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Abstract

We consider the time consistent management of a defined benefit stochastic pension

plan where the participants have different rates of time preference and the fund manager

collects this heterogeneity when discounting the future. The main objective is to select the

amortization rate and the investment strategy minimizing both the contribution rate risk

and the solvency risk. The problem is formulated as a stochastic control problem with non-

constant rate of discount and is solved analytically by means of the dynamic programming

approach and the technical interest rate is selected in order to keep stable the fund evolution

within prescribed targets. A numerical illustration shows a comparative of the stability of the

fund assets and the rate of contribution for a convex combination of exponential functions

as discount function and for the constant discount case.
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1 Introduction

The increase in life expectancy and the periods of financial crisis have stressed the importance

of alternative pension plans in order to complement public protection at retirement. As a

consequence, the study of the management of pension plans is an important subject in the

economic field, and also in the financial field because the fund managers use the financial markets

to invest the fund assets of the pension plan.

The analysis of the optimal management of pension plans from the dynamic optimization

approach has appeared in the literature in discrete time, see Berkelaar and Kouwenberg (2003),

Chang et al. (2003), Cox et al. (2013), Haberman and Sung (1994, 2005) and Haberman

and Vigna (2002), and in continuous time, see Battocchio et al (2007), Cairns (2000), Deelstra

et al (2003), Haberman et al. (2000), Menoncin and Vigna (2017) and Josa-Fombellida and

Rincón-Zapatero (2001, 2004, 2008ab, 2010, 2018).

We focus our attention in plans of defined benefit type where the benefits are fixed in advance

by the manager and contributions are designed to amortize the fund according to a previously

chosen actuarial scheme. The pension plan manager can built an investment portfolio of the

fund. The main aim of the plan manager is the minimization of both the solvency risk and

the contribution rate risk. This objective is generally accepted since the papers Haberman and

Sung (1994) and Josa-Fombellida and Rincón-Zapatero (2001). These risk concepts are defined

as quadratic deviations of fund wealth and amortization rates with respect to liabilities and

normal cost, respectively. The solvency risk is related with the security of the pension fund in

attaining the comprised liabilities and the contribution risk with its stability, see Haberman et

al. (2000). Note that we are considering as measure of the solvency risk the expected quadratic

deviation of the fund with respect to the actuarial liability. In the literature, see for instance

Devolder et al. (2012), we can also find other alternative approaches that consider the solvency

risk as a probability (so the probability that the fund falls below a threshold is minimized), or

as a risk measure like the Value at Risk or the expected shortfall.

In this paper we depart from Josa-Fombellida and Rincón-Zapatero (2004), where the au-
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thors study the optimal management of a defined benefit pension plan with stochastic benefits

correlated with the financial market with the objective of minimizing the contribution and the

solvency risks along an infinite horizon. We extend this setting by supposing that the discount

function is not necessarily of the exponential type with the aim of capturing the diversity in the

temporal preferences of the participants in the plan. Collective temporal decisions for agents

with different rates of time preferences lead to time inconsistent aggregate temporal preferences

(Jackson and Yariv (2015)). As a consequence, standard optimization techniques (Pontryagin

Maximum Principle or Hamilton-Jacobi-Bellman (HJB) equation) fail in characterizing time

consistent optimal policies. As preferences change with time, as long as the decision maker

goes through the time horizon, they differ depending on the instant t at which solutions are

obtained, so a t′-agent, in general, will not find optimal the solutions computed by the t-agent,

for any t and t′ in the time horizon. Note that in the literature of models with general time

preferences, by “non-constant” or “variable” discount rates we refer to the case where temporal

preferences depend explicitly on the current position of the decision maker and not only con the

calendar time and, as it will be seen below, this dependence will imply that preferences become

time-inconsistent.

Karp (2007) introduced the analysis of dynamic optimization problems in continuous time

setting with non-constant rate of discount, deriving in infinite time horizon a modified HJB

equation. Later Maŕın-Solano and Navas (2009) extended the approach to the finite horizon case

and study the application to a non-renewable resource problem with non-constant discount. The

methodology for stochastic control problems with non-constant discount in a finite time horizon

is developed in Maŕın-Solano and Navas (2010). The classical optimal consumption and portfolio

problem by Merton (1971) with non-constant discount is detailed studied for logarithmic, power

and exponential utility functions in this last paper.

Stochastic control problems with a non-constant rate of discount show an increasing and

recent interest in the literature of economics, finance and insurance, and consequently in pension

funding. In this sense, Liang et al. (2014) considers time-consistent strategies in a mean-

variance optimization problem but in a defined benefit pension scheme starting from the model

3



in Josa-Fombellida and Rincón-Zapatero (2008b) for strategies pre-commitment. Li et al. (2016)

derives the time-consistent investment strategy under the mean-variance criterion for a defined

contribution pension plan with stochastic salary and where the risky asset is a CEV process.

Zhao et al (2016a) analyses a defined benefit pension plan model with non-constant discount

where the aim is the minimization of the solvency and the contribution rate risks but in a finite

horizon, and the manager invests the fund in a portfolio with one risky asset and one risk-

free asset. The model follows Josa-Fombellida and Rincón-Zapatero (2001), where the benefit

is constant. Zhao et al. (2016b) considers a consumption-investment problem for a member

of a defined contribution pension plan with non-constant time preferences, with power and

logarithmic utility functions and with the exponential discounting, the mixture of exponential

discounting and the hyperbolic discounting.

The main findings of the paper are that the rate of discount intervenes in the time consistent

strategies and in their associated fund evolution. Moreover, it is possible to select the technical

rate of interest in order that the time consistent contribution does not depend on the parameters

of the benefit process and it has the form of a spread method of funding, providing the stability

of the plan at the long-term. We find that the speed of convergence of the fund to the actuarial

liability is inversely related with the degree of impatience in the collective of participants in the

plan.

The paper is organized as follows. Section 2 defines the elements of the pension scheme and

describes the financial market where the fund operates. We consider the fund is invested in a

portfolio with several risky assets and one riskless asset. The management of the defined benefit

plan is formulated as a stochastic optimal control problem with non-constant discount where the

objective is to minimize on a infinite horizon the contribution rate risk and the solvency risk. In

Section 3 the time consistent strategies of contribution and investment, and the corresponding

fund dynamics are obtained with dynamic programming techniques. Some properties of the time

consistent solutions are found. A particular case where the technical rate of interest is selected

to lead to a spread method of funding is analyzed. Section 4 serves as a numerical illustration of

previous results based on real data. Finally, Section 5 establishes some conclusions. All proofs
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are developed in Appendix A.

2 The pension model

Consider a pension plan of aggregated type where, at every instant of time, active participants

coexist with retired participants. The plan is of defined benefit type, that is to say, the benefits

paid to the participants at the age of retirement are fixed in advance by the manager. The

benefit is modeled by a stochastic process correlated with the financial market.

The main elements intervening in the pension plan are the following. We denote F (t) the

value of the fund assets at time t and C(t) the contribution rate made by the manager at time t

to the funding process in order to accrue the benefit at the moment of retirement. The risk-free

market interest rate is the constant r. The technical rate of valuation δ is the constant used

for the valuation of the liabilities. This valuation is made using the distribution function M on

[a, d], that is, 100M(x)% is the percentage of the value of the future benefits accumulated until

age x ∈ [a, d], where a is the common age of entrance in the fund and d is the common age of

retirement.

