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Abstract. This paper presents the induced generalized ordered weighted logarithmic aggregation (IGOWLA) operator, this 

operator is an extension of the generalized ordered weighted logarithmic aggregation (GOWLA) operator. It uses order-

induced variables that modify the reordering process of the arguments included in the aggregation. The principal advantage of 

the introduced induced mechanism is the consideration of highly complex attitude from the decision makers. We study some 

families of the IGOWLA operator as measures for the characterization of the weighting vector. This paper presents the gen-

eral formulation of the operator and some special cases, including the induced ordered weighted logarithmic geometric aver-

aging (IOWLGA) operator and the induced ordered weighted logarithmic aggregation (IOWLA). Further generalizations us-

ing quasi-arithmetic mean are also proposed. Finally, an illustrative example of a group decision-making procedure using a 

multi-person analysis and the IGOWLA operator in the area of innovation management is analyzed. 

Keywords: OWA operator; Logarithmic aggregation operators; Induced aggregation operators; Group decision making; Inno-

vation management. 

1. Introduction 

Aggregation operators are becoming very popular 

in the literature, especially in the areas of economics, 

statistics and engineering [1]. Currently, the literature 

presents an extensive amount of aggregation opera-

tors  [2–4]. The ordered weighted average (OWA) 

operator [5] stands as one of the most disseminated 

aggregation operator in the field. The OWA operator 

proposes a parameterized family including the max-

imum, the minimum and the average. This classic 

operator has been widely applied from applications in 

expert systems, group decision making, neural net-

works, data base systems, to fuzzy systems [6,7]. 

Yager and Filev [8] introduced an extension to the 

OWA operator, the induced ordered weighted aver-

age (IOWA) operator. This extension allows a broad-

er treatment and representation of complex infor-

mation. The introduced mechanism applies a reorder-

ing process to the arguments, here, a set of order-

induced variables determines the order of the aggre-

gation. This reordering mechanism of the IOWA 

operator has attracted much attention, motivating a 

broad diversity of applications [9,10] e.g. [11] devel-

ops new families of IOWA operators. In [12] dissimi-

larity functions are included in the analysis, [13] 

study the use of fuzzy numbers, [14] consider intui-

tionistic fuzzy information, and [15] analyze hesitant 

fuzzy sets and the Shapley framework. [16,17] de-

velop induced aggregation operators with linguistic 

information, [18] with distance measures, [19] with 

heavy operators and moving averages, [20] with 

Bonferroni and heavy operators, [21] with prioritized 



operators and [22] with distances and multi-region 

operators. 

An interesting generalization of the OWA operator 

results when applying quasi-arithmetic means in the 

aggregation process. The outcome is the quasi-

arithmetic ordered weighted aggregation (Quasi-

OWA) operator [23]. This operator combines a wide 

range of mean operators, including the generalized 

mean, the OWA operator, the ordered weighted geo-

metric (OWG) operator, and the ordered weighted 

quadratic averaging (OWG) operator, among others. 

Some of the most representative extensions of the 

Quasi-OWA operator are, e.g., the uncertain induced 

quasi-arithmetic OWA (Quasi-UIOWA) operator 

[24], the combined continuous quasi-arithmetic gen-

eralized Choquet integral aggregation operator [25] 

and the quasi intuitionistic fuzzy ordered weighted 

averaging operator [26], among others.  

Zhou and Chen [27] propose a generalization of 

the ordered weighted geometric averaging (OWGA) 

operator based on an optimal model. The introduced 

operator is the generalized ordered weighted loga-

rithmic aggregation (GOWLA) operator. This contri-

bution includes a set of parameterized families, such 

as the step generalized ordered weighted logarithmic 

averaging (Step-GOWLA) operator, the window 

generalized ordered weighted logarithmic averaging 

(Window-GOWLA) operator, and the S-GOWLA, 

among others. A further generalization of the GOW-

LA operator is that introduced by Zhou, Chen, and 

Liu [28] designated the generalized ordered weighted 

logarithmic proportional averaging (GOWLPA) op-

erator. Some generalizations of this operator are the 

generalized hybrid logarithmic proportional averag-

ing (GHLPA) operator and the quasi ordered 

weighted logarithmic partial averaging (Quasi-

OWLPA) operator. Following the trend of develop-

ing aggregation operators based on optimal deviation 

models, Zhou, Chen, and Liu [28] introduce the gen-

eralized ordered weighted exponential proportional 

aggregation operator (GOWEPA), which is further 

generalized to develop the generalized hybrid expo-

nential proportional averaging (GHEPA) operator 

and the generalized hybrid exponential proportional 

averaging-weighted average (GHEPAWA) operator. 

