sp4 sp5 N H ′ J ′

1 10 10 10 10 10 50 1.609 1.000
2 50 0 0 0 0 50 0.000 0.000
3 49 1 0 0 0 50 0.098 0.061
4 48 1 1 0 0 50 0.196 0.122
5 30 10 5 3 2 50 1.156 0.718

H ′ = −
5∑
i=1

piln(pi) ; J ′ =
H ′

ln(5)

The highest value of H ′ is reached in sample 1 where each species has the
same number of individuals and there are more species than in sample 2, 3
and 4; actually, sample 1 has the maximum H’ possible in a 5-species sample.
Similarly the one with the lowest value of H ′ is sample 2 with only one species
and H ′ = J ′ = 0.

4.4 Simulation of the Shannon index in dif-

ferent scenarios

The goal of this simulation study is to investigate the statistical properties
of H ′. Focusing on the difference between the Shannon index estimations H ′

and their respective population Shannon indices H.
Here, the simulation methods will be implemented using R programming

language (R Core Team, 2016).

Design of the simulation

We are going to simulate three different scenarios that differ in the species
abundance distribution. Table 4.1 shows the population distribution in each
case, where

• θi= the probability of an individual to belong to the ith species, such
that

∑S
i=1 θi = 1.

• S = 10 (number of species).

• N = 1000 (number of individuals).
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• H = the population Shannon index.

Table 4.1: Three different population distributions

Case θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 S H
1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 10 2.302585
2 0.25 0.15 0.13 0.11 0.10 0.09 0.07 0.05 0.03 0.02 10 2.105516
3 0.60 0.20 0.10 0.04 0.03 0.01 0.01 0.008 0.001 0.001 10 1.237139

Figure 4.1 and Figure 4.2 represent the rank/abundance plots. The first
case is evenly distributed, the second case some species are more dominant
than others and the third case half of the species are dominant and the other
half are rare.

Figure 4.1: Rank/abundance plots.
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Figure 4.2: Rank/abundance plots in a natural log scale.

Running the simulation

For each distribution, we simulate 10.000 random variations of the distri-
bution using an R function called rmultinom (R Core Team, 2016). This
function is explained in Appendix A.

From each simulation we obtain an estimated Shannon index and we
calculate the mean of them, noted by H ′, which will be compared with the
population Shannon index, H.

Finally, for each case, we plot the estimated Shannon indices histogram
along with the mean and the population Shannon index.

Results

We observe that for all cases the mean, H ′, underestimates the population
Shannon index H. We see this in Figure 4.3 , where the histograms are
plotted along with the mean in green colour and the population Shannon
index in red.
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Figure 4.3: Histograms of H ′ together with the value of H in red colour and
the mean of H ′ in green colour.

The bias of the Shannon indices mean has been calculated for each case
and it is represented in Table 4.2 together with the expected bias obtained
from the Expression (4.2).

bias = H ′ −H ≈ −S − 1

2N
+

1−
∑
θ−1i

12N2
(4.2)
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Table 4.2: Shannon indices and bias.

Case H ′ H bias expected bias 1st term 2nd term

1 2.298079 2.302585 −4.494 10−3 −4.508 10−3 −4.500 10−3 −8.250 10−6

2 2.100841 2.105516 −4.474 10−3 −4.513 10−3 −4.500 10−3 −1.377 10−5

3 1.231937 1.237139 −4.932 10−3 −4.700 10−3 −4.500 10−3 −1.999 10−4

The results that we obtain by calculating these biases are two: The first
one is that the contribution of the second term is so small that could be
omitted for large numbers of N (in or case N = 1000, and the second term
is irrelevant). The second one is that the estimation of the Shannon index is
an accurate estimator, since its bias is of order 10−3.

24



Chapter 5

Biological models

Biological or theoretical models are based on the assumption that an eco-
logical community has a property called niche space that is divided amongst
the species that live there. In this section we want to see if there are any ex-
plicit relationships between two niche-based species abundance models (Bro-
ken stick and Geometric series) and the Shannon index.

5.1 Broken stick model

The broken stick model, sometimes known as the random niche boundary
hypothesis, was proposed by MacArthur (MacArthur, 1957). He likened the
subdivision of niche space within a community to a stick broken randomly
and simultaneously into S species. It is a very uniform distribution and the
model may also be viewed as representing a group of S species of equal com-
petitive ability jostling for niche space (Magurran, 2004).