P (t) denotes the benefits promised to the participants at time t. Though it is related with

the salary at the moment of retirement, we will not consider the salary process into the model,

as in Josa-Fombellida and Rincón-Zapatero (2008a). NC (t) is the normal cost at time t for all

participants. NC is the ideal value of the contribution rate C. The ideal value of the fund F

at time t is the actuarial liability at time t, denoted by AL (t), that is, the total liabilities of

the manager. The unfunded actuarial liability at time t (equal to AL (t) − F (t)) is denoted by

UAL(t), and the supplementary cost at time t (the difference C(t) − NC (t)) by SC (t). We are

considering that these actuarial functions are stochastic processes.

In this section we describe the financial market where the fund is invested, we built the actu-

arial functions assuming correlation with the financial market and we establish the optimization

problem.

We consider a probability space (Ω,F ,P), where P is a probability measure on Ω and F =
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{Ft}t≥0 is a complete and right continuous filtration generated by the (n+1)-dimensional stan-

dard Brownian motion (W0,W1, . . . ,Wn), that is to say, Ft = σ {W0(s),W1(s), . . . ,Wn(s); 0 ≤ s ≤ t}.

2.1 The financial market

The pension scheme manager invests the fund in the financial market and for that she/he

chooses a portfolio formed by n risky assets S1, . . . , Sn, which are geometric Brownian motions

correlated with the benefit process, and a riskless asset S0, as proposed Merton (1971). The

assets evolution is given by the equations:

dS0(t) = rS0(t)dt, S0(0) = 1, (1)

dSi(t) = Si(t)
(
bidt+

n∑
j=1

σijdWj(t)
)
, Si(0) = si, i = 1, . . . , n. (2)

We have denoted by r > 0 the short risk-free rate of interest, bi > 0 the mean rate of return

of the risky asset Si, and σij > 0 the uncertainty parameters. We assume that bi > r, for

each i = 1, ..., n, so the manager has incentives to invest with risk. The matrix (σij) is denoted

by σ and the Sharpe ratio or market price of risk for this portfolio, σ−1(b − r1), by θ, where

b = (b1, . . . , bn)> and 1 is a (column) vector of 1’s. We suppose that the symmetric matrix

Σ = σσ> is positive definite.

2.2 The actuarial functions

The stochastic actuarial liability and the stochastic normal cost are defined as in Josa-Fombellida

and Rincón-Zapatero (2004):

AL (t) =

∫ d

a
e−δ(d−x)M(x)E (P (t+ d− x) |Ft) dx,

NC (t) =

∫ d

a
e−δ(d−x)M ′(x)E (P (t+ d− x) |Ft) dx.

for every t ≥ 0, where E(·|Ft) denotes conditional expectation with respect to the filtration

Ft. The actuarial liability AL is the total expected value of the promised benefits accumulated

according to the distribution function M , and the normal cost NC is the total expected value
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of the promised benefits accumulated according to the density function M ′, both discounted at

the constant rate δ.

In order to get analytical tractability, we assume that the benefit P is given by a geometric

Brownian motion, as in Josa-Fombellida and Rincón-Zapatero (2004). Thus the expected ben-

efit grows exponentially which is coherent because the benefit depends on the salary and the

population pension plan size.

Assumption 1 The benefit P satisfies the stochastic differential equation (SDE therefore)

dP (t) = µP (t) dt+ ηP (t)
(√

1− q>q dW0(t) + q>dW (t)
)
, t ≥ 0,

where W = (W1 . . . ,Wn)>, q = (q1, . . . , qn)>, with qi ∈ [−1, 1], and where µ ∈ R is the instan-

taneous growth rate of the benefit and η ∈ R+ is the instantaneous volatility of the benefit. The

initial condition P (0) = P0 is a constant that represents the initial liabilities.

We are supposing that there exists a correlation qi between the standard Brownian motion

B =
√

1− q>qW0 + q>W and Wi, for i = 1, . . . , n. Thus the financial market influences

the evolution of liability P . We remark that the market is incomplete, because the stochastic

benefit P cannot be traded in the financial market and therefore the manager cannot hedge the

inherent risk in the benefit. This particular form of an incomplete market is one of the few that

can be managed because there only exists one risk source that cannot be spanned and all the

variance and covariance parameters of this risk are assumed to be constant. Classical references

of incomplete markets in this context are Duffie et al. (1997), Koo (1998) and Stoikov and

Zariphopoulou (2005), which consider a consumption and portfolio choice in continuous time

with stochastic income (or a stochastic factor) that cannot be replicated by trading the available

securities. Note, however, that we have a complete market when benefit and risky assets are

perfectly correlated, q>q =
∑n

i=1 q
2
i = 1, and the corresponding model can be analytically solved

also.

Under Assumption 1 the actuarial functions satisfy AL (t) = ψALP (t) and NC (t) = ψNCP (t),

where ψAL =
∫ d
a e

(µ−δ)(d−x)M(x) dx and ψNC =
∫ d
a e

(µ−δ)(d−x)M ′(x) dx, and they are linked by
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the identity

(δ − µ)AL (t) + NC (t)− P (t) = 0, (3)

for every t ≥ 0. See Proposition 2.1 in Josa-Fombellida and Rincón-Zapatero (2004). As a

consequence, AL and NC are geometric Brownian motions also.

By Assumption 1 and using AL = ψALP , the actuarial liability AL satisfies the SDE

dAL (t) = µAL (t) dt+ ηAL (t)
√

1− q>q dW0(t) + ηAL (t) q>dW (t), (4)

with the initial condition AL (0) = AL 0 = ψALP0. Thus the benefit P and actuarial liability AL

depend on the financial market. By the same argument, the normal cost satisfies the same SDE

(4) but with initial condition NC (0) = NC 0 = ψNCP0.

2.3 The fund wealth

The manager builds a portfolio based on the financial market and designs an amortization scheme

varying with time. The amount of fund invested in time t in the risky asset Si is denoted by

πi(t), i = 1, . . . , n. The remainder, F (t) −
∑n

i=1 πi(t), is invested in the bond. Borrowing and

shortselling are allowed. A negative value of πi means that the manager sells a part of his

risky asset Si short while, if πi is larger than F , he or she then gets into debt to purchase

the corresponding stock, borrowing at the riskless interest rate r. π denotes (π1, . . . , πn)>.

We suppose the contribution rate {C(t) : t ≥ 0} and the investment strategy {π(t) : t ≥ 0}

are control processes adapted to filtration {Ft}t≥0, Ft-measurables, markovian and stationary,

satisfying

EF0,AL0

∫ T

0
SC 2(t)dt <∞, (5)

and

EF0,AL0

∫ T

0
π>(t)π(t)dt <∞, (6)

for every T < ∞. In the above, EF0,AL0 denotes conditional expectation with respect to the

initial conditions (F0,AL 0).
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The dynamic fund evolution under the investment policy π is:

dF (t) =
n∑
i=1

πi(t)
dSi(t)

Si(t)
+

(
F (t)−

n∑
i=1

πi(t)

)
dS0(t)

S0(t)
+ (C(t)− P (t)) dt. (7)

By substituting (1) and (2) in (7), we obtain the SDE that determines the fund evolution,

dF (t) =

(
rF (t) + π>(t)(b− r1) + C(t)− P (t)

)
dt+ π>(t)σ dW (t), (8)

with initial condition F (0) = F0 > 0.

