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Abstract: The Mediterranean has been identified as a climate change hotspot due to increased
warming trends and precipitation decline. To estimate the impacts of the ongoing climate change
on the region, projections of various CMIP5 and CMIP6 experiments and scenarios are compared.
The changes in temperature and precipitation for the 21st century are studied under scenarios
RCP2.6/SSP1-2.6, RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5 as well as the high resolution High-
ResMIP experiments. Additionally, to give robust estimates of projected changes a model weighting
scheme is applied, accounting for historical performance and inter-independence of the multi-member
multi-model ensembles. Results indicate a significant and robust warming over the Mediterranean
during the 21st century over all the ensembles and experiments. Nevertheless, the amplified Mediter-
ranean warming with respect to the global average is only found for summer. Projected changes
vary between CMIP5 and CMIP6, with the latter projecting a stronger warming. In contrast to
temperature, precipitation changes show a higher level of uncertainty and spatial heterogeneity.
However, for the high emission scenario, a robust decline in precipitation is projected for large parts
of the region during summer. Results applying the model weighting scheme indicate reductions in
CMIP6 and increases in CMIP5 warming trends, making the differences between the two ensembles
smaller.

I. INTRODUCTION

The Mediterranean region (10oW, 40oE, 30oN, 45oN)
(Iturbide et al. 2020) is located between the humid and
mild European continental climate and the dry and warm
arid North-African climate (Cramer et al. 2018). The
contrast between these climates is explained by the char-
acteristics of the general atmospheric circulation in mid-
latitudes, the impact of the surrounding oceans and the
interaction with the land surface (Boé and Terray 2014).

Global warming is not homogeneous and as previ-
ous research suggests (Lionello and Scarascia 2018), the
Mediterranean region is a hotspot of climate change. The
complex and diverse socioeconomic situation of the coun-
tries located around the Mediterranean Sea, with strong
vulnerabilities to climate change and variability, requires
adaptation to the consequences of the already changing
climate (Barros et al. 2014). The observed increase in
temperatures during the recent past is expected to con-
tinue and be larger than the planetary mean temperature
increase (Lionello and Scarascia 2018). Additionally, de-
clines in precipitation totals have been detected during
the late 20th century and beginning of the 21st (Longob-
ardi and Villani 2010), although there are studies argu-
ing that longer periods should be used to assess historic
precipitation trends to avoid influences from interdecadal
and interannual variability (Peña-Angulo et al. 2020).

In the present study, though, the physical dynam-
ics driving future changes in the Mediterranean region
will not be assessed. There are many studies linking
characteristics of the Mediterranean climate change to
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dynamical sources such as the changes in large-scale,
upper-tropospheric flow and the reduction of the re-
gional land–sea temperature gradient in winter (Tuel and
Eltahir 2020) or to thermodynamic processes such as the
lapse rate change and land-ocean warming contrast in
summer (Brogli et al. 2019).

Future climate change is estimated using numerical
models. Global climate models (GCMs) are used to
project the future state of the climate system by account-
ing for the physical processes in each climate subsystem
(atmosphere, hydrosphere, biosphere, cryosphere, and
land-surface) and the interactions between them. Mod-
els need to account for the variation in greenhouse gas
(GHG) concentrations altered by anthropogenic emis-
sions that produce changes in the atmospheric radiative
forcing, but also whenever possible changes in natural
forcings (mainly solar irradiance and volcanic aerosols).
Different institutes develop different GCMs using slightly
different assumptions but always the same physical prin-
ciples. This offers the opportunity of performing climate
change experiments leading to more robust estimates, be-
cause different models allow sampling model uncertainty
(Tebaldi and Knutti 2007). To make models compara-
ble, intercomparison projects have been organised by the
international community where a number of GCMs per-
form experiments under common conditions (e.g using
standardized scenarios of GHG emissions and concen-
trations) (Meinshausen et al. 2011, Riahi et al. 2017).
One of the primary community efforts in this regard are
the Coupled Model Intercomparison Projects (CMIPs),
where both experiment descriptions and scenarios are
prescribed. In the present study the latest two CMIPs
are considered and their similarities and differences ex-
plored (Eyring et al. 2016, Taylor et al. 2012).

The simulations from these CMIP experiments, which
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contain results from a large number of models each, show
a large spread in projected changes due to the differences
in model design and internal variability. Weighting single
model runs using information from experiments simulat-
ing the observed past (historical period), aims at con-
straining the climate projection uncertainty and obtain-
ing a more accurate estimate of regional climate change
signals. Past approaches have used emergent constraints
(Tokarska et al. 2020), performance-based model sub-
sets (Herger et al. 2019) or weighted models accounting
for performance and independence (Knutti et al. 2017,
Lorenz et al. 2018). The latter approach is explored in
this study.

The main aim of this study is to evaluate and quantify
climate change over the Mediterranean region through-
out the 21st century using temperature and precipita-
tion data available from the most recent CMIPs, CMIP5
and CMIP6. Furthermore, it quantifies disagreements
between projections of the two CMIPs, assesses the influ-
ence of model resolution and tries to improve projections
using a weighting method based on the assumptions of
model performance and model independence.

Section II describes the climate models and observa-
tional data used, explains the methods used to quantify
climate change, to weight the projections and to assess
model performance. The Mediterranean hotspot, the
projected changes (weighted and unweighted) and un-
certainties are presented in section III, while these re-
sults are discussed in section IV. Section V concludes
and presents questions that require further investigation.

II. DATA & METHODS

A. Model data

This study is based on the historical and climate pro-
jection experiments of CMIP5 and CMIP6. The histori-
cal experiments span from 1850 to 2005 in CMIP5 (Tay-
lor et al. 2012) and from 1850 to 2014 in CMIP6 (Eyring
et al. 2016). The future projections continue from the end
of the historical run until 2100. The variables used are
monthly mean near-surface air temperature (TAS), pre-
cipitation rate (PR) and sea-level pressure (PSL). The
latter is used to weight single models (see section II).