This model is conventionally written in terms of rank order abundance. The
number of individuals in the ith species (ni) is obtained from the term:

ni =
N

S

S∑
j=i

1

j

Where, ni = abundance of the ith species; N = the total number of in-
dividuals; and S = the total number of species. The relative abundance of
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each species is given by the proportion pi = ni/N , which would be:

pi =
1

S

S∑
j=i

1

j

Observation. Note that the proportions pi only depend on the number of
species and we observe there is no parameter to be estimated for the Broken
stick model.

Example 4. For S=20 we have the following values of pi (approximated):

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0.179 0.129 0.104 0.088 0.075 0.065 0.057 0.050 0.043 0.038

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

0.033 0.028 0.024 0.020 0.017 0.013 0.010 0.007 0.005 0.002

Now, we suppose N = 1000 and we use the rank/abundance plot (Figure 5.1)
to see how is the shape for an assemblage following a broken stick model.
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Figure 5.1: Example of a broken stick model rank/abundance plot (S = 20
and N = 1000).

5.2 Relationship between the broken stick model

and the Shannon index

For the broken stick model there are no parameters to be estimated, so given
the number of species we can calculate the values of pi from the formulas.
Thus, the estimation of the Shannon index can be directly calculated.

Example 5. This table shows different values of H ′bs, H
′
max = ln(S) and

J ′ = H ′bs/H
′
max depending on S.

S H ′bs H ′max J ′

5 1.34 1.61 0.83
10 1.97 2.30 0.86
15 2.35 2.71 0.87
20 2.62 2.99 0.87
25 2.84 3.22 0.88

This gives us an idea of how similar are the resulting indexes while the value
of S increases. Note: H ′bs= the broken stick model Shannon index.
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Explicit relationship between the broken stick model and the Shan-
non index

We are looking for a constant of proportionality between the theoretical
maximum of the Shannon index H ′ = ln(S) and the broken stick model
Shannon index H ′bs.

H ′bs = −
S∑
i=1

pi ln(pi)

= −
S∑
i=1

(
1

S

S∑
j=i

1

j

)
ln

(
1

S

S∑
j=i

1

j

)

If we note qi :=
S∑
j=i

1

j
then we have

H ′bs = −
S∑
i=1

(
1

S
qi

)
ln

(
1

S
qi

)

= −
S∑
i=1

1

S
(qi ln(qi)− qi ln(S))

= H ′max
−1

S

S∑
i=1

(
1

ln(S)
qi ln(qi)− qi

)

Then, we have: H ′bs = H ′maxf(S)

where, f(S) := − 1
S

∑S
i=1

(
1

ln(S)

∑S
j=i

1
j

ln(
∑S

j=i
1
j
)−

∑S
j=i

1
j

)
.

Hence, the constant of proportionality we were looking for is this f(S).
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Visualization of the relationship between the broken stick model
and the Shannon index

From the result above, now we want to compare the broken stick model
Shannon index and the maximum Shannon index by representing them in
the same plot. On Figure 5.2 we observe this relation and we see H ′bs is always
lower than H ′max, which is never reached by the broken stick Shannon index.
Actually, this difference seems to be quite stable from around S = 200, where
H ′bs −H ′max ≈ 0.4.

Figure 5.2: Comparing the values of H ′ from broken stick model proportions
and the maximum values H ′max = ln(S).
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Discussion of the results

We found a clear relationship between the broken stick model and the Shan-
non index. There is an explicit relationship that can be expressed by the
product of the maximum value H ′max and a function of S.

In practice, the slow decay in the rank/abundance plot of the broken stick
is rarely observed in empirical studies. Therefore, the Shannon index from
the broken stick model is always higher than one calculated from empirical
data.

This observation leads us to think that it would be more natural to use
the broken stick model Shannon index instead of the maximum Shannon
index for calculating the Shannon evenness measure, J ′.
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5.3 Geometric series

Opposite to the broken stick model, the geometric series describes communi-
ties of highly uneven species-abundance distribution and low diversity char-
acterized by a few dominant species, thus is a model for poor-species assem-
blages. The situation is that there is some resource which is limiting and
the most dominant species takes fraction k of this resource, then the second
most dominant species takes fraction k of the remaining resource, and so on.
The geometric series is also called niche preemption model (Magurran, 2004).