2.4 The optimization problem

The manager, at every time τ , τ ∈ [0,∞), wishes to minimize a convex combination of the

contribution rate risk and the solvency risk in a infinite horizon, but discounted at a non-

constant rate of discount. Following Josa-Fombellida and Rincón-Zapatero (2004), at every

instant of time t, t > τ , we define the solvency risk as the quadratic deviation of the fund assets

F (t) with respect to its ideal value AL (t), instead of its expected value EFτF (t), that is to say

EFτ ,ALτUAL(t)2. Analogously, we define the contribution rate risk as EFτ ,ALτSC (t)2, and then

the functional objective as

J((Fτ ,AL τ ); (SC , π)) = EFτ ,ALτ
∫ ∞
τ

e−
∫ s
τ ρ̃(v−τ)dv

(
βSC 2(s) + (1− β)(AL (s)− F (s))2

)
ds. (9)

Thus, from the perspective of the fund manager at τ = 0, the optimization problem that

we consider is to minimize J((F0,AL 0); (SC , π)) subject to (3), (4) and (8), over the class of

admissible controls AF0,AL0 .

Note that we choose SC = C − NC as the control variable instead of C, leading to an

equivalent control problem. Here, AF0,AL0 is the set of Markovian processes (SC , π), adapted

to the filter {Ft}t≥0 where C satisfies (5), π satisfies (6), and where F and AL satisfy (8) and

(4), respectively. The parameter β, 0 < β ≤ 1, is a weighting factor reflecting the relative

importance for the manager of the two different types of risks.

In (9), we consider an instantaneous positive non-constant impatience rate ρ̃(·) for the man-

ager. We also assume it is a decreasing and bounded function in [0,∞). A decreasing rate of
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impatience implies that the decision maker is more concerned with the present than with the

distant future, in the sense of being more impatient in the short-run decisions compared with

similar decisions in the long-run.

In the non-constant discounting literature the main feature is that temporal preferences

depend on the temporal position of the decision maker. A fund manager taking decisions at τ , the

τ -manager, will discount future payments at an instant s, with τ < s, by using D(s, τ) = D(s−

τ) = e−
∫ s
τ ρ̃(v−τ)dv = e−

∫ s−τ
0 ρ̃(v)dv. When the decision maker moves to a different instant of time

τ ′ 6= τ over the time horizon, the discount function becomesD(s, τ ′) = D(s−τ ′) = e−
∫ s
τ ′ ρ̃(v−τ

′)dv.

As a consequence of this dependence on the temporal position of the fund manager, τ or τ ′, it

arises the time inconsistency of the temporal preferences. A clarifying discussion on the problem

of time consistency can be found in Caputo (2005), Chapter 12. To better see this, note that if

dρ̃(t)/dt 6= 0, we have that

e−
∫ s
τ ρ̃(v−τ)dv = e−

∫ τ ′
τ ρ̃(v−τ)dve−

∫ s
τ ′ ρ̃(v−τ)dv 6= e−

∫ τ ′
τ ρ̃(v−τ)dve−

∫ s
τ ′ ρ̃(v−τ

′)dv,

for τ < τ ′ < s, which is a key point in the derivation of the standard HJB equation, and the

reason that standard optimization techniques fail in characterizing time consistent policies in

our setting. With non-constant discounting, and also with other general temporal preferences as,

for instance, heterogeneous discounting (e.g., Maŕın-Solano and Patxot (2012)) and stochastic

hyperbolic discounting (e.g., Zou et al. (2014)) is required a modified HJB equation in order

to characterize time consistent policies. The non-constant discounting case has been studied in

different works in the literature, as Karp (2007) in the deterministic case, and Maŕın-Solano and

Navas (2010) in the stochastic case, between others.

Note also that D(t = s − τ) satisfies ρ̃(t) = −Ḋ(t)/D(t), and denote ρ = limt→∞ ρ̃(t) with

the assumption that ρ̃(t) ≥ ρ, for all t ≥ 0.

We can find several functional specifications for general discounts functions with non-constant

instantaneous rates of time preference, being one of them a convex linear combination of expo-

nential functions. An economic motivation for this particular discount function is the following:

consider the case that there exist N different participants in the plan that exhibit constant but
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different rates of time preference, and consider that in this collective there exist m (m ≤ N)

different profiles or subgroups in terms of their time preference, which can be motivated by

several factors (age, personal wealth, genre, life expectancy, etc.). If each profile has a rate of

time preference of ρi, i = 1, ...,m, and with ρ1 < . . . < ρm, we can define:

D(t) =
m∑
i=1

λie
−ρit

where λi, 0 < λi < 1, i = 1, ...,m,
∑m

i=1 λi = 1, represents the weight of the corresponding sub-

group in the whole collective. Then, the discount function D(t) has a decreasing instantaneous

rate of time preference

ρ̃(t) = −Ḋ(t)/D(t) =
λ1ρ1e

−ρ1t + . . .+ λmρme
−ρmt

λ1e−ρ1t + . . .+ λme−ρmt
,

that satisfies dρ̃(t)/dt < 0 and limt→∞ ρ̃(t) = ρ1.

The dynamic programming approach will be used to solve the problem. The value function

is defined as

V̂ (F,AL ) = min
(SC,π)∈AF,AL

{
J((F,AL ); (SC , π)) : s.t. (4), (8)

}
.

Since the problem is autonomous and the horizon unbounded, we may suppose that V̂ is time

independent. The value function so defined is non-negative and strictly convex. The connection

between value functions and time consistent feedback controls in stochastic control theory with

non-constant discount is accomplished by a modified HJB. In order to obtain a sophisticated

solution, Maŕın-Solano and Navas (2010) analyse the finite horizon case, that is easily translated

to the unbounded case as follows. The modified HJB equation is

−ρV −K + min
SC,π

{
βSC 2 + (1− β)(F −AL )2 +

(
rF + π>(b− r1) + SC + NC − P

)
VF

+µAL VAL +
1

2
π>Σ−1πVFF +

1

2
η2AL 2VAL,AL + ηπ>σqAL VF,AL

}
= 0, (10)

where

K(F,AL ) =

∫ ∞
0

e−
∫ s
0 ρ̃(v)dv(ρ̃(s)− ρ)EF,AL

{
βŜC

2
(s) + (1− β)(AL (s)− F̂ (s))2

}
ds, (11)

where EF,AL denotes the conditional expectation to F (0) = F and AL (0) = AL , and where ŜC

and F̂ denote SC and F with Ĉ and π̂, which are the arguments minimizing in (10).
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Remark 2.1 In the definition of the K(F,AL) function, control variables SC and π are non-

local terms when solving (10) leading to functional equations in the solution procedure. In some

cases it is possible to simplify the process working with the total differential of K with respect

to time (see for instance Remark 2 in Karp (2007)). For instance, if the discount function is

a linear combination of two exponential discount functions, D(t) = λe−ρ1t + (1 − λ)e−ρ2t,with

λ ∈ [0, 1] and 0 < ρ1 < ρ2, by differentiating (11) we obtain

ρ2K = (ρ2−ρ1)(1−λ)
(
βŜC

2
(s) + (1− β)(AL (s)− F̂ (s))2

)
+
(
rF̂+π̂>(b−r1)+ŜC +NC−P

)
KF

+ µALKAL +
1

2
π̂>Σ−1π̂KFF +

1

2
η2AL 2KAL,AL + ηπ̂>σqALKF,AL, (12)

so, the time consistent solution can be characterized as the solution of the system (10), (12).

