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We investigate the different large N phases of a generalized Gross-Witten-Wadia (GWW) UðNÞ matrix
model. The deformation mimics the one-loop determinant of fermion matter with a particular coupling to
gauge fields. In one version of the model, the GWW phase transition is smoothed out and it becomes a
crossover. In another version, the phase transition occurs along a critical line in the two-dimensional
parameter space spanned by the ’t Hooft coupling λ and the Veneziano parameter τ. We compute the
expectation value of Wilson loops in both phases, showing that the transition is third order. A calculation of
the β function shows the existence of an IR stable fixed point.
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I. INTRODUCTION

The study of random matrix ensembles caters to a broad
variety of most diverse applications in different areas of
physics and mathematics [1–3]. In a recent paper [4], a new
unitary one-matrix model was constructed and investigated.
The model has the potential

V ¼ −
1

g2
TrðU þ U†Þ þ 2νTr ln ð2þ U þ U†Þ: ð1Þ

It represents a natural deformation of the Gross-Witten-
Wadia (GWW) model [5,6] and it interpolates between
classical unitary matrix models. The theory exhibits various
large N phase transitions in the parameter space of the two
couplings, with an intricate structure that has been only
partially investigated in [4], and it is the unitary counterpart
of the Hermitian, deformed-Cauchy random matrix ensem-
ble [7]. This contains one Hermitian matrix M subject to
the potential

VH ¼ ATr lnð1þM2Þ þ BTr
1

1þM2
: ð2Þ

The term with coefficient A corresponds to the logarithmic
term in (1) (taking into account a shift due to the Jacobian
of the stereographic map), while the term with coefficient B

gives rise to the GWW term. The model generalizes the
Hermitian model appeared in [8], derived from the ν ¼ 0
case (see [9,10] for earlier studies on related models). The
logarithmic term appears in the mathematical literature in
the study of Cauchy random matrix ensembles [11]. Above
a certain critical value of the coupling B, the potential
develops a double well, leading to a phase transition. In this
paper, we will describe in detail the analogous phase
transition in the unitary model (1), which exhibits some
striking features. One phase was already described in [4].
Here we will find the explicit solution for both phases and
compute some relevant observables.
The logarithmic term with coefficient ν corresponds to

an insertion

½det ð2þ U þ U†Þ�ν ¼ ½det ð1þUÞð1þU†Þ�ν: ð3Þ

A related deformation is obtained by the insertion of the
operator

½det ð2 −U − U†Þ�ν ¼ ½det ð1 −UÞð1 − U†Þ�ν: ð4Þ

This is equivalent to the deformation (3) if at the same time
the sign of the coupling is flipped, g2 → −g2 and U → −U.
However, when viewed as deformations of the GWW
matrix model, the physical interpretation of both models
is different. In particular, the insertion (3) leads to smooth-
ing out the GWW phase transition occurring in the physical
range of the coupling g2 > 0, whereas the insertion (4)
leads to extending the GWW third-order phase transition to
a critical line in the two-dimensional parameter space
of couplings. In addition, U → −U flips the sign of the
Wilson loop.
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An important question concerns the possible physical
interpretation of the deformation in the context of two-
dimensional lattice gauge theory. The determinantal form
of the insertion, with ν > 0, suggests the obvious inter-
pretation as a one-loop fermion determinant. In conven-
tional lattice QCD2, one has the Wilson fermions with
action [12]

S ¼
X
n;m

ψ̄nKðn;mÞψm; ð5Þ

Kðn;mÞ ¼ δnm −
1

2ð2rþm0Þ
X
μ

½ðr − γμÞUμðnÞδnþμ;m

þ ðrþ γμÞU†
μðmÞδn−μ;m�; ð6Þ

where r contributes to the energy of spurious fermion
modes and m0 represents the bare quark mass. The fermion
determinant is complicated and finding the meson spectrum
requires elaborated calculations based onMonte Carlo [12].
On the other hand, the insertion (3) is equivalent to