The abundance is proportional to the niche a species occupies.

ck, ck(1− k), ck(1− k)2, ..., ck(1− k)S−1, 0 < k < 1

Species 1
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Species 3
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Figure 5.3: On the left Figure we represented the circle as the total resource,
where the most dominant species takes a portion k, the next most abundant
takes a fraction k of the rest and so on. On the right Figure the rank/abun-
dance plot is presented in a log scale. Graphics are taken from: (Graffelman,
2018).

The number of individuals in the ith species (ni) is obtained from the
term:

ni = NCkk(1− k)i−1, i = 1, . . . , S

Where, N=the total number of individuals, k the proportion of the remaining
niche space occupied by each successively colonizing species (k is a constant),
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and Ck is the constant that insures that
∑S

i=1 ni = N ,

Ck =
1

1− (1− k)S

As we can observe, the Geometric model has a parameter k to be estimated.
Thus, we have to distinguish between the theoretical value of k and the
estimated k̂, giving the values θi for the relative abundance of each species
and pi for the estimation of it. This would be:

θi = Ckk(1− k)i−1, pi = Ck̂k̂(1− k̂)i−1

Note. Note that ln(ni) is linear in i, with slope ln(1 − k), thus, k can be
estimated by linear regression. But, alternative estimators of k have been
described in the literature (He and Tang, 2008).

Because the ratio of the abundance of each species to the abundance of
its predecessor is constant through the ranked list of species, the series will
appear as a straight line when plotted on a log rank/abundance graph, as we
can see in Figure 5.3 and Figure 5.4 (Magurran, 2004).

32



●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

Rank−abundance plot

Species rank

R
el

at
iv

e 
ab

un
da

nc
e

1e
−

04
0.

00
1

0.
01

0.
1

1

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

k = 0.75
k = 0.5
k = 0.25

Figure 5.4: Rank/abundance plot in a log scale for different values of k.
Graphics from: (Graffelman, 2018)

5.4 Relationship between the geometric se-

ries and the Shannon index

The geometric model requires a parameter k to be estimated. Therefore,
we will compare the Geometric series with the population Shannon index
H = −

∑S
i=1 θi ln(θi), instead of comparing it with the estimation H ′.

Explicit relationship between the geometric series and the Shannon
index

We are looking for a estimation of the Shannon index given data that follow a
geometric series model. Hence we would like to find an explicit relationship
between the parameter k and the value H and S. If we could know the
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theoretical value of k, then:

H = −
S∑
i=1

θi ln(θi)

= −
S∑
i=1

Ck(1− k)i−1 ln
(
Ck(1− k)i−1

)
= −C

S∑
i=1

k(1− k)i−1 (ln(C) + ln(k)− ln(1− k) + i ln(1− k))

Since we know
∑S

i=1 k(1− k)i−1 = 1− (1− k)S = C−1, then we have:

H = − ln(C)− ln(k) + ln(1− k)− C ln(1− k)
S∑
i=1

ik(1− k)i−1 (5.1)

If we calculate
∑S

i=1 ik(1− k)i−1 = −kS(1−k)S−(1−k)S+1
k

, then:

H = − ln(C)− ln(k) + ln(1− k)− C ln(1− k)−kS(1−k)
S−(1−k)S+1
k

Note. We noted C := Ck defined before and we used that k ∈ (0, 1).

Observation. From the expression above it is not possible to find k as a
closed expression of H and S.

Visualization of the relationship between the geometric series and
the Shannon index

Here, we want to visualize the relationship between the Shannon index and
the k parameter, so in Figure 5.5 we have plotted the Shannon index for
different values of S, on the vertical axis, and parameter k, on the horizontal
axis.

In order to explore the relationship between the maximum value of the
Shannon index H ′max and the values of H ′ for different S and k, we have
plotted the Figure 5.6
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Figure 5.5: Shannon indexes for different values of S.

Figure 5.6: Shannon indexes for different values of k together with H ′max.
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Discussion of the results

We have found an explicit relationship between the Shannon index and the
parameter k of the geometric series, but not a closed expression that could
allow us to estimate k directly from the Shannon index.