This property will be used in the numerical illustration in Section 4.

3 The time consistent strategies

In this section we show how the fund manager may select the rate of contribution and the

proportion of fund assets put into the risky assets. We analyze some properties of these time

consistent strategies and study the associated fund evolution. We have the following result.

Theorem 3.1 Suppose that Assumption 1 holds and the inequalities

2µ+ η2 < ρ, (13)

2r − 2
αFF
β
− θ>θ < ρ, (14)

are satisfied. The time consistent rate of contribution and investments in the risky assets are

given by

C∗ = NC − αFF
β

F −
αF,AL

2β
AL , (15)

π∗ = −Σ−1(b− r1)F −
αF,AL
2αFF

(
Σ−1(b− r1) + ησ−>q

)
AL , (16)

respectively, where αFF is a positive solution of the equation

−
α2
FF

β
+
(
−ρ+ 2r − θ>θ

)
αFF + (1− β)− κFF = 0, (17)
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where

κFF =

(
α2
FF

β
+ 1− β

)∫ ∞
0

e−
∫ s
0 ρ̃(v)dv(ρ̃(s)− ρ)e

(
2r−2αFF

β
−θ>θ

)
s
ds, (18)

and αF,AL is the unique solution of the equation

−αFF
β

αF,AL +
(
−ρ+ r − θ>θ − ηq>θ + µ

)
αF,AL + 2(µ− δ)αFF − 2(1− β)− κFAL = 0, (19)

where

κFAL =

(
α2
FF
β + 1− β

)(
αF,AL
β + 2(δ − µ)

)
−r + αFF

β + µ− ηq>θ

∫ ∞
0

e−
∫ s
0 ρ̃(v)dv(ρ̃(s)− ρ)e

(
2r−2αFF

β
−θ>θ

)
s
ds

+

αFF
β

αF,AL − 2(1− β)−

(
α2
FF
β + 1− β

)(
αF,AL
β + 2(δ − µ)

)
−r + αFF

β + µ− ηq>θ


·
∫ ∞
0

e−
∫ s
0 ρ̃(v)dv(ρ̃(s)− ρ)e

(
r−θ>θ−αFF

β
+µ−ηq>θ

)
s
ds. (20)

The time consistent fund is the solution of the system given by (4) and

dF ∗(t) =
((
r − θ>θ − αFF

β

)
F ∗(t)−

(αF,AL
2αFF

(
θ>θ + ηq>θ +

αFF
β

)
+ δ − µ

)
AL (t)

)
dt

−
(
θ>F ∗(t) +

αF,AL
2αFF

(
θ> + ηq>

)
AL (t)

)
dW (t), (21)

with F (0) = F0, AL (0) = AL 0.

The time consistent strategies C∗ and π∗ are linear functions of the fund assets F and the

actuarial liability AL , and depend on the parameters of the financial market and the benefit

process, and also, through αF,AL, depend on the rate of discount ρ̃, the technical rate of interest

δ and the benefit drift parameter µ.

The investment decisions π∗, (16), are composed by two terms. The first is proportional to

F , with coefficient proportional to the market price of risk θ, but the second is proportional to

AL and depends on the rate of discount, and the parameters containing the correlation between

benefit and risky assets. The constant of proportionality in the first term, Σ−1(b − r1), is the

so called optimal-growth portfolio strategy, that appears in the Merton model where a CRRA

utility of consumption is maximized.
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An interesting consequence is that there exists a linear relationship between the supplemen-

tary cost and the investment strategy,

π∗ = Σ−1(b− r1)
β

αFF
SC ∗ − ησ−>q

αF,AL
2αFF

AL ,

thus for each unit of additional amortization with respect to the normal cost the manager must

invest Σ−1(b− r1) β
αFF

units in the risky assets, plus an additional quantity of ησ−>q
−αF,AL
2αFF

AL

units. Both quantities depend on the rate of discount through αFF and αFAL. Note that if there

is no correlation between the benefit and the risky asset, q = 0, or the benefit is deterministic,

η = 0, then the investment strategy π∗ is proportional to the supplementary cost SC ∗.

Remark 3.1 The manager must borrow money at rate r to invest in the risky asset Si, that is

to say π∗i > F ∗, when the level of the fund is below λiAL , where the constant λi is defined as

λi =
eiΣ
−1(b− r1) + ηeiσ

−>q

1 + eiΣ−1(b− r1)

αF,AL
2αFF

, ei = (0, . . . ,
i)

1, 0, . . . , 0),

for all i = 1, 2, . . . , n, and he/she need to short sell asset, that is to say π∗i < 0, when the fund

is above the value λ′iAL , where

λ′i =
eiΣ
−1(b− r1) + ηeiσ

−>q

eiΣ−1(b− r1)

αF,AL
2αFF

.

Thus the manager does not need short-selling neither borrowing, 0 ≤ π∗i ≤ F ∗, when the fund

F ∗ is between λiAL and λ′iAL .

Remark 3.2 The model can be observed in some particular cases. For instance, the model

analyzed in Josa-Fombellida and Rincón-Zapatero (2004) can be recovered by setting ρ̃(t) = ρ,

∀t ∈ [0,∞), where in this case κFF = κFAL = 0. Other non-constant discount functions, as

the hyperbolic, where D(t) = (1 + k1t)
−k2/k1 , with k2 > k1 > 0, are included in the general

framework also, but they will not be studied in this paper. It is straightforward to particularize

the model to the case of a deterministic benefit, where η = 0, or to a constant benefit, where

µ = η = 0. The extreme cases where benefit and financial market are uncorrelated or are

perfectly correlated are obtained by taking q = 0 or q = ±1, respectively. The case where
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the fund is only invested in the riskless asset can also be analyzed with a similar methodology,

although note that this is not a particular case, since now the unique control variable is SC .

In order to maintain in the long term the fund assets near the actuarial liability and the rate

of contribution near the normal cost, we give a valuation of the technical rate of actualization δ,

consisting in a spread method of fund amortization, as in Josa-Fombellida and Rincón-Zapatero

(2004). These spread methods, widely used in pension funding (see Owadally and Haberman

(1999)), assume that the supplementary cost SC is proportional to the unfunded actuarial

liability UAL.

From (15), in order to achieve a spread method the identity αF,AL = −2αFF must be satisfied.

Substituting in (19) we obtain

−
α2
FF

β
+
(
−ρ+ r − θ>θ − ηq>θ + δ

)
αFF + 1− β −

αFF
β + µ− δ

αFF
β + µ− r − ηq>θ

κFF

+

(
α2
FF
β + 1− β

) (
r + ηq>θ − δ

)
αFF
β + µ− r − ηq>θ

∫ ∞
0

e−
∫ s
0 ρ̃(v)dv(ρ̃(s)− ρ)e

(
r−αFF

β
−θ>θ+µ−ηq>θ

)
s
ds = 0, (22)

and comparing (22) with (17), we obtain that the technical interest rate must coincide with

the rate of return of the bond modified to get rid of the sources of uncertainty. Specifically

we assume that the valuation of liabilities δ is the risk free interest rate r plus the product

of the Sharpe ratio of the portfolio θ and a term depending on the parameters containing the

correlations q and the diffusion parameter of the benefit process η, as in Josa-Fombellida and

Rincón-Zapatero (2004).

Assumption 2 The technical rate of actualization is δ = r + ηq>θ.