Recently, Zhou, Tao, Chen, and Liu [29] have intro-

duced an additional generalization to the GOWLA 

designated the generalized ordered weighted loga-

rithmic harmonic averaging (GOWLHA) operator, 

including the generalized hybrid logarithmic harmon-

ic averaging (GHLHA) operator and the  generalized 

hybrid logarithmic harmonic averaging weighted 

average (GHLHAWA) operator.  

The aim of this paper is the introduction of the in-

duced generalized ordered weighted logarithmic ag-

gregation (IGOWLA) operator. The newly intro-

duced operator is an extension of the optimal devia-

tion model [27] adding the order-induced variables 

that change the previous ordering mechanism of the 

arguments. The introduction of this mechanism seeks 

a broader representation of the complexity in certain 

scenarios.  

We study a series of properties and families of the 

operator such as the induced ordered weighted loga-

rithmic geometric averaging (IOWLGA) operator, 

the induced ordered weighted logarithmic harmonic 

averaging (IOWLHA) operator, and the induced or-

dered weighted logarithmic aggregation (IOWLA) 

operator, among others. Furthermore, we present 

some extensions of the operator, first, using quasi-

arithmetic means, obtaining the quasi induced gener-

alized ordered weighted logarithmic aggregation op-

erator (Quasi-IGOWLA) operator; second, utilizing 

moving averages, we develop the induced general-

ized ordered weighted logarithmic moving average 

(IGOWLMA) operator.  

This paper also proposes an illustrative example to 

show the main characteristics of the IGOWLA opera-

tor. The example includes a multi-person decision-

making analysis in the field of innovation manage-

ment. The application seeks to exemplify a strategic 

decision-making process where a series of experts 

need to assess and choose new productos from a port-

folio of options. The case includes a highly complex 

attitudinal character from management. Results show 

a clear difference in the aggregation when applying 

order-induced variables instead of using traditional 

operators. The operator can be useful for other deci-

sion-making applications in business, such as human 

resource management, strategic decision making, 

marketing, etc. 

This paper is organized as follows. Section 2 pre-

sents basic concepts of the OWA, IOWA, Quasi-

IOWA, and GOWLA operators. Section 3 presents 

the IGOWLA operator, the characterization of the 

weighting vector and families. Section 4 presents the 

extension of the Quasi-IGOWLA operator. In Section 

5 proposes an illustrative application of a decision-

making procedure utilizing the IGOWLA. Finally, 

Section 7 summarizes the concluding remarks of the 

paper. 



2. Preliminaries 

In the present section, we briefly review some of 

the principal contributions in the field of aggregation 

operators. Specifically, we describe the OWA opera-

tor, the induced OWA operator, the Quasi-IOWA 

operator and the GOWLA operator. 

2.1. The OWA operator  

The ordered weighted averaging operator intro-

duced by Yager [5] proposes a family of aggregation 

operators that have been used in a plethora of appli-

cations (see, e.g., [7]). The OWA operator can be 

defined as follows: 

 

Definition 1. An OWA operator is a mapping 

: nOWA R R→ , which has an associated n  vector 

( )
T

j nw w= , where  0,1jw  , and 

1

1

n

j

j

w

=

= . Ac-

cordingly: 

 ( )1

1

, ..., ,

n

n j j

j

OWA a a w b

=

=  (1) 

where jb  is the jth largest of the arguments ia . 

It has been demonstrated that the OWA operator is 

commutative, idempotent, bounded and monotonic 

[5]. Furthermore, we can obtain the ascending OWA 

or the descending OWA by generalizing the direction 

of the reordering process [30].   

2.2. The induced OWA operator  

The induced ordered weighted averaging operator, 

introduced by [8] presents an extension of the OWA 

operator. This extension allows a reordering process 

that is defined by order-induced variables  rather 

than the traditional ordering constructed from the 

values of the  arguments. 