Z
DψDψ̄e

PNf
i¼1

ψ̄ ið2þUþU†Þψ i ; Nf ≡ ν=2: ð7Þ

The determinant (3) is clearly much simpler than the one in
the more realistic model (6), as it only includes variables in
a single plaquette: like in the GWW matrix model, the full
partition function would be obtained as ZV=a2 , where V is
the volume of space and a is the lattice spacing. However,
similar (but still more complicated) determinants appear in
Eguchi-Kawai reductions [13] involving Wilson fermion
determinants [14,15]. In particular, forNf adjoint fermions,
the adjoint Eguchi-Kawai model has a single-site Wilson
fermion operator DW given by [16]

DW ¼ 1 − κ
X4
i¼1

½ð1 − γμÞUadj
μ þ ð1þ γμÞU†adj

μ �: ð8Þ

Computing physical quantities in this model, such as
Wilson loop expectation values, still requires heavy
numerical calculations [16]. On the other hand, the present
model can be fully solved by analytic methods, including
1=N effects, and it might provide a simple phenomeno-
logical setup to reproduce some features of QCD2.
A different strategy is to write the bilinear fermion term

in (7) as a gauge-invariant term in the form

ψ ið1þ
Y
P

U þ H:c:Þψ i; ð9Þ

where the product
Q

P represents the square plaquette
containing the original link variables prior to the Weyl
gauge fixing Un⃗;1⃗0

¼ 1, 1⃗0 being the lattice vector in the
time direction. In the continuum, the plaquette is associated

with the operator Treia
2F̂01 (see e.g., [17]). This naturally

leads to an expansion in the bilinear fermion term having
higher-dimensional couplings such as ψ̄F̂μνF̂

μνψ . Thus,
according to this view, the insertion (3) would seem to
compute the effect of such deformations together with a
mass term, in sectors where the fermion kinetic energy may
be negligible.
Another interesting interpretation of the deformation

in (1) arises in the context of SUðNÞ Yang-Mills theory
on S3 [18,19]. Expanding the new term in powers ofU,U†,
one has

Tr ln ð2þUþU†Þ ¼ −
X∞
k¼1

ð−1Þk
k

ðTrUk þTrU†kÞ: ð10Þ

This operator plays a special role in the black hole/string
phase transition as it represents a gap opening perturbation
added to the action [20]. It would be extremely interesting
to explore the consequences of our results in that context.
This paper is organized as follows. In Sec. II, we introduce

the matrix models A and B corresponding to insertions (3)
and (4) and study them in a largeN double-scaling limit. The
eigenvalue densities for models A and B in the two different
phases are determined in Secs. I and II B. The resulting
phase diagram is shown in Fig. 4. In Sec. III, we compute the
free energy, the vacuum expectation value of Wilson loops
and winding Wilson loops in the weak- and strong-coupling
phases of model B and determine the order of the phase
transition. Finally, in Sec. IV, we compute the β function. In
model B, it exhibits the presence of IR stable fixed points.

II. THE UNITARY MATRIX MODEL

We shall consider two deformations of lattice UðNÞ
gauge theory in two dimensions. The first model A has
partition function

ZA ¼
Z

dU det

�
1

4
ð2þU þU†Þ

�
ν

e
1

g2
TrðUþU†Þ

: ð11Þ

Integrating over the volume of the group, this becomes

ZA ¼ 1

N!

Z
ð0;2π�N

Y
1≤j<k≤N

jeiφj − eiφk j2
YN
j¼1

cos2ν
�
φj

2

�

× exp

�
2

g2
cosðφjÞ

�
dφj

2π
: ð12Þ

The second model B has partition function

ZB ¼
Z

dU det

�
1

4
ð2 − U −U†Þ

�
ν

e
1

g2
TrðUþU†Þ

: ð13Þ

In this case, one gets
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ZB ¼ 1

N!