Increasing computational power allows for continuing
increases in model resolutions, thereby enabling mod-
els to explicitly resolve processes at finer scales and im-
proving the data basis for adaptation measures. The
High Resolution Model Intercomparison Project (High-
ResMIP), a CMIP6 endorsed MIP (Haarsma et al. 2016),
aims at comparing lower and higher resolution versions
of the same model. The HighResMIP historical period
spans from 1950 to 2014 and the future period from 2015
to 2050. This smaller ensemble is considered to assess
how a higher model resolution affects projections over
the orographically and geographically complex Mediter-
ranean region.

Three radiative forcing scenarios are used accounting
for uncertainty in future emissions: Representative Con-
centration Pathways (RCPs) 2.6, 4.5 and 8.5 for CMIP5
and Shared Socioeconomic Pathways (SSPs) 1-2.6, 2-4.5
and 5-8.5 for CMIP6. The 2.6, 4.5 and 8.5 values (in
Wm−2) represent anthropogenic global radiative forc-
ing increases by 2100 compared to the pre-industrial
era for both RCP and SSP (Meinshausen et al. 2011).
SSP1, SSP2 and SSP5 associate each radiative forcing
to a shared socioeconomic pathway, SSP1 being based
on sustainability, SSP5 based on a fossil-fueled develop-
ment and SSP2 representing a middle of the road sce-
nario (O’Neill et al. 2016). It should be borne in mind
that, while the three studied RCPs and SSPs share the
same forcing at the end of the century, GHG and aerosol
concentrations during the century differ and this makes
them not directly comparable (Wyser et al. 2020). Re-
sults from CMIP5 and CMIP6 sharing the same 2100 ra-
diative forcing will be displayed together for simplicity.
HighResMIP only uses SSP5-8.5 for future projections.

A summary of the initial-condition runs of the models
used for every scenario is found in Appendix A. In order
to clarify the nomenclature, in the present study “mod-
els” is used to refer to the model as a whole and “mem-
bers” is used for the model’s initial-condition members.
Some of the models have more than one member, mean-
ing that the multi-model ensemble is a super-ensemble.

B. Observational data

Observational data are used to compare model experi-
ments to the observed past and to derive performance
weights of ensemble members. To account for obser-
vational uncertainty multiple observational products are
used containing both reanalysis (ERA5 and JRA55) and
observations (GPCC, CRU and E-OBS). A more detailed
summary of the datasets used can be found in Appendix
A.

Some listed datasets have constraints and are not used
consistently in this study. JRA55 is not shown in the time
series as it was shown to overestimate Mediterranean pre-
cipitation during the period 1958-1978 (Tsujino et al.
2018). E-OBS is not used when plotting time series or
box plots as it has many missing values due to the low
density of measurement stations in the southern part of
the Mediterranean region.

C. Methods

The analyses have been performed using the Earth Sys-
tem Model Evaluation Tool (ESMValTool). ESMValTool
is a tool developed by the community facilitating the
processing of generic climate datasets, allowing for re-
producibility of results (Righi et al. 2020). Tools from
the ESMValCore (https://github.com/ESMValGroup/
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ESMValCore) Preprocessor modules have been used to
compute the diagnostics.

As TAS and PR are only assessed over land , a land-sea
mask is applied at the beginning of the data preprocess-
ing. The time dimension is split into different historical
and future periods to compute the diagnostics. The base-
line periods (1980-2014 and 1986-2005) are used as a ref-
erence to assess the performance of the models against
observations. The longer reference period (35 years) is
used to show historical trends, as 20-year trends are con-
sidered to be too heavily influenced by internal variabil-
ity (Merrifield et al. 2020, Peña-Angulo et al. 2020). The
shorter 1986-2005 period (from Collins et al. (2013)) is
used to compute deltas i.e. the change between the histor-
ical period and a future period. This historical period is
used instead of 1995-2014 (Brunner et al. 2019) to avoid
CMIP5’s historical (which ends in 2005) and future pro-
jection runs to overlap. Three future periods are consid-
ered to assess changes: near-term (2021-2040), mid-term
(2041-2060) and long-term (2081-2100). Only the near-
term period is available for HighResMIP as projection
experiments have been performed only until 2050.

To be able to compare models and observational refer-
ences all datasets are regridded to a 1ox1o grid over the
region (10oW, 40oE, 25oN, 50oN) using a horizontal con-
servative interpolation method. Additionally, when com-
puting climatologies the surface temperature is corrected
for height differences between the model’s orography and
the evaluation grid (using the standard lapse rate, 6.49
K/m) (Dennis 2014).

Climate change varies for different seasons. Therefore,
seasonal means for four seasons (DJF, MAM, JJA, SON)
are computed by averaging the monthly data accordingly.

The most recurrent diagnostics used are anomalies and
trends. Anomalies are computed subtracting the refer-
ence period 20-year climatology. Trends are computed
following a linear ordinary least square regression fit with
time as the independent variable. Projected changes, also
referred to as deltas, are computed by calculating the dif-
ference between time-averaged values for a future period
and the time-averaged values for the reference period.

To illustrate how differently models perform between
them, and depending on the diagnostic, the historical
period root mean squared error (RMSE) between each
model of the super-ensemble and observational references
is computed. The RMSE is normalized with the multi-
model ensemble RMSE median of the diagnostic (Gleck-
ler et al. 2008). This way a metric is obtained of how well
a model performs (according to a reference dataset) com-
pared to the multi-model average performance. A better
than average performance is indicated by negative val-
ues, while a worse than average performance by positive
ones.

To assess the uncertainty and robustness of changes in
the multi-model ensemble two dimensions are considered.
The degree of agreement between the models and the sta-
tistical significance of the variable changes are used. The
agreement is measured using a threshold of 80% of the

models showing the same sign as the multi-model ensem-
ble mean (Collins et al. 2013). A mean change is con-
sidered significant if it is beyond the threshold of a two-
tailed t-Student test at the 95% confidence level. The
t-statistic is computed with the historical and future pe-
riod ensemble means and their inter-model distribution.