 

Definition 2. An IOWA operator of dimension n  

is a mapping : nIOWA R R→ , associated with a 

weighting vector W of dimension n  such that 

1
1

n
w j

j
=

=
,  0,1jw  , and a set of order-inducing 

variables iu , following the next formula: 

 ( )
1

, ,

n

n n j j

j

IOWA u a w b

=

=  (2) 

where ( )1, , nb b  is ( )1, , na a  reordered in de-

creasing values of the iu . Note that iu  are the order-

inducing variables and the ia  are the argument vari-

ables. 

2.3. The Quasi-IOWA operator 

The quasi-arithmetic induced ordered weighted 

aggregation (Quasi-IOWA) operator presents an ex-

tension of the Quasi-OWA operator. The main dif-

ference is the reordering process; in this case, order-

induced variables dictate the complex reordering of 

the arguments. The Quasi-IOWA operator can be 

defined as follows: 

 

Definition 3. A Quasi-IOWA operator of dimen-

sion n  is a mapping :    n nQIOWA R R R →  that has 

an associated weighting vector W of dimension n 

such that  0,1jw   for all j , and 

1

1

n

j

j

w

=

= , fol-

lowing the next formula: 

 ( ) ( )1

1

, ,

n

n n j j

j

QIOWA u a g w g b−

=

 
 

=  
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  (3) 

where jb  is the ia  value of the Quasi-IOWA pair 

,i iu a  having the largest iu , iu  is the order-

inducing variable, ia  is the argument, and ( )g b  is a 

strictly continuous monotonic function. 

Note that the Quasi-IOWA can also be viewed as a 

generalized form of the IOWA operator by using 

quasi-arithmetic means. The Quasi-IOWA has a wide 

variety of particular cases [31] including, e.g., the 

IGOWA operator, the IOWA operator, the IOWGA 

operator, the IOWQA operator, and the IOWHA op-

erator. 

2.4. The GOWLA operator  

The generalized ordered weighted logarithmic ag-

gregation (GOWLA) operator [27] introduces a pa-

rameterized family of aggregation operators includ-

ing the step-GOWLA operator, the window-GOWLA 

operator, the S-GOWLA operator and the GOWHLA 



operator The GOWLA operator can be formulated as 

follows: 

 ( ) ( )

1

1

1

, ..., .

n

n j j

j

GWLA a a exp w lna




=

 
    =  
   
  

  (4) 

If we reorder the arguments ia , then we can de-

fine the generalized ordered weighted logarithmic 

averaging operator (GOWLA) as follows: 

Definition 4.  A GOWLA operator of dimension 

n  is a mapping :Ω ΩnGOWLA →  that is demarcat-

ed by an associated weighting vector W of dimension 

n, satisfying  0,1w
j
  for all j, and 

1

1

n

j

j

w

=

=  and a 

parameter λ that moves between ( )  , 0−  − , ac-

cording to the next formula: 

( ) ( )

1

1

1
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n j j

j

GOWLA a a exp w lnb




=

 
    =  
   
  

  (5) 

where jb  is the jth largest of the arguments 

1 2,  ,  ,  na a a . Observe that 0jlna  . In that case, 

( ) ( )0jexp lna exp ; therefore, 1ja   following the 

notation in Zhou and Chen [27],  Ω 1, x x x R=   .  

3. The induced GOWLA operator 

This paper presents the induced GOWLA 

(IGOWLA) operator  it is in fact an extension of the 

GOWLA operator introduced by [27]; the new for-

mulation of the IGOWLA includes a previous reor-

dering step, this means that the IGOWLA operator is 

not defined by the values and order of the arguments 

ia  but by order-induced variables iu , that define the 

position of the arguments ia  by the values of the 

iu [32]. This extension allows a generalized ordering 

process, where decision making can consider highly 

complex conditions. The IGOWLA operator can be 

defined as follows: 

Definition 5: An IGOWLA operator of dimension 

n  is a mapping IGOWLA:  Ω Ωn →  defined by an 

associated weighting vector W such that  0,1jw   

and  0,1jw   and a set of order-inducing variables 

iu , according to the next formula: 

 

 

( )

( )

1

1

,

,

n n

n

j j

j

IGOWLA u a

exp w lnb




=

=

 
     
   
  


 (6) 

 

where λ is a parameter such that ( )  , 0  −  − , 

and ( )1, , nb b  is ( )1 2, , na a a  reordered in de-

creasing values of the iu . Observe that iu  are the 

order-inducing variables and ia  are the argument 

variables. Note that in this paper, we follow the orig-

inal argument where  Ω   1, x x x R=   .  