Z
ð0;2π�N

Y
1≤j<k≤N

jeiφj − eiφk j2
YN
j¼1

sin2ν
�
φj

2

�

× exp

�
2

g2
cosðφjÞ

�
dφj

2π
: ð14Þ

The two models are mathematically equivalent as they are
related by changing g2 → −g2 and shifting the φj integra-
tion variables by π. However, their physical interpretation
as a deformation of the GWW model is different.
Considering g2 > 0, the deformation of the potential in
terms of ln sin2 φ

2
—instead of ln cos2 φ

2
—implies a stronger

deformation in the region of small eigenvalues. As a result,
this will lead to a very different deviation from the GWW
model: in model A, the large N GWW phase transition is
smoothed out and it becomes a crossover [4]. In model B,
the large N GWW phase transition subsists. In addition,
there are some striking consequences for observables and
for the β function of the running coupling.
We are interested in the large N “Veneziano” limit with

fixed parameters

λ≡ g2N; τ≡ ν

N
: ð15Þ

Thus, we have unitary one-matrix models with potentials

VA ¼ −
2

λ
cosðαÞ − τ ln cos2

α

2
; ð16Þ

VB ¼ −
2

λ
cosðαÞ − τ ln sin2

α

2
: ð17Þ

Here we assume that τ ≥ 0 (a discussion of the phase
diagram in the region τ < 0 is given in [4]). A partial
analysis was carried out in [4], where it was found that
these models have two phases. The phase transition occurs
on a critical line λcrðτÞ, which for model B lies on the region
λ > 0. As only one phase was described explicitly in [4],
here we will complete this analysis by explicitly deriving
the solution in the two phases and by computing the free
energy and some relevant physical observables.

A. Eigenvalue distribution for model A

At large N, the partition function is determined by a
saddle-point calculation. The large N regime is studied as
usual by introducing a unit-normalized density of eigen-
values ρðαÞ. The saddle-point equation then becomes the
singular integral equation

2

λ
sin αþ τ tan

α

2
¼ P

Z
L
dβρðβÞ cot

�
α − β

2

�
; ð18Þ

where L represents the region where eigenvalues condense.
The dynamics governing the eigenvalues can be understood

by examining the behavior of the potential in the param-
eter space.
Consider, in first place, positive λ. In this case, both

terms of the potential (16) give a force driving eigenvalues
to the region near α ¼ 0. For small λ, the force is large and
eigenvalues must get condensed in a small cut, with an
eigenvalue distribution that must approach the GWW
eigenvalue distribution, since the deformation is negligible
compared with the first term. As λ is increased, the cut gets
wider. However, as long as τ > 0, eigenvalues cannot get to
�π because the potential grows to infinity at �π owing to
the deformation. This is a crucial effect, which removes the
GWW phase transition transforming it into a crossover.
On the other hand, for negative λ, the force associated

with the sine term in (18) becomes repulsive. As a result,
there is a critical coupling beyond which the potential
develops a double well. This occurs at λ1 ¼ −4=τ. At this
point, the eigenvalue distribution is still described by a
one-cut solution, due to overfilling of eigenvalues (a fact
that will be verified below). By further increasing λ, one
meets another critical value λcr, where the eigenvalue
distribution is split into two cuts. Below we explicitly
describe the two regimes.

1. The one-cut phase in model A

Let us first review the main features of the one-cut
solution found in [4]. This phase is described by the
solution

ρðαÞ ¼
�
2

πλ
cos

α

2
þ τ

2π

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
cos α

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m − sin2

α

2

r
:

ð19Þ

The cut extends in the interval ð−α0;α0Þ, with
m ¼ sin2 α0=2, jα0j < π, 0 < m < 1. When τ ¼ 0, the
solution (19) reduces to the familiar solution of the
GWW model in the gapped phase. The parameter m
determines the width of the eigenvalue distribution. It is
easily found from the normalization condition

1 ¼
Z

α0

−α0
dβρðβÞ ¼ 2m

λ
þ
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p − 1

�
τ; ð20Þ

which leads to a cubic equation form. For all τ > 0, there is
a unique real root with 0 < m < 1, which determines
m ¼ mðλ; τÞ. A simple way to see this is by solving the
normalization condition for τ. This gives

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p ðλ − 2mÞ
λð1 − ffiffiffiffiffiffiffiffiffiffiffiffi

1 −m
p Þ : ð21Þ

For small m > 0, one has τ ∼ 2=m ≫ 1. Then τ monoton-
ically decreases until it vanishes. Thus, for any positive τ,
there is a unique value of m satisfying (21).
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As discussed above, the phase described by (19) subsists
until a critical point beyond which ρ becomes negative in
some interval ⊂ ð−α0; α0Þ, due to the fact that the potential
develops a double well. At the critical point, the density ρ
vanishes at the origin α ¼ 0. This gives the condition