An approach to improve future projections ensembles
is to give more weight to models with good performance.
Assuming that an observational ensemble is a good rep-
resentation of the climate, historical model runs are com-
pared against it and more weight is given to those mem-
bers of the multi-model ensemble that perform better i.e.
weighting by performance.

Another aspect to take into account when weight-
ing a multi-model is the independence between models.
Some models share similarities in their formulation and
it would not be fair to give equal weight to dependent
and independent models as some similar model struc-
tures would be over-represented. To account for this an
independence weighting method is also used.

From the work by Knutti et al. (2017), Lorenz et al.
(2018), Brunner et al. (2019) and Merrifield et al. (2020)
the equation (1) is used to obtain the weight wi that each
member i will have in the projections ensemble. The
weight accounts for the distance Di from member i to
the observational ensemble, obtained with the RMSE,
and for the distance Sij between member i and every
other model member j from the multi-model ensemble.
σs and σd are constant independence and performance
shape parameters, respectively. The observational en-
semble is computed with the observational data mean.

wi =
e
−
(
Di
σd

)2

1 +
∑M

j 6=i e
−(

Sij
σs

)2
(1)

The weighting method needs to account for different
diagnostics (trends, anomalies, variabilities...) in order
to better represent the model characteristics and to avoid
weighting models that could match, just by chance, the
independence and performance criteria of a single diag-
nostic. In this study, the diagnostics used to evaluate the
distances Di and Sij are not the same, as suggested by
Merrifield et al. (2020). When evaluating performance
the aim is to give weight to models that resemble in a
more faithful way the observations, while independence
weighting aims to clearly identify members that behave
similarly. In the present study TAS and PSL have been
used as diagnostic variables (Merrifield et al. 2020). The
diagnostics used to weight performance, both for TAS
and PR future projections, are TAS-ANOM, TAS-STD,
TAS-TREND, PSL-ANOM, PSL-STD; the diagnostics to
weigh independence are the 20-year climatologies TAS-
CLIM, PSL-CLIM, also for temperature and precipita-
tion projections. The reference period over which the
diagnostics are computed is 1980-2014 (Brunner et al.
2020).

In general terms, the shape parameters are the refer-
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ence values that inform if a distance is enough to down-
weight a model (σd) and if two models are dependent or
independent (σs). Each scenario and season and multi-
model ensemble has associated its own shape parameters.

Appendix B explains in further detail the diagnostics
used and the physical meaning of the shape parameters
and the methods used to compute them.

III. RESULTS

With the available amount of data and the diagnos-
tics described a large number of analyses have been
performed. Only a few of them are shown in this
thesis. However, the rest have been made avail-
able in a shiny app at https://earth.bsc.es/shiny/
medprojections-shiny_app/ for the sake of complete-
ness. This section refers to some figures not shown in
the text but available in the shiny app for consultation if
desired.

A. The Mediterranean as a climate change hotspot

A first approach to the future Mediterranean climate
is to show how its projections compare to global mean
projected changes.

Figure 1 illustrates the Mediterranean hotspot for the
highest emissions scenario. It shows TAS and PR differ-
ences between the global mean and the Mediterranean
region anomalies during the mid and long-term with re-
spect to 1986-2005. The Mediterranean region shows
a higher annual temperature increase than the global
mean. Nevertheless, when accounting for seasonal differ-
ences, the highest amplification is visible from summer.
The amplification during winter is small and even nega-
tive in the north-west part of the domain. While projec-
tions agree on a global precipitation increase for the long-
term period (Lionello and Scarascia 2018), the Mediter-
ranean region shows smaller precipitation increases.

The TAS and PR differences show an increase in mag-
nitude from the mid-term to the long-term period, indi-
cating that the Mediterranean climate changes at a faster
rate than the global mean for the highest emission sce-
nario. The 2.6 Wm−2 scenario shows, instead, a damp-
ening of the hotspot from the mid-term to the long-term.

The combination of projected increased warming and
an anomalous precipitation decline makes the region a
hotspot for climate change (Lionello and Scarascia 2018).

B. Model performance over the historical period

The ensembles used in the present study contain many
models and they all perform differently for different diag-
nostics. Figure 2 aims to justify the use of multi-model
ensembles rather than single models. The normalised
RMSE from diverse diagnostics (rows) is shown for all

the models in CMIP6 (columns). The boxes are diag-
onally split to show the errors with respect to two ob-
servational datasets: JRA55 and CRU. Negative values
indicate better than median performance, positive values
worse than median performance.

The models’ performance against the diverse diag-
nostics is very different as shown in Figure 2. Some
models perform better over most of the diagnostics (e.g
ACCESS-ESM1-5, KACE1-0-G or UKESM-0-LL). Some
models seem to perform well for some diagnostics or vari-
ables and bad for others. Two examples are MIROC6,
which shows low performance mainly for surface tem-
perature climatologies, and IPSL-CM6A-LR which has a
low performance on precipitation climatologies. Others,
like CNRM-CM6-1-HR, perform worse than the RMSE
median for most diagnostics.

Some models seem to share characteristics. The mod-
els from the institutions MIROC, INM and CNRM-
CERFACS seem to have similar responses to certain diag-
nostics. The potential dependency between models raises
another concern when dealing with multi-model ensemble
projections. Dependent models bear the risk of produc-
ing a biased mean projection as more weight could be
given to a certain way of modelling the climate.

Interestingly, the multi-model-mean and multi-model-
median performances are better than the single model
performance median. Showing that while there are mod-
els that perform better than the ensemble mean, it is still
better to use the mean than single models when consider-
ing multiple diagnostics. The fact that the multi-model
ensemble performance is consistently better for all diag-
nostics shows how single model errors partly cancel off
(Tebaldi and Knutti 2007). This is one of the pillars be-
hind the Coupled Model Intercomparison Project: to get
a better representation of the climate by combining dif-
ferent models.