This observation leads us to think that, for empirical data, we can es-
timate the k parameter from the Shannon index by using numerical meth-
ods.Then, we could estimate the Shannon index, given k, or calculate k,
given the Shannon index. Therefore, this could lead to a new method for
estimating k added to the maximum likelihood or linear regression method,
among other methods.

From Figure 5.5 we see an inverse relationship between H ′ and k that
looks almost linear above k ≈ 0.4. Such relation is monotone, so then we
can say k and H ′ are consistent measures of diversity. If a community is
dominated by a few highly abundant species, k will tend to be larger, and
correspondingly, the Shannon index will be smaller.
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Chapter 6

Application to empirical data

In this section, an example of a species community has been studied focusing
on its abundance distribution. The geometric model has been fitted to
data and the Shannon index calculated. Here we present the procedure we
use in order to apply the results of Chapter 4 and Chapter 5.

Procedure

1. Fit the geometric model to data.

2. Estimate the k parameter by linear regression.

3. Estimate the k parameter from the geometric model Shannon index.

4. Compare the two estimators.

Example: Dung beetles

Here we have the abundance distribution of 16 different species in a com-
munity of 1745 individuals of dung beetles found around Bangalore in the
Western Ghats, India. Data taken from (Magurran, 2004). In Figure 6.1 the
relative abundance of each species are represented in a table together with
the values of S = 16 an N = 1745.
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Figure 6.1: Beetles abundances.(Magurran, 2004)

First, we calculate the Shannon index and its bias:

• H ′ = 1.603149

• bias = −S−1
2N

= 15
3490
≈ −4.3 10−3

Then, before fitting the geometric model to data, we visualize the abun-
dance species distribution using the rank/abundance plots in Figure 6.2.
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Figure 6.2: Rank/abundance plots of dung beetles.

After this, we represent the log rank/abundance plot together with the
linear regression straight line (see Figure 6.3). And then, we estimate the k
parameter by using an R function called lm (R Core Team, 2016).

Figure 6.3: Linear regression for dung beetles data.
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• The k estimation by linear regression: k̂lr = 0.3250428.

Finally, we estimate the k parameter by using the Formula (5.1) and a
numerical approximation to the solutions. This was solved by using Wolfram
Language (??, Mat).

• The k estimation by Formula (5.1): k̂H′ = 0.425896

In Figure 6.4 we have plotted the geometric Shannon indices depending on
k ∈ (0, 1) and given S = 16 together with H ′

k̂
= 1.92654 and H ′ = 1.603149 .

Figure 6.4: The geometric series Shannon indices, for different values of k
and given S = 16 plotted together with the beetles Shannon index in blue
and the geometric Shannon index for k̂ = 0.325, in red.
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Discussion of the results

We have calculated both k by linear regression and by the Expression (5.1) of
the Shannon index. The difference between them is (0.425896− 0.3250428 =
0.1008532) is of order 10−1.

This result, together with the small bias for the Shannon index, lead us
to think the linear regression estimation could be worse than the Shannon
index estimation.

Hence, we propose the geometric series Shannon index as another method
to estimate the k parameter.
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Chapter 7

Concluding remarks

Here, we want to emphasize that we successfully achieved a formal definition
of the Shannon index. Most studies in the literature do not distinguish be-
tween the estimation Shannon index and the population Shannon index.

The simulation study of the estimated Shannon index allowed us to effec-
tively calculate the first moment of the estimation Shannon index. Hence,
we obtain the bias and we observe that the second term of the expectation
can be omitted when the size of the sample is sufficiently large.

Then, we made the comparison between the Shannon index and the bro-
ken stick model. This allowed us to explicitly calculate a Shannon index
derived from the broken stick model (H ′bs). Furthermore, we suggest that
an evenness diversity measure derived from the ratio between the Shannon
index (H ′) and the broken stick model Shannon index (H ′bs) would be more
realistic than the one widely used in the literature, J ′.