2

πλ
þ τ

2π

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p ¼ 0 → τλcr ¼ −4
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
: ð22Þ

In particular, this shows that 0 > λcr > λ1. Since m is a
function of λ and τ, the critical coupling λcr is a function of
τ. Indeed, combining with (21), we obtain

λcr ¼ −
4

τ2
ðτ þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ; ð23Þ

or

2

λcr
¼ −

1

2
ðτ þ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ þ 1
p Þ: ð24Þ

Thus, the eigenvalue density is described by the solution
(19) in the regime λ ∈ f−∞; λcrg ∪ f0;∞g.
Note that, for τ → 0, one has λcr → −2. This is nothing

but the GWW phase transition in a frame where the sign of
λ has been flipped by shifting the eigenvalues by π. On the
other hand, the GWW phase transition occurring at τ ¼ 0,
λ ¼ 2 is smoothed out by the deformation. For any τ > 0,
the free energy in the region λ > 0 is analytic, since the
solution does not change in this region of the plane ðτ; λÞ.
Of course, the phase transition at λ ¼ 2 remains on the
axis τ ¼ 0.

2. The two-cut phase in model A

In the regime 0 > λ > λcr, the eigenvalue distribution is
split into two cuts, implying a phase transition. The phase
transition is the unitary matrix model counterpart of the
phase transition found in [7], in the Hermitian matrix model
version. The solutions of unitary and Hermitian matrix
models are connected by a simple map described in [21]
(see also the Appendix in [22]). Alternatively, one can
solve (18) directly by standard methods for one-matrix
models. For the two-cut solution, we obtain

ρðαÞ ¼ τ

4π

ffiffiffiffiffiffiffiffiffiffiffi
sin2 α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − tan2

α

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2

α

2
− b2

r
: ð25Þ

The parameters a, b representing the end points of the
eigenvalue distribution may be obtained from two con-
ditions arising from normalization and from the integral
equation (18) itself. To compute integrals and check the
equations, it is convenient to introduce the variable t ¼ eiα.
Then

ρðαÞdα ¼ ρ̂ðtÞdt; ð26Þ

with

ρ̂ðtÞ ¼ τ

8π

ð1 − tÞ
ð1þ tÞt2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t − ð1þ b2Þð1þ tÞ2

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð1þ tÞ2 þ ðt − 1Þ2

q
: ð27Þ

We first demand normalization,

Z
L
dtρ̂ðtÞ ¼ 1: ð28Þ

The integral goes over the two cuts in the circle described
by t, L¼ðα0;α1Þ∪ ð−α1;−α0Þ. The integral can be com-
puted by residues, by considering two contours, surround-
ing each branch cut. Then the integral picks the residue of
the poles at t ¼ 0, t ¼ −1, and t ¼ ∞, that is,

Z
L
dtρ̂ðtÞ ¼ iπðRest¼0ρ̂ðtÞ þ Rest¼−1ρ̂ðtÞ þ Rest¼∞ρ̂ðtÞÞ:

ð29Þ

We obtain the condition

1 ¼ τ

�
2þ a2 þ b2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p − 1

�
: ð30Þ

Let us now consider the integral equation (18). In terms of t,
it is given by

2

λ
sin αþ τ tan

α

2
¼ −i

Z
L
dtρ̂ðtÞ tþ eiα

t − eiα
: ð31Þ

Choosing the same contours surrounding the cuts, the
integration by residues now gives

−i
Z
L
dtρ̂ðtÞ tþ eiα

t− eiα
¼ −

τ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
sinαþ τ tan

α

2
:

ð32Þ

Therefore, we get the second condition on the parameters
a, b,

2

λ
¼ −

τ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
: ð33Þ

The solution to (30), (33) is

1þ a2 ¼ −
4ð1þ τ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ þ 1
p Þ

λτ2
; ð34Þ

1þ b2 ¼ −
4ð1þ τ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ
λτ2

: ð35Þ
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These values of a, b coincide, as expected, with the values
of a, b of the Hermitian model in [7], taking into account
the shift τ → τ − 1.1