Note that δ does not depend on the parameter µ associated to the benefit P . If there is no

correlation between the benefit and the financial market, or if the benefit is deterministic, then

δ is the risk-free rate of interest r. We can also observe that the existence of a non-constant

discount rate does not influence in the selection of the technical rate of interest.

Besides this valuation it provides, this selection of δ will allow us to simplify the explicit

solution of the problem in the following result.
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Corollary 3.1 Suppose that Assumptions 1 and 2 hold, and the inequalities (13), (14), are

satisfied. The time consistent rate of contribution and time consistent investments in the risky

assets are given by

C∗ = NC +
αFF
β

UAL, (23)

π∗ = Σ−1(b− r1)UAL + ησ−>qAL , (24)

respectively, where αFF is a positive solution of the equation (17). The associated fund evolution

is the solution of the system given by (4) and

dF ∗(t) =
((
r − θ>θ − αFF

β

)
F ∗(t)−

(
r − θ>θ − αFF

β
− µ

)
AL (t)

)
dt

+
(
− θ>F ∗(t) +

(
θ> + ηq>

)
AL (t)

)
dW (t), (25)

with F (0) = F0, AL (0) = AL 0.

The supplementary cost SC ∗ is proportional to the unfunded actuarial liability UAL, with

constant of proportionality depending on the rate of discount. The investment decisions π∗, (24),

are similar to those in Josa-Fombellida and Rincón-Zapatero (2004), since they do not depend

on the rate of discount. They are composed by two terms. The first is again proportional to

UAL, but the second is a correction term, depending on the risk parameters of the model and

AL . This second term is zero when there is no uncertainty in the benefits, as in Josa-Fombellida

and Rincón-Zapatero (2001), and when there is no correlation between benefit and risky asset.

We also obtain that the rate of contribution C∗ and the investment π∗ do not depend on µ.

However, from (25), all parameters of the benefit process influence linearly in the optimal fund

evolution. Also we observe that the manager takes a greater risk when the wealth of the fund

is far below the actuarial liability than when it is closer. The optimal rate of contribution C∗

and the fund evolution F ∗ depend on the rate of discount function ρ̃ through αFF .

Next proposition shows that this selection of δ allows, in expected values, to fulfill in the

long term one of the objectives of the pension plan manager, which is the maintenance of the

fund F ∗ and the contribution C∗ close to their ideal values AL and NC , respectively.
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Proposition 3.1 Suppose that Assumptions 1, 2 and the inequalities (13), (14) and

αFF > β
(
r − θ>θ

)
, (26)

are satisfied. Then the expected unfunded actuarial liability and the expected supplementary cost

converge in the long term to zero, that is to say,

lim
t→∞

EF0,AL0UAL∗(t) = lim
t→∞

EF0,AL0SC ∗(t) = 0.

When the pension plan is underfunded, the total expected supplementary cost is

SC =

∫ ∞
0

EF0,AL0SC ∗(t)dt =
αFF /β

αFF /β + θ>θ − r
UAL0.

The fulfilment of (26) is necessary to guarantee a finite total expected supplementary cost.

However, by (23), the total expected contribution rate is infinite because the normal cost NC is

a geometric Brownian motion with positive drift µ. Notice that though the unfunded actuarial

liability UAL∗ is not a geometric Brownian motion, because the term η
√

1− q>qAL dW0 appears

in its SDE (see proof of Proposition 3.1), it can be possible to obtain the accumulated expected

contribution rate along the interval [0, T ],
∫ T
0 EF0,AL0C

∗(t), using (23). When the benefit is

deterministic, η = 0, by (24) and (26), the expected investment strategies converge in the long

term to zero, i.e.,

lim
t→∞

EF0,AL0π
∗(t) = 0.

Additionally, since UAL∗ is a geometric Brownian motion, consequently (UAL∗)2 too. In this

case the pension plan intensifies its stability and security qualities in the long term, that is to

say, the solvency and contribution rate risks converge in the long term to zero, i.e.,

lim
t→∞

EF0,AL0(UAL∗(t))2 = lim
t→∞

EF0,AL0(SC ∗(t))2 = 0,

whenever the additional condition αFF > β
(
r − θ>θ/2

)
holds. These convergence properties

of the actuarial risks of the pension plan are also achieved when the benefit and the financial

market are perfectly correlated, q>q = 1, since then UAL∗ is a geometric Brownian motion. The

convergence to zero of the expected investment strategies holds also when the benefit and the

financial market are uncorrelated, q = 0, because the investment strategy π∗ is proportional to

the supplementary cost SC ∗ or also by (24).
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4 A numerical illustration

Next, we numerically illustrate the dynamic behaviour of the pension fund and the time con-

sistent strategies (contribution rate and investment polices) by conducting some simulations for

a specific example. After the analysis of the baseline case we will include a sensibility analysis

with respect to several parameters: the risk preference parameter, the financial market regime,

the correlation between the benefit and the risky asset, and the diffusion parameter of the ben-

efit. When fixing the parameter values, we have taken data from several sources. All the data

refers to the U.S. Economy and we take as reference point the end of 2018. The financial and

macroeconomic data are obtained from Yahoo! Finance, the U.S. Department of Treasury and

the Bureau of Labor Statistics, and the actuarial data are obtained from the report Corporate

Pension Funding Study, by Wadia et al. (2019).

We consider that benefits have mean return µ = 0.018 and standard deviation η = 0.05.

For the benefits mean return we have taken as a proxy (a fraction of the) the U.S. Employment

Cost Index that rose 2.8% in 2018, which includes retirement and saving benefits between other

benefits as for instance they are other supplemental cash payments, insurance benefits as health

or temporal disability, etc. By taking a 65% of this increase, we cover the inflation rate for the

previous year that rose 1.8%, considering that it could exist some indexation over past inflation

rates. Although other functions may be considered, we assume that the distribution function

M is uniform in [a, d], that is to say, M(u) = u−a
d−a , for a ≤ u ≤ d.

Without loss of generality, we consider that there is one risky asset with mean rate of return

b = 0.115 and volatility deviation σ = 0.167 (this implies a Sharpe ratio of θ = 0.52994), which

has a correlation coefficient with benefits of q = 0.5, while the risk-free rate of interest is equal

to r = 0.0265. Parameters b and σ has been estimated from daily variations of the S&P 500

index from 2009 to 2018, while r is obtained from the U.S. ten-year Treasury note at the end of

2018. From Wadia et al. (2019), it is reported that at year 2018 the funded ratio equals 87.1%,

while the discount rate was a 4.01%. Inspired from these data, initial values for the actuarial

liability and the fund are set, respectively, to AL0 = 100 and F0 = 87.1, so we consider that

18



at t = 0 the actuarial liability is not totally covered by the fund. For the objective function we

initially take as risk preference parameter β = 0.5, i.e., the manager gives equal value to the

contribution rate risk and the solvency risk to be minimized, and we will perform a sensibility

analysis on β.

Finally, we select the technical rate of interest leading a spread method of funding (δ =

0.0397485), and as a discount function for the manager in the objective function a linear combi-

nation between two exponential functions, i.e., D(t) = λe−0.04t + (1− λ)e−0.3t, which will allow

us to obtain parameters of the value function as described in Remark 2.1. Note that for this

discount function, our instantaneous rate of time preference decreases with the discount period

from ρ̃(0) = 0.17, for λ = 0.5, to ρ = 0.04, so short-term values are discounted at a higher

rate than long-term values. In contrast, with a standard discount function, all values would be

discounted at a given rate, independently of the discount distance.