C. Unweighted future projections

The historical temperature and precipitation trends
are compared with the observational ensemble to verify
the CMIPs and HighResMIP performance. As seen in
Figure 3 (a) and (c), the spread of the multi-model en-
sembles trend spans the observational ensemble trends.
Mostly, for the rest of variables and seasons, the ob-
servations also fall inside the multi-model ensemble his-
torical runs (see shiny app). The multi-model ensem-
ble spread shown in the historical temperature trends
is notably larger than the observational ensemble. For
precipitation, spreads are larger for all ensembles and
usually show negative and positive trends (e.g CMIP5
5th to 95th precipitation trend percentiles go from -0.06
to 0.06 mmday−1 decade−1). Qualitatively, for High-
ResMIP temperature trends, high resolution experiments
tend to be less dispersed than the lower resolution ones,
although the ensemble size is small. Precipitation trends
do not show such a behaviour.
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Figure 1: Mediterranean temperature (upper two rows) and precipitation (lower two rows) change differences with respect to the mean
global change. The changes are computed with respect to the 1986-2005 period for the mid-term (1st and 3rd row) and late-term periods

(2nd and 4th row). The differences are shown for each season and annual means (columns) for the CMIP6 SSP5-8.5 scenario.

Figure 2: Normalized root mean squared error of diagnostics
(rows) between each CMIP6 model (columns) and observational

references. Each cell is divided in two triangles to display the
RMSE against JRA55 and CRU. The last two columns show the

RMSE of multi-model ensemble mean and median. The
diagnostics are TAS and PR climatologies and trends over the

Mediterranean region for the four different seasons.

Figure 3 (b) and (d), show the multi-model ensem-
ble summer TAS and PR projected changes displayed
for the three future periods. Regarding temperature,
the CMIP6 ensemble shows larger changes than CMIP5
throughout the century. Uncertainties for the end of the
century seem to grow larger for CMIP6 as its IQR is
larger than CMIP5. The projected change at the end
of the century by CMIP6 is over 7oC averaged for the
whole Mediterranean region with 90% ranging from 5.5
to 9.5oC. CMIP5 shows a mean increase of 6oC by the

Figure 3: Summer temperature (a) and precipitation (c) historical
trends of the observational ensemble, CMIP5, CMIP6 and

HighResMIP. Summer temperature (b) and precipitation (d)
projected changes for the near, mid and long-term periods with

respect to the baseline period. In the box plots, the black
horizontal line represents the median and the black dot is the

mean. The interquartilic range (IQR) and whiskers are defined by
the 25th-75th and 5th-95th percentiles, respectively. HighResMIP
models are displayed as markers, enabling for a comparison of the
HR (red) and LR (blue) models within the experiment. The same

markers are used for two different resolution runs of the same
model (see Appendix A)

end of the century and 90% ranging from over 4oC to
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7.5oC. For the rest of the seasons and scenarios, CMIP6
shows bigger temperature changes and broader IQR and
whisker ranges than CMIP5 (see shiny app). Summer re-
mains the season with the largest temperature increase.
As expected, the projection spread broadens for each fu-
ture period as models diverge. The winter 90% range
temperature change goes from 3.2 to 6.8oC for CMIP6
and from 2.7 to 5oC in CMIP5 (see shiny app). High-
ResMIP HR projections show a smaller spread, converg-
ing to values close to the CMIP6 ensemble mean (for all
seasons). Conclusions must be drawn carefully, though,
as the HighResMIP ensemble is very small.

Regarding precipitation projections, CMIP5 draws a
more pessimistic picture in summer with decreases of
0.25 mmday−1, which means 23 mm less during the sum-
mer season at the end of the century, with a 90% range
from -0.45 to -0.1 mmday−1. The rest of the seasons
and the middle of the road scenario project, generally,
mean precipitation loss for the mid and long-term (see
the shiny app). The sustainability scenario shows no ro-
bust change. The large uncertainties inherent to pre-
cipitation projections make the assessment of the results
harder as 25% of the multi-model distribution is showing
precipitation increase. The winter 90% range precipita-
tion changes go from -0.35 to 0.03 mmday−1 for CMIP6
and from -0.45 to 0.07 mmday−1 in CMIP5 (see shiny
app). There are no obvious patterns that distinguish
the HighResMIP HR and LR precipitation experiments
throughout seasons.

The spatial distribution of the changes projected by
the high emission scenario for JJA TAS and PR is shown
in Figures 4-5.

Summer TAS changes are robust and significant over
all the 21st century periods in the Mediterranean re-
gion (see Figure 4). HighResMIP shows statistically non-
significant changes in the region’s middle latitudes (note
that the ensemble only has seven models). As previously
said, CMIP6 shows larger warming than CMIP5. Nev-
ertheless, there is good agreement between both CMIP
experiments in the spatial distribution of the temper-
ature increase over the Mediterranean region. Eastern
Europe, the Balkans and the Iberian peninsula would be
the regions with the largest mean summer temperature
increases, around 8-9oC.

The middle of the road scenario (4.5 Wm−2 forcing)
projects, generally, a robust and significant temperature
increase for all the century, but with a tendency to reduce
the rate of increase. CMIP6 shows the most important
warming (mean of 4.5-5oC) in the Iberian and Balkan
peninsulas. The sustainable scenario (2.6 Wm−2 forcing)
warming is generally robust and significant and shows a
temperature plateau beginning between 2040 and 2050
for both CMIPs. Nevertheless, CMIP6 is projected to
reach an average increase of just over 2oC while CMIP5
averages approximately 1.5oC. The warming spatial pat-
terns and magnitudes for the mid and long-term periods
remain very similar. The near-term projected changes
are similar for all scenarios.

The temperature changes during winter are smaller
than during summer, but still significant. CMIP6
projects larger changes than CMIP5, but the spatial dis-
tribution of the magnitudes is similar for both. The
north-east Mediterranean region is the one with the
largest projected warming in winter. The near-term
HighResMIP shows a slightly larger TAS increase than
CMIP6 in eastern Europe (see shiny app).