The critical line occurs when b ¼ 0. This gives

λcrðτÞ ¼ −
4

τ2
ðτ þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ: ð36Þ

This critical line exactly coincides with the critical line
obtained from the one-cut phase. Moreover, we can check
continuity on the critical line. Setting λ ¼ λcrðτÞ, on the
critical line, the eigenvalue density (25) simplifies to

ρcr ¼
τ

2π

sin2 α
2

cos α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ð1þ a2Þ sin2 α

2

r
: ð37Þ

This matches the critical density obtained from the solution
in phase 1, noticing that

mcr ¼
a2

1þ a2
; λcrτ ¼ −4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −mcr

p
: ð38Þ

B. Eigenvalue distribution for model B

We now consider the matrix model defined by the GWW
partition function with the insertion det ð1

4
ð2 −U −U†ÞÞν,

leading to (14). At large N, the saddle-point equations are
equivalent to the integral equation

2

λ
sin α − τ cot

α

2
¼ P

Z
L
dβρðβÞ cot

�
α − β

2

�
: ð39Þ

Using the connection to model A by λ → −λ, one finds that
the model B (14) has two phases in the region λ > 0,
separated by a critical line

λcr ¼
4

τ2
ðτ þ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ: ð40Þ

Note that λcr → 2 when τ → 0.
The origin of the two phases can be understood by

looking at the potential, which has a double-well for
sufficiently small λ, thus inducing the phase transition
from a one-cut to a two-cut distribution (see Fig. 1). There
is a sharp distinction with the potential in the GWWmodel.
In model B, a “wall” appears at small eigenvalues, which
becomes infinitely thin as τ → 0, where the physics of the
GWW model is recovered. Below we describe the eigen-
value densities for the two phases.

1. One-cut phase in model B (λ > λcr)

In the strong-coupling phase λ > λcr, eigenvalues con-
dense in one cut. The density is obtained from (19) by using
the map λ → −λ, α → α� π. One obtains2

ρ1cutðαÞ ¼
�
−

2

πλ

���� sinα2
����þ τ

2π

1ffiffiffiffiffiffiffiffiffiffiffi
1−m

p jsin α
2
j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m− cos2

α

2

r
;

ð41Þ

where α ∈ ð−π;−α1Þ ∪ ðα1; πÞ, α1 ¼ 2 arccos
ffiffiffiffi
m

p
. Now,

the normalization condition gives

1 ¼
Z

α0

−α0
dβρ1 cutðβÞ ¼ −

2m
λ

þ
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p − 1

�
τ: ð42Þ

This uniquely determines m in the interval 0 < m < 1 for
any λ > 0, τ > 0. Clearly, this density is the same as the
density (19), with the argument shifted by π and λ → −λ
(see Fig. 2). The critical line occurs when ρð�πÞ ¼ 0. This
gives the condition 4

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p ¼ τλ, which, combined with
(42), leads to (40).

3 2 1 1 2 3

1

2

3

4

5

V

3 2 1 1 2 3

1

2

3

4

5

V

(b)(a)

FIG. 1. The potential in model B. (a) In the supercritical phase, with λ ¼ 3, τ ¼ 1.25. (b) In the subcritical phase, with λ ¼ 0.8, τ ¼ 1.

1The origin of this shift was explained in [4]. It arises from a
contribution from the Jacobian of the transformation in going
from the real line to the unit circle.

2In (19), cos α=2 carries absolute value bars, which can be
omitted in the interval ð−π; πÞ. Outside this interval, the density is
periodic with period 2π.
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In the infinite coupling limit, the eigenvalue density
assumes the asymptotic form

ρ1 cutðαÞ
����
λ¼∞

¼ τ

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m∞

p j sin α
2
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m∞ − cos2

α

2

r
;

m∞ ¼ 1þ 2τ

ð1þ τÞ2 : ð43Þ

2. Two-cut phase in model B (0 < λ < λcr)

In the weak-coupling phase, the eigenvalue density has
support on two cuts. Applying the map λ → −λ, α → α� π
to (25), we get