These parameters satisfy the transversality conditions (13), (14), and the convergence con-

dition (26), assuring the stability of the pension plan, that we are going to check below.

We consider several cases for the weight parameter λ. In the baseline case, λ = 0.5, we con-

sider two kinds of participants: patient participants with ρ1 = 0.04 and impatient participants

with ρ2 = 0.3, with equal weight. The case with λ = 0.9 corresponds to situations where patient

participants are majority while in the case with λ = 0.1 the impatient agents are majority.

Tables 1 and 2 below also consider the extreme cases with λ = 0 and λ = 1, that correspond to

the constant discounts D(t) = e−0.3t and D(t) = e−0.04t, represent the less and more patience

cases, respectively. They are not included in the figures in order to simplify them. A look at the

tables allows to verify that there is continuity between the results corresponding to the cases

of constant discount and those of the exponential combination. Then the comparison with the

constant cases is direct.

Figure 1 shows, for λ = 0.5, two paths of the fund process F and the actuarial liability process

AL , over a time horizon of 20 years (=240 months) and with a step of 1/12, together with the

expected fund assets EF (= EF0,AL0F ) and the expected actuarial liability EAL (= EF0,AL0AL )

for a total of 1000 realizations. We observe that the fund get moving near the the actuarial
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liability, and its expected value approaches to the expected actuarial liability in the long term.

It is possible to verify that this behaviour holds with other values of the weight λ. Additionally,

Figure 2 includes two overlapped histograms collecting all the realizations at time t = 60 (the

end of 5th year) for the fund assets and the actuarial liability. We can observe F (60) and AL (60)

showing a similar distribution pattern, and the same results are obtained at other time moments.

50 100 150 200
t

80

100

120

140

160

AL(t)

F(t)

 AL(t)

 F(t)

Figure 1: Actuarial liability, fund assets and its expected values in the baseline case

It is interesting to observe that the expected unfunded actuarial liability EUAL is positive,

because the pension plan is underfunded, by (33) in the Appendix. However this property is

not satisfied by a particular realization of UAL. In term of expected values, EAL (t) is above

EF (t) for all t ∈ [0, 240]. Other interesting fact is that the fund F is positive along the planning

horizon. Figure 3 shows EF , the minimum and the maximum paths of F (the paths attaining

the minimum and the maximum value F (t), for all t) and the upper and lower bounds of F , for

the 1000 realizations considered.

Figure 4 shows the expected actuarial liability EAL and the expected fund assets EF for

λ = 0.5 (baseline case: F ), λ = 0.9 (F1) and λ = 0.1 (F2) for the same 1000 realizations

but over the third year (subperiods ranging from 24 to 36) with a step of 1/12. Despite the

patient or impatient majority in the whole group, we can observe that the fund dynamics are

very similar for all three cases and are approaching to the actuarial liability. More specifically,

observing with more detail the same graph, it can be seen that EF1(t) > EF (t) > EF2(t), for

all t, i.e., in the case of more patient participants the value of the fund is the higher one, and it
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Figure 2: Histogram of values F (60) and AL (60) for the 1000 paths of F and AL
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Figure 3: Expected fund assets, minimum fund path and maximum fund path in the baseline

case

decreases as impatience increases (λ = 0.9 → λ = 0.5 → λ = 0.1). This has, as a consequence,

that the unfunded actuarial liability EUAL is inversely related with λ.

From Corollary 3.1 we have that contributions C∗ are proportional to the unfunded actuarial

liability and the value of αFF , while investments π∗ are proportional to UAL and AL . We next

compute, at Table 1, some values of αFF and αF,AL for the case of applying a spread method

(δ = 0.0397485) where it holds that αF,AL = −2αFF and for the general case where αFF and

αF,AL are obtained as the solution of (17) and (19), where we have chosen as the technical rate

of interest δ = 0.06.

From Table 1, we can observe that αFF increases with λ. As a consequence, for a given value
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Figure 4: Expected actuarial liability and expected fund assets dynamics for different values of

λ

δ = 0.0397485 λ = 1 λ = 0.9 λ = 0.5 λ = 0.1 λ = 0

αFF 0.437504 0.432491 0.412003 0.390661 0.385161

αF,AL -0.875009 -0.864982 -0.824007 -0.781322 -0.770322

δ = 0.06 λ = 1 λ = 0.9 λ = 0.5 λ = 0.1 λ = 0

αFF 0.437504 0.432491 0.412003 0.390661 0.385161

αF,AL -0.890225 -0.879883 -0.837603 -0.793514 -0.782141

Table 1: αFF and αF,AL for different values of λ under the spread method δ = 0.0397485 and

general case δ = 0.06

of UAL, contributions will be higher in the case of having a majority of patient participants.

Moreover, as in our model we have that UAL(0) and AL (0), initial investments will be equal for

our three studied cases (λ = 0.9 → λ = 0.5 → λ = 0.1). For these reasons, at the beginning

of the time horizon EF1(t) will overcome EF (t) and EF2(t), and the corresponding unfunded

actuarial liability will become the lowest one. While this last fact holds, investments will be the

lowest ones for λ = 0.9, while contributions will depend on the cross effect between αFF and

the UAL. We next focus on the investment strategies.

Figure 5 shows the time evolution of the expected time consistent investment relative to

fund size, E(π∗/F )(= EF0,AL0(π∗/F )). We first mention that borrowing and shortselling are
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not necessary. In our three cases the global behaviour is similar, starting at the highest level

and stabilizing in the long run. We can also see that relative investments are higher for more

impatient participants, i.e., the higher the level of impatience, the larger the fraction of the fund

invested in risky assets, not only for initial periods as explained above, but also for the whole

simulated time horizon, what is related to the fact that in this case the fund F2 has the lowest

value and, consequently, the associated UAL is the highest.
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Figure 5: Expected relative investments dynamics for different values of λ

Looking now at the contributions C∗, as mentioned before, its value will depend not only

on αFF but also on UAL. In Figure 6, we first note that initially they start at a high level from

which decrease up to converge the normal cost NC . Focusing on our three studied cases, we can

observe that in the case of having more patient participants (large λ) initial contributions are

higher, and the expected value of the fund increases faster. This has however, as a consequence,
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β = 0.5 λ = 1 λ = 0.9 λ = 0.5 λ = 0.1 λ = 0

SC 9.99483 9.96881 9.85742 9.73202 9.69801

EF (60) 109.26 109.286 109.276 109.269 109.257

ESC 2(60) 8.88787 8.70457 8.28373 7.785 7.65756

EUAL2(60) 11.6084 11.6341 12.2001 12.7526 12.9046

Table 2: Expected accumulated contribution, and expected value of the fund, contribution rate

risk and solvency risk at the end of the fifth year, for several values of λ

that the unfunded actuarial liability becomes smaller. As the contributions are proportional to

UAL and αFF , it is not clear how contributions will be depending on the value of λ. This is

what we observe in Figure 6 when looking at subperiods 0 to 12 (first year) and 24 to 48 (third

year). In the first case, we have that initial contributions effectively are higher for λ = 0.9, but

after some moment they reverse as a consequence that despite of having the largest αFF , this

cannot be compensated by the lower UAL.