Regarding precipitation in summer, the end of the cen-
tury changes projected by the high emission scenario in-
dicates a robust and significant precipitation decline for
all the Mediterranean region (see Figure 5). Note that
neither robust nor significant changes are projected in the
southern and eastern region mainly because, according
to the CRU dataset climatology, precipitation is already
non-existent or very low during summer. Both CMIP
experimetns agree that the region most affected by the
precipitation decline is the one spanning from the Pyre-
nees to the north of the Alps, with long-term changes
ranging from -0.6 to -0.9 mmday−1 for the high emis-
sion scenario. Despite lower forcing scenarios projecting
non-significant changes (except the west Mediterranean
for long-term SSP2-4.5) and fewer regions showing inter-
model agreement, the change points to a general pre-
cipitation decline. The HighResMIP projections for the
near-term are in good agreement with the CMIP6 spa-
tial pattern and magnitudes through most of the seasons
(note that most of the grid points are not robust).

Winter precipitation changes in a different way than
in summer (see shiny app). The southern part of the
Mediterranean region sees a robust and significant pre-
cipitation change by the end of the century, with maxi-
mum declines of -0.4 to -0.6 mmday−1 over south Turkey
and the north African coastline. The northern Mediter-
ranean region lies in a transition zone, as Western Eu-
rope is projected to see an increase in precipitation, lead-
ing to increasing uncertainties in the Iberic, Italian and
Balkan peninsulas projections. CMIP6 ensemble shows
more robust and significant changes throughout the re-
gion and projects broader 5-95th percentile ranges. This
behaviour is also found in the rest of the scenarios (see
shiny app).

The amplitude of the variations in the observed win-
ter precipitation time series is wider than the simulated
90% range, suggesting that models fail to capture the
magnitude of precipitation variations during winter.

D. Weighting projections

New projection distributions are obtained from ap-
plying the weighting for performance and independence
method to the CMIP5 and CMIP6 multi-model ensem-
bles. Figure 6 shows TAS boxplots comparisons between
the weighted and unweighted ensembles during summer
for the three future periods. Both ensembles display
a reduction in their IQRs with the weighting. CMIP5
mean and median projections increase in the weighted
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Figure 4: Summer temperature change fields for the three relevant future periods (rows) according to the CMIP5, CMIP6 and
HighResMIP ensembles (columns) following the high emission scenario. The time series shows the evolution of the anomaly with respect
to the baseline period on the Mediterranean region for the observational datasets and the multi-model ensembles. Solid lines indicate the
one-member-per-model ensemble mean and the shaded region indicates the 5th-95th percentiles. JRA55 historical (1980-2014) trend is

shown along with the Mediterranean region used (dashed line).

ensemble while CMIP6 decrease, bringing the two exper-
iment means closer together. The upper range (75-95th
percentiles) in the CMIP6 weighted ensemble increases
while the lower (5-25th percentiles) decreases. Also, the
CMIP6 weighted ensemble displays a more skewed dis-
tribution towards lower temperature increases. CMIP5
evolves to a much more constrained ensemble, showing
an IQR reduction of 1.15oC.

The winter weighted temperature projections show
some similar responses to the weighting as summer
weighted projections: CMIP5 signal increases while
CMIP6 decreases. However, the differences between the
weighted and the unweighted means are smaller. CMIP5,
weighted and unweighted, IQR and whisker range are
pretty similar in the long-term period. This suggests
that uncertainties in the temperature changes are well
represented in winter by the original CMIP5 ensemble.

It is especially interesting to see how the large IQR
projected by the CMIP6 models at the end of the century
is reduced by half, once weighted. Nevertheless, even if
the probabilities of a high-warming future decrease, such
temperature changes are still considered plausible by the
weighted ensemble.

IV. DISCUSSION

Projections obtained from climate multi-model ensem-
bles are a game of uncertainties. Different modelling
methods and forcings that can only be estimated (e.g
GHG emissions, land use...) lead to differences in the
model results (Tebaldi and Knutti 2007). In the present
study, to consider as many uncertainties as possible of the
projected climate change in the Mediterranean region,
different radiative forcing scenarios and multi-model en-
sembles have been used. A weighting method, constrain-
ing the projections, has been applied to reduce uncer-
tainty in the results.

From temperature projections, it is found that changes
over the 21st century are larger when larger radiative
forcing scenarios are applied, consistent with basic radia-
tive forcing theory (Wallace and Hobbs 2006). Compared
to the global warming signal, Mediterranean temperature
changes are bigger in summer and similar in winter. This
is a general behaviour throughout scenarios and multi-
model ensembles, meaning that summer warming ampli-
fication is independent of the scenario and ensemble con-
sidered. Previous studies also identify the Mediterranean
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Figure 5: Same as Figure 4 for summer precipitation

Figure 6: Weighted (blue, red) and non-weighted (green, yellow)
summer temperature change with respect to 1986-2005 for CMIP5

and CMIP6 following the high emission scenario.

warming amplification (Lionello and Scarascia 2018, Zit-
tis et al. 2019), but it must be stressed that it does not
apply to the winter season. From the projections, the
magnitude of the temperature changes is what remains
uncertain and highly dependent on the emission scenario
that humanity shall follow.

There is confidence in a precipitation decline for the
higher radiative forcing scenario over all the Mediter-
ranean region during summer and only in the southern

Figure 7: Same as Figure 6 for winter

part during winter. Conclusions must be drawn care-
fully from precipitation as the spread in the multi-model
ensembles is large. For other scenarios and seasons, pre-
cipitation changes tend to show declines, although results
remain uncertain due to low robustness and significance
over most of the region and high spread ranges in the
ensemble results.

The signal magnitudes vary over the Mediterranean
region, for temperature but more notably for precipita-
tion. This indicates that it would be useful to divide the
Mediterranean region into smaller subregions to assess,
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more accurately, the area-averaged changes and their im-
plications.