ρ2 cutsðαÞ ¼
τ

4π

ffiffiffiffiffiffiffiffiffiffiffi
sin2α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − cot2

α

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2

α

2
− b2

r
;

λ < λcrðτÞ; ð44Þ

where now

α ∈ ð−c2;−c1Þ ∪ ðc1; c2Þ; c1 ¼ 2arccotðaÞ;
c2 ¼ 2arccotðbÞ; ð45Þ

1þ a2 ¼ 4ð1þ τ þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ
λτ2

; ð46Þ

1þ b2 ¼ 4ð1þ τ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ þ 1

p Þ
λτ2

: ð47Þ

One can check that this solves the saddle-point integral
equation (39). A plot of the density is shown in Fig. 3.
In the λ → 0 limit, the cuts become small with a size

scalinglike
ffiffiffi
λ

p
and approach the origin. The eigenvalue

density approaches the scaling form

ρ2 cutsðyÞ
����
λ→0

¼ 1

πjyj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − c−

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ − y2

q
; y ¼ αffiffiffi

λ
p ;

c� ¼ 1þ τ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2τ

p
: ð48Þ

Summarizing, in the region τ > 0, λ > 0, model B has
two phases: a strong-coupling phase λ > λcrðτÞ described
by a one-cut eigenvalue distribution and a weak-coupling
phase λ < λcrðτÞ described by a two-cut eigenvalue dis-
tribution. In the τ ¼ 0 limit, the eigenvalue distributions
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FIG. 2. (a) Eigenvalue density in model A for λ ¼ −3, τ ¼ 1.25. (b) Eigenvalue density in model B for λ ¼ 3, τ ¼ 1.25. It differs from
the density of (a) by a shift of π.
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FIG. 3. Eigenvalue density in the two-cut (weak-coupling)
phase in model B. Here τ ¼ 1, λ ¼ 0.8.
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FIG. 4. Phase diagram for model B. The critical line λcr
separates a one-cut phase from a two-cut phase. At τ ¼ 0, it
approaches the critical coupling λ ¼ 2 of the GWW matrix
model.
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reduce to the ungapped (λ > 2) and gapped (λ < 2)
eigenvalue distributions of the GWW model. The phase
diagram of the theory is shown in Fig. 4.

III. CRITICAL BEHAVIOR OF THE FREE
ENERGY AND WILSON LOOPS

Let us now study the analytic properties of the free
energy in crossing the critical line. To approach the
critical line, τ will be fixed and λ will be increased or
decreased. The first derivative of the free energy is
directly related to the vacuum expectation value W of
the Wilson loop operator corresponding to a single pla-
quette, 1

2N TrðU þ U†Þ. One has

W ¼
Z
L
dα ρðαÞ cos α ¼ λ2

2N2

∂F
∂λ ¼ hcos αi: ð49Þ

The second and third derivatives of the free energy can be
obtained by further differentiating the VEV of the Wilson
loop operator. That is, we will also need

∂λW; ∂2
λW: ð50Þ

The VEV of the Wilson loop was computed in [4] in
model A in the region λ > 0, where the model is in the one-
cut phase. This calculation shows that the GWW transition
taking place at λ ¼ 2, τ ¼ 0, becomes a crossover for any
τ > 0. As explained above, there is however a phase
transition taking place on a critical line at negative λ.
For model B, this phase transition occurs in the λ > 0
region. Below we shall consider this model and compute
the Wilson loop and its derivatives in the two phases.

A. Strong-coupling phase

At strong coupling λ > λcr, the density is given by (41).
To compute the integral (49), it is convenient to use the
density (19) and then the map λ → −λ, hcos αi → −hcos αi,
the latter induced by the shift in α. An integration by
residues then gives

W ¼ 1

λ
mð2 −mÞ − τð1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
Þ: ð51Þ

Here m ¼ mðλ; τÞ is obtained as one of the roots of the
cubic equation that arises from the normalization condition
(42) (we omit the explicit expression). At small τ, the
Wilson loop in this phase has the expansion

W ¼ 1

λ
− τ þ λτ2

λþ 2
þOðτ3Þ; λ > λcr: ð52Þ

When τ → 0, this reproduces the expression for the Wilson
loop in the GWW matrix model in the ungapped phase.