Table 2 collects the expected accumulated contributions SC and the expected value of the

fund at the end of the fifth year EF (60)(= EF0,AL0F (60)), which are negatively related to

participants’ impatience. The same property satisfies the contribution rate risk ESC 2(60)(=

EF0,AL0SC 2(60)). However, the solvency risk, EUAL2(60)(= EF0,AL0UAL2(60)), grows with the

impatience.

A sensibility analysis of the time-consistent strategies and the fund with respect to the risk

preference parameter β shows a similar behaviour in the approaching to the ideal values than in

the baseline case, but it is faster with small β. As expected, the risk preference parameter has a

greater effect on the actuarial risks. If the importance given to the contribution rate risk in the

minimization process increases, then the contribution rate risk and the expected accumulated

contribution decrease, but the solvency risk increases. Thus, for instance, for λ = 0.5, at the

end of the fifty year, the contribution rate risk decreases from 17.0043, for β = 0.25, to 8.28373,

for β = 0.5, and to 3.73199, for β = 0.75. When the weight β increases, we also observe a slight

decline of the expected fund at the end of the fifth year. Table 3 includes the values at the end
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Figure 6: Expected contributions for different values of λ and expected normal cost dynamics

of the fifth year for β = 0.25 and 0.75.

Now we compare the current bull financial regime where θ = 0.52994 with a hypothetical

bear regime with drift parameter of the risky asset b = 0.03, diffusion parameter σ = 0.2 (this

implies a Sharpe ratio of θ = 0.1), and risk-free rate of interest r = 0.01. The remaining
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β = 0.25 λ = 1 λ = 0.9 λ = 0.5 λ = 0.1 λ = 0

SC 11.1338 11.1231 11.0783 11.0298 11.0171

EF (60) 109.41 109.474 109.331 109.25 109.226

ESC 2(60) 17.7377 17.5603 17.0043 16.4042 16.252

EUAL2(60) 6.90026 6.92764 7.10831 7.29071 7.33885

β = 0.75 λ = 1 λ = 0.9 λ = 0.5 λ = 0.1 λ = 0

SC 8.29902 8.2449 8.00847 7.73053 7.65243

EF (60) 108.99 109.229 109.162 109.078 108.964

ESC 2(60) 4.18845 3.99624 3.73199 3.35334 3.25566

EUAL2(60) 19.6934 19.9014 21.5235 23.181 23.6669

Table 3: Expected accumulated contribution, and expected value of the fund, contribution rate

risk and solvency risk at the end of the fifth year, for several values of λ and β

of parameters rare unchanged. The behaviour of the time consistent strategies with respect

to time is similar to the bull case but there exist some differences. The expected investment

strategy is time decreasing as in the bull case, but it is under 0.2 from the second month unlike

the bull case that needs four years to get off it (see Figure 7). The opposite effect holds with

respect to the close up of the time consistent contribution to the normal cost. The expected

accumulated contribution is greater than in the bull regime: SC = 12.9 vs 9.8574, for λ = 0.5.

However, the contribution rate risk is a little higher in the bear case than in the bull case. The

opposite holds with respect to the solvency risk.

It is interesting to observe the effect of the correlation q between the risky asset and the

benefit. With a negative correlation, q = −0.5, the investment strategy is time decreasing,

and also, from the second year, it is necessary to short selling to invest the fund in the risky

asset (see Figure 8). Moreover, the convergence of F ∗ to AL and of C∗ to NC is a slightly

faster. Finally, the expected fund is lower than with positive correlation (EF ∗(60) = 108.541 vs

109.276, for λ = 0.5, at the end of the fifth year), and the actuarial risks, the solvency risk and
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Figure 7: Expected relative investments dynamics for bull and bear regimes

the contribution rate risk, are also slightly lower. Next we analyze the cases of uncorrelation

and perfect correlation. When q = 0, the expected investment strategies converge to zero in the

long term (see Figure 8). The actuarial risks are higher than the obtained with other values of

correlation. For instance, for λ = 0.5 the solvency risk at the end of the fifth year decreases

from 17.677 for q = 0, to 12.8949 for q = −0.5, to 13.9364 for q = 0.5, to 0.0188358 for q = 1,

and to 0.0116807 for q = −1. The convergence to zero in the long term, for both actuarial

risks holds when q = ±1. Note that, at the end of the fifth year, the contribution rate risks

are 0.0127893 for q = 1 and 0.00793102 for q = −1, near zero similarly to the solvency risks

previously mentioned. This trend is maintained in the long term.
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Figure 8: Expected relative investments dynamics for different values of q

Finally, a sensitivity analysis on η confirms that the time consistent contribution does not
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depend on η, and that this parameter has little influence on the fund evolution (note that only

appears in the diffusion term in (25)). The investment strategy is smaller when the volatility

of the benefit is smaller; see Figure 9. When the benefit is not a stochastic process, η = 0, the

investment strategy is time decreasing and converges to zero in the long term, and the actuarial

risks converge to zero in the long term.
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Figure 9: Expected relative investments dynamics for different values of η

5 Conclusions

We have analyzed by means of dynamic programming techniques the management of an aggre-

gated defined benefit pension plan where the rate of discount is non-constant and the benefit

is stochastic. The objective is to determine the contribution rate and the investment strategy

minimizing both the contribution and the solvency risk in a infinite time horizon. We have

found that the weight of the patient participants in the whole of participants intervenes in the

time consistent strategies and in the associated fund evolution.

It is possible to select the technical rate of interest such that the investment strategy does

not depend on the rate of discount (only depends on the diffusion parameter of the benefit and

the financial market). In this case, however, the time consistent contribution does depend on

the discount rate but not on the parameters of the benefit process, getting a spread amortization

and the plan stability in the long term.
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A numerical illustration shows how, when the discount function is a convex combination

between two exponential functions, in the long term, the expected values of the fund and the

time consistent contribution are closed, respectively, to the expected values of the actuarial

liability and to the normal cost. More patient participants will lead to a higher value of the

fund, and consequently, a lower unfunded actuarial liability (a greater close up between fund and

actuarial). That is to say, the convergence of the fund to the actuarial liability is faster with more

patience. In the case of the investment strategies, we have observed that the more impatient is

the majority of participants, the higher are the investments in risky assets. However, there is not

a constant relationship between the contributions and the degree of impatience, changing their

ordering at some intermediate point in the planning horizon. We have also checked that the

participants’ patience diminishes the expected accumulated contribution and, in the medium-

term, the expected fund and the contribution rate risk, but increases the solvency risk. Finally

we have analyzed the sensibility of the results with respect to the risk preference parameter, the

correlation between the benefit and the financial market, the volatility of the benefit and the

regime of the financial market.

Further research can be guided to include Poisson jumps in the financial market, to consider

a regime switching model, and to analyze other non-exponential discount functions.
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A Appendix

Proof of Theorem 3.1.

If there is a smooth solution V of the equation (10), strictly convex, then the minimizers

values of the contribution rate and the investment rates are given by

ŜC (VF ) =− VF
2β
, (27)

π̂(VF , VFF , VF,AL) =− Σ−1(b− r1)
VF
VFF

− ηAL σ−>q
VF,AL
VFF

, (28)

respectively.

From (27) and (28), the structure of the HJB equation obtained once we have substituted

these values for SC and π in (10), suggests a quadratic homogeneous solution

V (F,AL ) = αFFF
2 + αF,ALFAL + αAL,ALAL 2.

Imposing this solution in (27) and (28), we obtain

ŜC =− αFF
β

F −
αF,AL

2β
AL ,

π̂ = − Σ−1(b− r1)F −
αF,AL
2αFF

(
Σ−1(b− r1) + ησ−>q

)
AL .