Example 1. Assume the following collection of ar-

guments set by their respective order-inducing varia-

bles ,i iu a : 3,25 , 1,75 , 6,5 , 4,55 . Let us 

assume that ( )0.1,0.3,0.2,0.4W =  and 2 = ; the 

aggregation will result as follows: 

 

1 3 2 4 3 1 4 25,  55,  25,  75,b a b a b a b a= = = = = = = =  

 

 

( )

( )( ) ( )( )

( )( ) ( )( )

1
2 2 2

2 2

3,25 , 1,75 , 6,5 , 4,55

0.4 5 0.2 55

0.3 25 0.1 75

45.6804.

IGOWLA

ln ln
exp

ln ln

=

 
   +  +  

=  
   + 
   

 

It is observable that the order-inducing variables 

iu  affect the order of the argument variables ia  in 

decreasing order. 

It is possible to differentiate the operator between 

the descending induced generalized OWA (DI-

GOWA) operator, and the ascending induced gener-

alized OWA (AIGOWA) operator. Regardless, the 

operators noted above are connected by the relation-

ship of *
1j n jw w + −= , where jw  is the jth weight of 

the DIGOWA operator and *
1n jw + −  the jth weight of 

the AIGOWA operator. 



Proposition 1.  If the weighting vector is 

1

1

n

j

j

w

=

 , 

then normalizing the weighting arguments as follows 

is proposed: 

 

 

( )

( )

1

1

,

1
.

n n

n

j j

j

IGOWLA u a

exp w lnb
W




=

=

 
       
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  


 (7) 

Note that 

n

j

j

W w= . 

3.1. Characterization of the weighting vector 

When defining the IGOWLA operator, it is 

interesting to analyze the characterization of the 

weighting vector. Following the procedures devel-

oped by Yager [5,33] and the descriptions stated in 

[32] we can obtain the degree of orness or attitudinal 

character ( )W , the entropy of dispersion ( )H W , 

the balance ( )B W  and the divergence ( )Div W  for 

the induced logarithmic aggregation operators. 

Due to the induced properties [31], the attitudinal 

character of the IGOWLA operator can be described 

from two different perspectives. If we focus on the 

attitudinal character, then we can use the same meas-

ure as in the OWA operator [5] because we want to 

measure the complex attitude, which depends solely 

on the weighting vector. In this case, the formulation 

is as follows: 

 ( )

1

1

.
1

n

j

j

n j
W w

n

 



=

 −  =  
 − 
 
  (8) 

Observe that ( )  0,1W  . Note that the optimis-

tic criteria are obtained when ( ) 1W = , the pessi-

mistic criteria are given when ( ) 0W = , and the 

averaging criteria are obtained when ( ) 0.5.W =  

Second, if we focus on the numerical values of the 

aggregation, then the orness measure ( ) W should 

be calculated as follows: 

 ( )

1

*

1

,

n

j j

j

a W w e



=

 
 =
 
 
  (9) 

where je  is the id  value of the IGOWLA pair 

,i iu d  having the jth largest iu , iu  is the order-

inducing variable, and 
( )

( )1
i

n j
d

n


 −

=  
 − 

. Note that to 

define the attitudinal character, we use the classical 

representation of the OWA operator when we do not 

use logarithms as inconsistencies present when  0,1 . 

The dispersion measure ( )H W , commonly uti-

lized to analyze the type of information being used 

[5,34], can be calculated by solving the next equa-

tion: 

 

 ( ) ( )
1

.

n

j j

j

H W w ln w

=

= −  (10) 

 

Note that if 1jw =  for any j , then ( ) 0H W = , 

which means that the least information is being used 

in the operator. Conversely, if 
1

jw
n

 
=  
 

 for all j , 

then a maximum amount of information is being used. 

The balance of the weighting vector can also be 

studied from two perspectives. If we consider the 

attitudinal perspective we can formulate it as follows: 

 ( )
1

1 2
.