One can compute derivatives of W using the chain rule

dW
dλ

¼ ∂W
∂λ þ ∂m

∂λ
∂W
∂m ; ð53Þ

etc., where ∂m
∂λ is obtained from the normalization condition

(42). In particular, we find the simple formula dW
dλ ¼ − m2

λ2
.

At the critical point,

m → mcr ¼ 1 −
λ2τ2

16
: ð54Þ

Using (40) and (54), we obtain the following exact
expressions:

Wðλcr; τÞ ¼
1

τ2
ðð1þ 2τÞ32 − 1 − 3τ − τ2Þ; ð55Þ

dW
dλ

����
λcr

¼ −
1

4
ð1þ 2τÞ; ð56Þ

d2W
dλ2

����
λcr

¼ 1

8
ð1þ τÞð1þ 2τÞ þ 1

16
ð2þ 4τ þ τ2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2τ þ 1
p

:

ð57Þ

B. Weak-coupling phase

Let us now consider the two-cut phase described by the
eigenvalue density (44). Introducing the variable t ¼ eiα as
in Sec. II A 2, the VEVof the Wilson loop can be expressed
in terms of the following integral:

W ¼ hcos αi ¼
Z
L
dt ρ̂ðtÞ 1þ t2

2t
: ð58Þ

In order to compute the integral, we use the shifted density
(25) as before, taking into account the map W → −W and
λ → −λ. We find the following remarkably simple result:

W ¼ 1 −
λ

4
ð1þ 2τÞ; 0 < λ < λcr: ð59Þ

For τ → 0, it reproduces the Wilson loop of the GWW
matrix model in the gapped phase.
On the critical line λcrðτÞ, W reduces to the same

expression (55) of the supercritical phase, so the Wilson
loop is continuous across the critical line. Similarly, the first
derivative of the Wilson loop matches (56). For the second
derivative, we now obtain

d2W
dλ2

����
λcr

≡ 0: ð60Þ

Comparing with (57), one finds that the second derivative
of the Wilson loop is discontinuous across the transition.
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This implies that the third derivative of the free energy is
discontinuous. Thus, the system undergoes a third-order
phase transition across the critical line represented by
λ ¼ λcrðτÞ. Figure 5 displays the behavior of the first
derivative ∂λW, related to the specific heat (viewing the
system as a statistical ensemble with temperature T ¼ λ).

C. Winding Wilson loops

In a similar way, one can compute the vacuum expect-
ation value of winding Wilson loops [5] (see also [22–24]).
At large N, they are given by

Wk ¼
1

2N
hTrðUk þ U†kÞi

¼
Z
L
dα ρðαÞ cosðkαÞ ¼ hcosðkαÞi: ð61Þ

We obtain the following results for the two phases:

1. Strong-coupling phase λ > λcr

W2 ¼ −
2ð1 −mÞ2m

λ
þ
�
ð1þmÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
− 1

�
τ;

W3 ¼
mð1 −mÞ2ð2 − 5mÞ

λ
þ
�
ð2m2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
− 1

�
τ;

ð62Þ

etc. At small τ, they have the expansion

Wk ¼ −τ þ kλ
2þ λ

τ2 þOðτ3Þ; k ≥ 2: ð63Þ

The Wk’s vanish in the limit τ → 0, in agreement with [5].

2. Weak-coupling phase λ < λcr

W2 ¼ 1 − λð2τ þ 1Þ þ 1

4
λ2ð2τ2 þ 3τ þ 1Þ;

W3 ¼ 1 −
9

4
λð2τ þ 1Þ þ 3

2
λ2ð2τ2 þ 3τ þ 1Þ

−
1

16
λ3ð8τ3 þ 24τ2 þ 20τ þ 5Þ; ð64Þ

etc. One can check that (62) and (64) match on the critical
line λ ¼ λcrðτÞ, whereas the second derivatives of Wk are
discontinuous.