We also made the comparison between the Shannon index and a geomet-
ric model. This comparison lead us to an explicit relationship between two
biodiversity indices; the estimation Shannon index (H ′) and the k parameter
of the geometric model. This result along with the example using empirical
data and the small bias of the estimation Shannon index, H ′, made us realize
that a new estimation method based on the estimation Shannon index using
numerical methods could be also suitable to estimate the k parameter. In the
literature, we found several alternative methods to the one that we described
(He and Tang, 2008). So it would be interesting to compare them with our
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newly defined method.
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Appendix A

Calculation of E(H ′)

We perform the Taylor expansion for f(x) at x = a:

f(x) ≈ f(a)+
f ′(a)(x− a)

1!
+
f ′′(a)(x− a)2

2!
+
f ′′(a)(x− a)3

3!
+... =

∞∑
n=0

fn(a)(x− a)

n!

We use pi to estimate θi where pi = ki
N

.
We consider the transformation pi ln pi (or θi ln θi )

f(θ) = θ ln θ

f ′(θ) = ln θ + θ
1

θ
= ln θ + 1

f ′′(θ) =
1

θ

f ′′′(θ) = − 1

θ2

Taylor expansion for f(pi) around pi = θi

pi ln pi ≈ θi = ln θi + (ln θi + 1)(pi − θi) +
1

2θ
(pi − θi)2 −

1

6θ2
(pi − θi)3 + ...

We obtain E(H ′) by taking sums and expectations

E(H ′) = E(
S∑
i=1

pi ln pi) =
S∑
i=1

E(pi ln pi)
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First term:

−
S∑
i=1

E(θi ln θi) = −
∑

θi ln θi = H

Second term:

E((ln θi + 1)(pi − θi)) = (ln θi + 1)E(pi − θi) = (ln θi + 1)(θi − θi) = 0

Third term:

E(
1

2θi
)(pi − θi)2) =

1

2θi
E(pi − θi)2 =

1

2θi
E(pi − E(pi))

2 =
1

2θi
V (pi)

Since pi = ni

N
and ni ∼ Bin(N, θi) we have:

E(ni) = Nθi

V (ni) = Nθi(1− θi)

V (pi) =
1

N2
V (ni) =

θi(1− θi
N

Third term summand and x− 1 :

−
S∑
i=1

(1− θi)
2N

=
−1

2N
(S − 1) = −S − 1

2N

Coincides with Peet p. 292. (Peet, 1974)
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Appendix B

R code

In this Appendix we present R code used in Chapter 4, Chapter 5 and Chap-
ter 6 that we consider important to be commented.

Chapter 4

Simulation study

# Simulation study - Monte Carlo - using rmultinom

# ================================================

#Shannon function

shannon <- function(x) {

S<-length(x)

N<-sum(x)

p<-x/N

p<-p[p>0]

return(-sum(p*log(p, base = exp (1))))

}

S=10

N<-1000

nsimul <-10000

# case 1

# ======
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theta1 <-rep (0.1 ,10)

H1<-shannon(theta1)

# simulation

set.seed (123)

x <- rmultinom(nsimul ,N,prob=theta1)

X<-matrix(data=x, nrow = S, ncol = nsimul)

# calculating H'
H1.prima <-numeric(nsimul)

for (i in 1: nsimul) {

H1.prima[i]<-shannon(X[,i])

}

#mean of H'
m1<-mean(H1.prima)

bias1 <-m1 -H1

# case 2

# ======

theta2 <- c(0.25 ,0.15 ,0.13 ,0.11 ,0.10 ,0.09 ,0.07 ,0.05 ,0.03 ,0.02)

H2<-shannon(theta2)

# simulation

set.seed (123)

x <- rmultinom(nsimul ,N,prob=theta2)

X<-matrix(data=x, nrow = S, ncol = nsimul)

# calculating H'
H2.prima <-numeric(nsimul)

for (i in 1: nsimul) {

H2.prima[i]<-shannon(X[,i])

}

#mean of H'
m2<-mean(H2.prima)

bias2 <-m2 -H2

# case 3

# ======

theta3 <-c(0.6, 0.2, 0.1, 0.04, 0.03, 0.01, 0.01, 0.008, 0.001, 0.001)

H3<-shannon(theta3)

# simulation

set.seed (123)
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x <- rmultinom(nsimul ,N,prob=theta3)

X<-matrix(data=x, nrow = S, ncol = nsimul)

# calculating H'
H3.prima <-numeric(nsimul)

for (i in 1: nsimul) {

H3.prima[i]<-shannon(X[,i])

}

#mean of H'
m3<-mean(H3.prima)

bias3 <-m3 -H3

Observation. In order to calculate the Shannon index, if we don’t choose the
implemented function in the vegan package of R, we note there is a problem
defining the function for species with 0 individuals. Then, we have to consider
only the positive values of the data set.
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Chapter 5

The code for the Figure 5.2 and the Figure 5.5 is presented here.