Non-significant grid points in the coastlines are due
to the differences in the original grid resolutions between
models. When regridding, information is lost in the com-
plex coastline regions as coarse models can not represent
them, causing some grid points in the ensemble to be con-
sidered land by some models and ocean by others. When
the significance test is computed the degrees of freedom
at these grid points are reduced as not all models are rep-
resented, leading to results with non-significant signals.

As suggested in Tebaldi and Knutti (2007), historical
model temperature trends are a good indicator of pro-
jected changes. The results in Figure 3 show a larger tem-
perature trend in CMIP6 than CMIP5 and projections
show larger changes for the former. This remains true
for the rest of scenarios and seasons (see shiny app), sug-
gesting that the historical ensemble temperature trend is
a good indicator of the magnitude of future warming.

The CMIP6 ensemble is known to have a larger
range of climate sensitivity i.e. radiative forcings gener-
ate larger signals and at a faster rate (Hausfather 2019).
The higher sensitivity can be due to the way models are
designed or the way the radiative forcing scenario is de-
fined. Even if the scenarios are named after the radia-
tive forcing by the end of the century (in Wm−2), the
GHG concentration curves are different (Meinshausen
et al. 2011, Riahi et al. 2017). As suggested by Wyser
et al. (2020), when the same model is run with the GHG
concentrations from equal 2100 radiative forcing SSPs
and RCPs (2.6, 4.5 and 8.5 Wm−2), the first causes
larger temperature chang es. Another CMIP6 aspect
that can affect climate sensitivity is that models have im-
proved the aerosols and clouds formulation (Hausfather
2019). While the higher sensitivity to radiative forcing
is true for some CMIP6 models, not all of them show
this behaviour. Assessing the weighted temperature en-
semble, it is found that the CMIP6 distribution shifts to
lower changes, meaning that models giving larger TAS
signals have been down-weighted, reducing the differ-
ences between CMIP6 and CMIP5 experiments. Studies
have shown that some CMIP6 models with higher warm-
ing signals are poorly representing the historical climate
(Tokarska et al. 2020).

The projections’ weighting also modifies the ensemble’s
distribution. Generally, the weighting method reduces
the IQR and/or the 5-95th percentile range, reducing fu-
ture changes uncertainty. Nevertheless, uncertainty is
also reduced when the ranges widen, as it would indi-
cate that the spread was under-estimated in the original
ensemble.

Precipitation weighted projections have not been
shown as there is no proof that the diagnostics assessing
performance are relevant to evaluate the precipitation re-
sponse of models. Also, from the weighting methodology,
it could be argued that trends have been computed over
a too short historical period of 35 years (Merrifield et al.
2020, Peña-Angulo et al. 2020).

V. CONCLUSIONS

This study has aimed to interpret the projected tem-
perature and precipitation changes by CMIP5, CMIP6
and HighResMIP GCM ensembles in the Mediterranean
region. To tackle the uncertainty issues of projection
ensembles, different scenarios and seasons have been as-
sessed and a weighting method that accounts for histori-
cal performance and inter-independence of the ensemble
models has been applied.

The Mediterranean is expected to be a climate hotspot
due to the projected smaller or negative precipitation
trends compared to the global signal. However, the am-
plified warming of the Mediterranean is not found for
winter, it especially affects temperature during the sum-
mer season.

Conclusions must be drawn carefully from projection
ensembles as they are composed of models performing
very differently and models dependent on each other.
Nevertheless, the ensemble mean has been shown to give
better performance across different diagnostics than sin-
gle models. There is high confidence that significant and
robust warming is going to affect the Mediterranean re-
gion during the 21st century due to anthropogenic radia-
tive forcing. It is expected to affect more notably the
Iberian and Balkan peninsulas during summer and the
Balkans during winter. In contrast to temperature, pre-
cipitation changes show a higher level of uncertainty and
spatial heterogeneity, although there is high confidence
that a robust and significant decline in precipitation will
affect the whole region during summer and the south-
ern part during winter at the end of the century if the
high emission scenario is followed. The combination of
warming and precipitation decline could put the region
under strain, especially the south, which is less prepared
to adapt to the already changing climate.

A weighting method has been applied to reduce uncer-
tainties induced by models poorly representing aspects of
the historical climate or by dependent models being over-
represented in the ensemble. It is concluded that CMIP6
over-estimates warming in the Mediterranean and its dis-
tribution uncertainty. CMIP5 slightly under-estimates
warming and generally overestimates inter-model spread.
This is relevant as it homogenizes the output from the
last two CMIP phases, reducing future uncertainties of
climate change.

Further work needs to be done on the weighting
method to identify the relevant diagnostics that best as-
sess historical model precipitation performance. Inho-
mogeneities in the fields have been seen in the Mediter-
ranean region, therefore it would be a good consideration
to divide it into sub-regions to extract more relevant in-
formation from the area-averaged distributions. In the
same line, using RCMs (like MED-CORDEX) and longer
high-resolution global model runs should be considered as
the scales in which GCMs work might be too large for the
complex orography and geometry of the Mediterranean
region.
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Appendix A: Models and observational data
summary

The initial-condition runs from the models used in the
study, for the three radiative scenarios are summarized
in Table I. In order to identify the area-averaged differ-
ences in the Mediterranean region between the HR and
LR HighResMIP runs in Figure 3, each model has a dis-
tinctive marker as seen in Table II. The observational
datasets used are summarized in Table III.

Appendix B: Diagnostics, σd and σs of the weighting
method

The weighting method described in equation (1) uses a
specific set of diagnostics and two constant shape param-
eters. The current section aims to describe in more detail
the methodology behind the weighting of the projection
ensembles.

The chosen diagnostics and the variables used for the
diagnostics must be relevant to the weighted projections
ensemble. The aim is to obtain weighted temperature
and precipitation future projections from a multi-model
ensemble. There is evidence of the relevance of historical
TAS and PSL to projected temperature (Brunner et al.
2020, Merrifield et al. 2020). For precipitation projec-
tions, the diagnostics should assess temperature and dy-
namics of the atmosphere, since precipitation is affected
by both (Tebaldi and Knutti 2007). For simplicity, it is
assumed that TAS and PSL could also be used to weight
precipitation ensembles. Temperature and precipitation
ensembles from the same project and season and sce-
nario will then share the weights for each model. The
reference period used is 1980-2014 as defined in Brunner
et al. (2020). Note that CMIP5 reference periods will in-
clude historical runs data (1980-2005) and the first years
of future projections (2006-2014).