1

n

j

j

n j
Bal W w

n
=

+ − 
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− 
  (11) 

However, if we consider the numerical values of 

the aggregation, the formulation would be as follows: 

 ( )
*

1

,

n

j j

j

Bal W w s

=

=  (12) 

where js  is the it  value of the IGOWLA pair ,i iu t  

having the jth largest iu , with iu  being the order-

inducing variable and 
( )

1 2

1
i

n j
t

n

+ −
=

−
 . Observe that 

( )  1,1 Bal W  − . For the minimum, ( ) 1Bal W = − , 

and for the maximum, ( ) 1Bal W = . Note that this 

measure is applicable to any induced aggregation 

operators [8,32]. 



Finally, the divergence measure of the weighting 

vector can be obtained by: 

 ( ) ( )
2

1

.
1

n

j

j

n j
Div W w W

n


=

− 
= − + 

− 
  (13) 

Example 2. Following the arguments described in 

Example 1, the characterization of the weighting vec-

tor result is shown in Table 1: 
Table 1. IGOWLA operator weighting vector measures  

Measure ( )W  λ=2 ( )
*

a W  ( )B W  ( )
*

B W  

Result 0.5055 0.6236 -0.2667 0.0000 

Measure ( )H W  ( )Div W  ( )
*

Div W  
 

Result 1.2799 0.1404 0.1542  

3.2. IGOWLA operator families 

A group of families of the IGOWLA operator can 

be described when analyzing the parameter . Table 

2 presents some of the resulting cases of special in-

terest: 
 

Table 2. Families of IGOWLA operators  

  Families Acronym 

0→  
Induced ordered weighted logarithmic 

geometric averaging operator 

IOWLGA 

-1  
Induced ordered weighted logarithmic 
harmonic averaging operator 

IOWLHA 

1  
Induced ordered weighted logarithmic 

aggregation operator 

IOWLA 

2  
Induced ordered weighted logarithmic 
quadratic aggregation operator 

IOWLQA 

3  
Induced ordered weighted logarithmic 

cubic aggregation operator 

IOWLCA 

→  Largest of the jb , for j n= .  Max 

-→   Lowest of the jb . , for j n=  Min 

 

Remark 1. Let 0 → , then, the IGOWLA 

operator becomes the IOWLGA [27] operator: 

 ( ) ( )
1

, ,
j

n
w

n n j

j

IGOWLA u a exp lnb

=

 
 

=  
  
  (14) 

where ( )1, , nb b  is ( )1 2, , na a a  reordered in de-

creasing values of the iu . 

Remark 2. If 1 = − , then the IGOWLA operator 

is reduced to the IOWLHA operator: 

 ( )
1

, .j

n
w

n n j

j

IGOWLA u a b

=

=  (15) 

Remark 3. If 1 = , then the IGOWLA op-

erator becomes the IOWGA [27] operator: 

 

 ( )
1

, .j

n
w

n n j

j

IGOWLA u a b

=

=   (16) 

Note that this formulation can also be presented as 

the IOWLA operator: 

 ( ) ( )
1

, .

n

n n j j

j

IOWLA u a exp w lnb

=

=   (17) 

Observe that similarly, if 1 = , then we can 

reduce the GOWLA operator to the OWLA operator: 

 ( ) ( )
1

, .

n

n n j j

j

OWLA u a exp w lnb

=

=   (18) 

Furthermore, we can obtain the WLA operator; in 

this case, when 1 = , we have: 

 ( ) ( )
1

, .

n

n n i i

j

WLA u a exp w lna

=

=   (19) 

Remark 4. If 2 = , then the IGOWLA op-

erator is reduced to the IOWLQA operator: 

 

 ( ) ( )
2

1

, .

n

n n j j

j

IOWLQA u a exp w lnb

=

  
  =  

    

  (20) 

Remark 5. Like the IOWLQA operator, 

when 3 = , the IGOWLA operator becomes 

the IOWLC operator: 

 

( )

( )

1

3
3

1

,

.

n n

n

j j

j

IOWLC u a

exp w lnb

=

=

 
     
   
  


 (21) 

Remark 6. If  → , then the IGOWLA operator 

solution tends to the jth largest ia  for every pair 

,i iu b  for all j . 

 ( ) ( ) , , .n n i iIGOWLA u a max u a=  (22) 

Remark 7. If  → − , then the IGOWLA opera-

tor solution tends to the jth lowest ia  for every pair 

,i iu b  for all j . 