Broken stick model, Figure 5.2

# Comparing the broken stick model with H'
#=========================================

shannon <- function(x) {

x<-x[x>0]

return(-sum(x*log(x, base = exp (1))))

}

sp<-1000

p <- matrix( rep(0), nrow = sp, ncol = sp)

H.prima <-rep(0,sp)

H.max <-rep(0,sp)

for (S in 5:sp) {

for (i in 1:S) {

p[S,i]<-0

for (j in i:S) {

p[S,i]<-p[S,i]+1/j

}

p[S,i]<-p[S,i]*1/S

}

x<-p[S,]

H.prima[S] <- shannon(x)

H.max[S] <- log(S)

}

H.prima <-H.prima[H.prima >0]

H.max <-H.max[H.max >0]
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Geometric model, Figure 5.5

shannon <- function(x) {

S<-length(x)

N<-sum(x)

p<-x/N

p<-p[p>0]

return(-sum(p*log(p, base = exp (1))))

}

# Geometric model

# ===============

N<-1000

k<-seq (0.01 ,0.99 ,by =0.01)

# 1. S = 10

# ---------

S<-10

H1<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H1[j]<-shannon(n)

}

# 2. S = 20

# ---------

S<-20

H2<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H2[j]<-shannon(n)

}
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# 3. S = 30

# ---------

S<-30

H3<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H3[j]<-shannon(n)

}

# 4. S = 40

# ---------

S<-40

H4<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H4[j]<-shannon(n)

}

# 5. S = 50

# ---------

S<-50

H5<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H5[j]<-shannon(n)

}

# 6. S = 100
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# ----------

S<-100

H6<-numeric(length(k))

n<-numeric(S)

for (j in 1: length(k)) {

C<-1/(1-(1-k[j])^S)

for (i in 1:S) {

n[i]<-(N*C*k[j]*(1-k[j])^(i-1))

}

H6[j]<-shannon(n)

}
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Chapter 6

Using lm for the linear regression

# DUNG BEETLES

# ============

X<-read.csv("6maguranBeetles.csv", sep = ";")

N<-sum(X$Abundance)
S<-length(X$Species)
species.rank <-1:S

# p = relative abundance

p<-X$Abundance/N
log.p<-log(p)

# REGRESSION RESULTS

# ==================

x<-species.rank

lny <-log.p

out.lny <-lm(formula = lny ~ x)

summary(out.lny)

coefficients(out.lny)

b<- out.lny$coefficients

#estimated line

y<- b[1] + b[2]*x

#estimation of k (linear regression)

#----------------------------------

# ln(1-k)= b[2] then k=1-exp(b[2])

k<-1-exp(b[2]) # k = 0.3250428

# Shannon index Dung Beetles

# ==========================

shannon <- function(x) {

S<-length(x)

N<-sum(x)

p<-x/N

p<-p[p>0]

return(-sum(p*log(p, base = exp (1))))
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}

H<-shannon(X$Abundance)

# comparing with Shannon index

# =============================

# fixed S = 16

# ------------

n1<-numeric(S)

k1<-seq (0.01 ,0.99 ,by =0.01)

H1<-numeric(length(k1))

H1.max <-log(S)

for (j in 1: length(k1)) {

C<-1/(1-(1-k1[j])^S)

for (i in 1:S) {

n1[i]<-(N*C*k1[j]*(1-k1[j])^(i-1))

}

H1[j]<-shannon(n1)

}

# shannon index geometric model (S=16 and k.hat =0.3250428)

# ========================================================

k<-0.3250428

n<-numeric(S)

C<-1/(1-(1-k)^S)

for (i in 1:S) {

n[i]<-(N*C*k*(1-k)^(i-1))

}

H2<-shannon(n)

bias <-H2-H

56