The time aggregations used for the performance as-
sessment are trends, anomalies and variability. Tem-
perature historical trends have a high correlation and
evident physical link with future warming (Tebaldi and
Knutti 2007). The trend is calculated by fitting a lin-
ear time trend during the reference period to each grid
point (TREND); the climatologic anomaly is computed
by subtracting the area averaged climatology to each
grid point’s climatology of the reference period (ANOM)
and the variability is represented by the standard devia-
tion over the time coordinate for each grid point (STD).
TREND is not relevant for PSL and it is not computed
(Merrifield2020).

The aim when assessing a model independence is to
clearly identify members that behave similarly. Using rel-
atively long periods for climatologies is a good approach
as it minimizes the internal variability, which ideally is
the main factor distinguishing between two members of
the same model differ (Hawkins and Sutton 2011). Bi-
ases in models are well represented by the CLIM diag-

nostic. Therefore, to compute the distances Sij , CLIM is
used both for surface temperature and sea level pressure
(TAS-CLIM and PSL-CLIM).

As explained in the main text, the shape parameters
act as thresholds on the performance and independence
values obtained from the RMSE Di and Sij , respectively.
Low values of σd will make the performance weighting
very strict as low values of Di will be needed to make the
equation (1) numerator’s exponent small enough for the
member i to receive performance weight. High values
of σd will allow greater distances between models and
observations.

Too small values of σs will make all models seem in-
dependent as the distance to consider two members de-
pendent will have to be very small. This would make
all models receive similar weights. Too large values of σs
will make most models seem dependent as large distances
Sij would still be considered small enough for models to
be dependent. Therefore making models receive similar
weights. An optimal σs that is neither too large nor too
small, and capable of discriminating independence must
be found (Knutti et al. 2017).

The information given by the ensemble is needed to
make a best estimation of both shape parameters. The
parameter σs feeds on the information given by models
with more than one member. Initial-condition runs from
the same model should be considered completely depen-
dent as the physics behind are the same. Nevertheless,
internal variability makes the runs differ. With this in
mind, the independence weighting should identify when
members (initial-condition runs) of the same model are
added or subtracted from the ensemble. If the denomina-
tor of equation (1) (independence weighting) is computed
for an ensemble with only one member per model (wind

j )
and then Ej members (all the available members) of only
one model j are added to the ensemble, the independence
weights of model j (w̃ind

j ) are expected to decrease. On
the other hand, adding members of a model j to the en-
semble should have a minimal effect on the independence
weights of the rest of models i represented by only one
member in the ensemble.

To find the optimal σs an iterative process for a range
of σs candidates is conducted with the aim of minimizing
the sum ε1 + ε2, where:

meanj
[
wind

j (σs) + Ej − w̃ind
j (σs)

]2
= ε1

meanj

{
meani

[
wind

i6=j(σs)− w̃ind
i 6=j(σs)

]2}
= ε2 ∀j

Small values of σd would discriminate more strictly the
model’s performance, but this could lead to an overconfi-
dent weighting, giving too narrow spreads for the projec-
tions. To find the ideal σd, as suggested in Knutti et al.
(2017), perfect model tests are conducted for a range of
possible σd (from 10% to 200% of the median distance
Di between the models and the observational reference).
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Table I: Summary of the CMIP5. CMIP6 and HighResMIP multi-model ensemble used in this study. The model initial-conditions
members are listed according to their emission scenarios.

CMIP5 RCP2.6 RCP4.5 RCP8.5 CMIP6 SSP1-2.6 SSP2-4.5 SSP5-8.5

ACCESS1-0 - r1i1p1 r1i1p1 ACCESS-CM2 r1i1p1f1 r1i1p1f1 r1i1p1f1

ACCESS1-3 - r1i1p1 r1i1p1 ACCESS-ESM1-5 r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

BCC-CSM1-1 r1i1p1 r1i1p1 r1i1p1 AWI-CM-1-1-MR r1i1p1f1 r1i1p1f1 r1i1p1f1

BCC-CSM1-1-M r1i1p1 r1i1p1 r1i1p1 BCC-CSM2-MR r1i1p1f1 r1i1p1f1 r1i1p1f1

BNU-ESM r1i1p1 r1i1p1 r1i1p1 CanESM5 r(1-10)i1p1f1 r(1-10)i1p1f1 r(1-10)i1p1f1

CanESM2 r(1-5)i1p1 r(1-5)i1p1 r(1-5)i1p1 CanESM5-CanOE r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

CCSM4 r(1-5)i1p1 r(1-5)i1p1 r(1-6)i1p1 CESM2 r1i1p1f1 r1i1p1f1 r1i1p1f1

CESM1-BGC - - r1i1p1 CESM2-WACCM r1i1p1f1 r1i1p1f1 r1i1p1f1

CESM1-CAM5 r(1-3)i1p1 r(1-3)i1p1 r(1-3)i1p1 CMCC-CM2-SR5 - - r1i1p1f1

CMCC-CESM - - r1i1p1 CNRM-CM6-1 r(1-6)i1p1f2 r(1-3)i1p1f2 r1i1p1f2

CMCC-CM - r1i1p1 r1i1p1 CNRM-CM6-1-HR r1i1p1f2 r1i1p1f2 r1i1p1f2

CMCC-CMS - r1i1p1 r1i1p1 CNRM-ESM2-1 r1i1p1f2 r(1-5)i1p1f2 r1i1p1f2

CNRM-CM5 r1i1p1 r1i1p1 (only pr) r(1-2,4,6,10)i1p1 FGOALS-g3 r1i1p1f1 r1i1p1f1 r1i1p1f1