Now we are going to obtain the explicit form of K(F,AL ) in (11). Taking into account that

process AL satisfies the SDE (4), after substitution in (8) of expressions for ŜC and π̂, process F

satisfies the SDE (21). Following Arnold (1974), we can apply the Itô’s formula to the processes

F 2, FAL and AL 2. Taking expected values, the functions defined by φ(t) = EF0,AL0F
2(t),

ψ(t) = EF0,AL0(FAL )(t) and ξ(t) = EF0,AL0AL 2(t) satisfy the linear differential equations

φ′(t) =
(

2r − 2
αFF
β
− θ>θ

)
φ(t)−

(αF,AL
β

+ 2(δ − µ)
)
ψ(t) +

α2
F,AL

4α2
FF

(
θ>θ + 2ηq>θ + η2q>q

)
ξ(t),

ψ′(t) =
(
r − θ>θ − αFF

β
+ µ− ηq>θ

)
ψ(t)−

(αF,AL
2αFF

(
θ>θ + 2ηq>θ +

αFF
β

+ η2q>q
)

+ δ − µ
)
ξ(t),

ξ′(t) = (2µ+ η2)ξ(t),
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with initial conditions φ(0) = F 2, ψ(0) = FAL and ξ(0) = AL 2, respectively. Thus the explicit

expressions for these functions are:

ξ(t) = AL 2e(2µ+η
2)t,

ψ(t) =

(
FAL − b

2µ+ η2 − a
AL 2

)
eat +

b

2µ+ η2 − a
AL 2e(2µ+η

2)t,

φ(t) =

(
F 2 − d

a− c
FAL +

bd

(2µ+ η2 − a)(a− c)
AL 2 − 1

2µ+ η2 − c

(
bd

2µ+ η2 − a
+m

)
AL 2

)
ect

+

(
d

a− c
FAL − bd

(2µ+ η2 − a)(a− c)
AL 2

)
eat +

(
bd

2µ+ η2 − a
+m

)
AL 2

2µ+ η2 − c
e(2µ+η

2)t

where a = r − θ>θ − αFF
β + µ− ηq>θ, b = − αFAL

2αFF

(
θ>θ + 2ηq>θ + αFF

β + η2q>q
)
− δ + µ,

c = 2r−2αFFβ −θ
>θ, d = −αFAL

β −2(δ−µ) and m =
(
θ>θ + 2ηq>θ + η2q>q

) α2
FAL

4α2
FF

. Substituting

the minimizers,

EF,AL
{
βSC 2(s) + (1− β)(AL (s)− F (s))2

}
= EF,AL

{
α2
FF

β

(
F (s) +

αFAL

2αFF
AL (s)

)2

+ (1− β)(AL (s)− F (s))2

}

=
α2
FF

β

(
φ(s) +

αFAL

αFF
ψ(s) +

α2
FAL

4α2
FF

ξ(s)

)
+ (1− β) (φ(s)− 2ψ(s) + ξ(s)) ,

and then K(F,AL ) = κFFF
2 + κFALFAL + κAL,ALAL 2, where κFF is given by (18), κF,AL is

given by (20) and κAL,AL is another constant what does not need to be determined. Note that

the improper integral that appears in (18) is well defined by condition (14) y because the rate

of discount function ρ̃ is time-decreasing. Analogously with the improper integral in (20), by

(32); see below.

Substituting the minimizers in (10) and using (3), the following set of three equations for

the coefficients is obtained: (17), (19) and

(−ρ+ 2µ− η2)αAL,AL −
(
θ>θ + η2q>q + 2ηq>θ

) α2
F,AL

4αFF

−(δ − µ)αF,AL −
α2
F,AL

4β
+ 1− β − κAL,AL = 0. (29)

In order to prove that the solution of (10) is the value function and C∗ and π∗, given by (15)

and (16), respectively, are the time consistent strategies of the stochastic control problem, it is
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sufficient to check that the transversality condition

lim
t→∞

e−ρtEF0,AL0V (F ∗(t),AL (t)) = lim
t→∞

e−ρt (αFFφ(t) + αF,ALψ(t) + αAL,ALξ(t)) = 0

holds, where AL and F ∗ satisfy, respectively, (4) and (21). By our previous calculations,

ξ(t) = AL 2
0e

(2µ+η2)t,

hence limt→∞ e
−ρtξ(t) = 0 if and only if (13) holds. On the other hand,

ψ(t) = (F0 − a1AL 0)AL 0e
at + a1ξ(t),

where a1 = b
2µ+η2−a is a constant depending on parameters of model. Then limt→∞ e

−ρtEF0,AL0ψ(t) =

0, if and only if, both (13) and the inequality

r − θ>θ − αFF
β

+ µ− ηq>θ < ρ (30)

simultaneously hold. On the other hand,

φ(t) =
(
F 2
0 + a2AL 2

0 − a3F0AL 0

)
ect + a2ψ(t)− a3ξ(t),

where a2 = d
a−c and a3 = a1a2 − ba1+m

2µ+η2−c are constants. Hence limt→∞ e
−ρtφ(t) = 0 if and only

if (13), (30) and

2r − 2
αFF
β
− θ>θ < ρ (31)

hold. Now we prove that the conditions (13) and (31) imply (30). Observe that

0 ≤
(
θ> + ηq>

)
(θ + ηq) = θ>θ + 2ηq>θ + η2q>q ≤ θ>θ + 2ηq>θ + η2,

implies

−ηq>θ ≤ 1

2
θ>θ +

1

2
η2.

We have used q>q ≤ 1. Thus

r − θ>θ − αFF
β

+ µ− ηq>θ ≤ r − 1

2
θ>θ − αFF

β
+ µ+

1

2
η2 <

ρ

2
+
ρ

2
= ρ. (32)

Since V is a homogeneous quadratic polynomial in F and AL , e−ρtEF0,AL0V (F ∗(t), AL(t))

converges to 0 when t goes to ∞. Finally, applying the analogous theorem to the verification

Theorem 8.1, chapter 3, in Fleming and Soner (1993), we conclude that V is the value function

and C∗, given by (15), and π∗, given by (16), are the time consistent controls. �

32



Proof of Proposition 3.1. From (21), using αF,AL = −2αFF and Assumption 2 we obtain

(25) and then

dUAL∗(t) =
(
r − θ>θ − αFF

β

)
UAL∗(t)dt+ η

√
1− q>qAL (t) dW0(t)− θ>UAL∗(t)dW (t).

Thus

EF0,AL0UAL∗(t) = EF0,AL0AL (t)− EF0,AL0F
∗(t) = (AL 0 − F0)e

(
r−θ>θ−αFF

β

)
t
, (33)

converges to zero when t goes to ∞, by (26). Analogously

EF0,AL0SC ∗(t) =
αFF
β

EF0,AL0UAL∗(t),

converges to zero when t goes to ∞.

On the other hand, by Corollary 3.1,

SC =

∫ ∞
0

EF0,AL0SC (t)dt =
αFF
β

∫ ∞
0

EF0,AL0UAL(t)dt

=
αFF
β

UAL0

∫ ∞
0

e(r−θ
>θ−αFF /β)tdt =

αFF /β

αFF /β + θ>θ − r
UAL0 > 0,

by (26), and because the plan is underfunded, UAL0 = AL 0 − F0 > 0. �
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