IV. THE β FUNCTION

One of the interesting features of the GWW matrix
model is that a β function can be constructed for the large N
theory through the dependence of the effective ’t Hooft
coupling on the lattice spacing [5,6]. The properties of
the 1=N expansion of the β function have been recently
discussed in [25]. It turns out that the complete non-
perturbative trans-series can be described thanks to the fact
that the β function can be expressed in terms of the VEVof
detU, which satisfies a differential equation for any value
of N. We expect that a similar treatment can be carried
out in the deformed GWW model. In this section, we
will just focus in the leading large N β function for the
models A and B.
In terms of the string tension σ and the lattice spacing a,

the Wilson loop has the form

Wðλ; τÞ ¼ e−a
2σ: ð65Þ

Following [5,6], a running coupling λðaÞ can be obtained
by varying the lattice spacing a keeping σ fixed. This
defines an effective coupling λ ¼ λða; τÞ. We assume that τ
does not renormalize as here it represents the Veneziano
parameter Nf=N. The β function for the coupling λ is then
obtained by the formula

0.5 1.0 1.5 2.0 2.5 3.0

7

6

5

4

3

2

1

FIG. 6. The β function for model A, for τ ¼ 0 (red), τ ¼ 0.03
(green), τ ¼ 0.35 (blue).
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FIG. 5. The specific heat C=N2 ¼ −2∂λW vs λ, for τ ¼ 0.1
(red), τ ¼ 1 (green), and τ ¼ 3 (blue). The discontinuity in the
derivative at the critical point shows that the phase transition is
third order.
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β ¼ −a
∂λ
∂a : ð66Þ

This leads to the following expression in terms of the
Wilson loop:

β ¼ −
2W
∂λW

lnW: ð67Þ

A. Model A

In the region fλ > 0; τ > 0g, model A has only one
phase. The Wilson loop has been calculated in [4] and can
be obtained from the formulas in Sec. III A by the map
λ → −λ, W → −W. The ensuing β function (67) is plotted
in Fig. 6 for different values of τ. One can see that the
discontinuous behavior of the τ ¼ 0 GWWmatrix theory is
smoothed out for finite positive τ.
The β function has the following perturbative (planar)

expansion:

β ¼ −2λþ 1

4
ð1 − 2τÞλ2 þ 1

48
ð1 − 12τÞλ3 þOðλ4Þ;

0 < λ ≪ 1; ð68Þ

where the first term comes from the classical dimension of
the coupling.

B. Model B

Model B has two phases in the region fλ > 0; τ > 0g.
In the weak-coupling phase, one can use the results of
Sec. III B to derive the following simple formula:

β ¼ 2

1þ 2τ
ð4 − λð1þ 2τÞÞ ln

�
1 −

1

4
λð1þ 2τÞ

�
;

λ < λcrðτÞ: ð69Þ

This has the perturbative expansion

β ¼ −2λþ 1

4
λ2ð2τ þ 1Þ þ 1

48
λ3ð2τ þ 1Þ2 þOðλ4Þ: ð70Þ

In the strong-coupling phase, the resulting expression
is obtained from (67), where W and ∂λW can be read
from the formulas in Sec. III.1. In either phases, for τ ¼ 0,
one reproduces the β function found by Gross and
Witten [5].
The β function is shown in Fig. 7 for different values

of τ. Comparing with the τ ¼ 0 case, a new feature
appears for any τ > 0. The β function now has an IR
stable fixed point at finite coupling λ. Coming from
λ ¼ 0, when τ < 1þ ffiffiffi

2
p

, the fixed point occurs after the
phase transition, that is, in the one-cut (strong-coupling)
phase. When τ > 1þ ffiffiffi

2
p

, the fixed point occurs before
the phase transition has taken place. For small τ, the fixed
point occurs at λ� ≈ 1=τ, that is, at strong coupling
λ� ≫ 1. This can be seen from the expansion (52). It is
important to note that the origin of the fixed point is that
W → 0, which is indicative of an infinite string tension,
a highly confining regime. This is to be distinguished
from a fixed point where W → 1, which would indicate a
vanishing string tension and a nonconfining regime,
which does not happen in this case (and it is not expected
to happen in general in two dimensions).
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FIG. 7. The β function for model B. (a) τ ¼ 0.5 and (b) τ ¼ 3. In case (b), the fixed point is reached before the critical coupling λcr.
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