CSIRO-Mk3-6-0 r(1-10)i1p1 r(1-10)i1p1 r(1-10)i1p1 FGOALS-f3-L r1i1p1f1 r1i1p1f1 r1i1p1f1

EC-Earth r(2,12)i1p1 r(2,9,12)i1p1 r(2,8,9,12)i1p1 FIO-ESM-2-0 r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

FGOALS-s2 - r1i1p1 r(1-3)i1p1 GFDL-ESM4 r1i1p1f1 r1i1p1f1 r1i1p1f1

FGOALS-g2 - - r1i1p1 (no pr) GISS-E2-1-G r1i1p3f1 r(1,3)i1p3f1 r1i1p3f1

FIO-ESM r(1:3)i1p1 r(1-3)i1p1 r(1-3)i1p1 HadGEM3-GC31-LL r1i1p1f3 r1i1p1f3 r(1-3)i1p1f3

GFDL-CM3 r1i1p1 r1i1p1 r1i1p1 INM-CM4-8 r1i1p1f1 r1i1p1f1 r1i1p1f1

GFDL-ESM2G r1i1p1 r1i1p1 (no pr) r1i1p1 INM-CM5-0 r1i1p1f1 r1i1p1f1 r1i1p1f1

GFDL-ESM2M r1i1p1 r1i1p1 (no pr) r1i1p1 IPSL-CM6A-LR r(1-4,6)i1p1f1 r(1-6,10,11,14,22,25)i1p1f1 r1i1p1f1

GISS-E2-H r1i1p1 r(1-5)i1p1 r(1-2)i1p1 KACE-1-0-G r(1-2)i1p1f1 r(1-3)i1p1f1 r1i1p1f1

GISS-E2-H-CC - r1i1p1 (no pr) r1i1p1 MIROC-ES2L r1i1p1f2 r1i1p1f2 r1i1p1f2

GISS-E2-R r1i1p1 r(2,5,6)1i1p3 r(1-2)i1p1 MIROC6 r(1-3)i1p1f1 r(1-3)i1p1f1 r(1-3)i1p1f1

GISS-E2-R-CC - r1i1p1 (no pr) r1i1p1 MPI-ESM1-2-HR r1i1p1f1 r1i1p1f1 r1i1p1f1

HadGEM2-AO r1i1p1 r1i1p1 (only pr) r1i1p1 MPI-ESM1-2-LR r(1-10)i1p1f1 r(1-10)i1p1f1 r(1-10)i1p1f1

HadGEM2-CC - r1i1p1 r1i1p1 MRI-ESM2-0 r1i1p1f1 r1i1p1f1 r1i1p1f1

HadGEM2-ES r(1-4)i1p1 r(1-4)i1p1 r(1-4)i1p1 NESM3 r(1-2)i1p1f1 r(1-2)i1p1f1 r(1-2)i1p1f1

INMCM4 - r1i1p1 r1i1p1 NorESM2-LM r1i1p1f1 r1i1p1f1 r1i1p1f1

IPSL-CM5A-LR r(1-4)i1p1 - r(1-4)i1p1 NorESM2-MM r1i1p1f1 r1i1p1f1 r1i1p1f1

IPSL-CM5A-MR r1i1p1 r1i1p1 r1i1p1 UKESM1-0-LL r(1-4,8)i1p1f2 r(1-4,8)i1p1f2 r(1-4,8)i1p1f2

IPSL-CM5B-LR - r1i1p1 r1i1p1 HighResMIP SSP5-8.5

MIROC-ESM r1i1p1 r1i1p1 r1i1p1 CMCC-CM2-HR4 r1i1p1f1

MIROC-ESM-CHEM r1i1p1 r1i1p1 r1i1p1 CMCC-CM2-VHR4 r1i1p1f1

MIROC5 r(2-3)1i1p1 r(2-3)i1p1 r(2-3)i1p1 CNRM-CM6-1-HR r1i1p1f1

MPI-ESM-LR r(1-3)i1p1 r(1-3)i1p1 r(1-3)i1p1 EC-Earth3P-HR r2i1p2f1

MPI-ESM-MR r1i1p1 r(1-3)i1p1 r1i1p1 HadGEMGE3-GC31-HH r1i1p1f1

MPI-CGCM3 - r1i1p1 r1i1p1 HadGEMGE3-GC31-HM r1i1p1f1

NorESM1-M r1i1p1 r1i1p1 r1i1p1 HadGEMGE3-GC31-MM r1i1p1f1

Table II: HighResMIP markers used in Figure 3 to highlight differences in resolution from the same model.
Marker LR/HR Models

t CMCC-CM2-SR5 / CMCC-CM2-VHR4

6 CNRM-CM6-1 / CNRM-CM6-1-HR

: EC-Earth3P / EC-Earth3P-HR

l HadGEM3-GC31-LL / HadGEM3-GC31-HM

Table III: Observational references summary.

Name Type Institute Variables Reference

JRA55 Reanalysis Japan Weather Association (JWA) TAS, PR, PSL (Kobayashi et al. 2015)

ERA5 Reanalysis European Centre for Medium-Range Weather Forecasts (ECMWF) TAS, PSL (Hersbach et al. 2020)

CRU (v4.04) Gridded observations University of East Anglia (UEA) TAS, PR (Harris et al. 2020)

GPCC (v2018) Gridded observations Deutscher Wetterdienst (DWD) PR (Schamm et al. 2014)

E-OBS (v20) Gridded observations European Climate Assessment & Dataset (ECAD) PR, TAS (Cornes et al. 2018)

Consecutively, all models are considered as the reference
while the rest are weighted following equation (1) with
Di being the distance between the perfect model and
model i. A σd is considered to be big enough to avoid
giving overconfident weighting when 80% of the perfect
models fall in between the 10th and 90th percentiles of

the weighted ensembles they produced. The diagnostics
used in the test are the same as the ones that were pre-
sented previously but computed for the future periods
(2041-2060 and 2081-2100) as the aim is to base σd on
the ensemble projection uncertainties. The average σd
between both periods is used for the rest of the study.
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