 ( ) ( ) , , .n n i iIGOWLA u a min u a=  (23) 

 



Example 3. Following the arguments described in 

Example 1, the results for each family of the IGOW-

LA operator are shown in Table 3. 

 
Table 3. Families of IGOWLA operator 

  0→  -1 1 2 

Aggregation 45.9305 42.4498 48.9898 51.6158 

  3   −   

Aggregation 53.8483 80→  10→   

4. The Quasi-IOWLA operator 

It is possible to generate an additional generaliza-

tion of the general ordered weighted averaging opera-

tors by utilizing quasi-arithmetic means instead of the 

ordinary means (see, e.g., [32,35]). In the case of the 

IGOWLA operator, we suggest the use of a similar 

methodology to construct the Quasi-IOWLA operator.  

Definition 7. A Quasi-WLA operator of dimension 

n  is a mapping QWLA :  Ω Ωn →  with an associat-

ed weighting vector W  of dimension n  such that 

1

1

j

i

n

w

=

= ,  0,1iw  , and a strictly monotonic con-

tinuous function ( )g lnb , according to the next for-

mula: 

 ( ) ( )1
1

1

,...,  g g ,

n

n i i

i

QWLA a a exp w lna−

=

   
 =   
   
  (24) 

where ia are the set of arguments to be aggregated. 

Note that if all of the weights of the QWLA are 

equal 
1

   iw i
n

 
=  

 
, then the QWLA operator be-

comes the quasi-arithmetic logarithmic average 

(QLA). 

 

Definition 8. A Quasi-OWLA operator of dimen-

sion n  is a mapping QOWLA :  Ω Ωn →  with an 

associated weighting vector W  of dimension n , 

satisfying 

1

1

j

j

n

w

=

= , and  0,1jw  , a set of order-

inducing variables iu , and a strictly monotonic con-

tinuous function ( )g lnb , according to the next for-

mula: 

 ( ) ( )1
1

1

,..., exp ,

n

n j j

j

QOWLA a a g w lnbg−

=

 
 

=  
  
  (25) 

where jb  are the values ia  ordered in a decreasing 

way.  

 

Definition 9. A Quasi-IOWLA operator of dimen-

sion n  is a mapping QIOWLA :  Ω Ωn →  with an 

associated weighting vector W  of n  dimension, 

satisfying the condition that the sum of the weights is 

1, and  0,1jw  , a set of order-inducing variables 

iu , and a strictly monotonic continuous function 

( )g lnb , according to the next formula: 

 ( ) ( )1

1

, exp ,

n

n n j j

j

QIOWLA u a g w lng b−

=

 
 

=  
  
 (26) 

where jb  are the values ia  of the Quasi-IOWA pairs 

,i iu a  ordered in decreasing direction of their iu  

values.  

Please also note that the Q-IOWLA is a particular 

case of the IGOWLA when the strictly monotonic 

function is set on ( ) ( )j jg lnb lnb


= . This approach is 

equivalent for the Quasi-WLA and the Quasi-OWLA. 

Therefore, all these operators share the properties 

studied for the IGOWLA operator; specifically, it is 

bounded, idempotent and commutative. However, as 

shown in section 3, in some cases, it is not monotonic.  

Observe that we can also distinguish between the  

descending Quasi-DIOWLA and the ascending Qua-

si-AIOWLA. The relationship found between the 

descending and the ascending operators is 
*

1j n jw w + −= , where jw is the j th weight of the 

Quasi-DIOWLA operator and *
1n jw + −  the jth weight 

of the Quasi-AIOWLA operator. 

The wide range of operators that quasi-arithmetic 

means provide have proven to be effective when 

treating problems covering a wide range of complexi-

ties [36], including geometric aggregations, quadratic 

aggregations, and harmonic aggregations. 

Proposition 2. In case of any ties, replacing the 

tied arguments with the quasi-arithmetic logarithmic 

average operator is proposed [32]. 



5. Group Decision Making with the IGOWLA 

operator 

5.1. Decision-making process 

The IGOWLA operator is suitable for a wide range 

of applications in decision making processes (see, 

e.g., [37–40]). Here, a decision-making application in 

innovation management is proposed to show the var-

iations and benefits of the newly introduced order-

induced mechanisms of the IGOWLA operator.  

The main reason for selecting this topic is the 

presentation of information, which, in the case of 

innovation, has been stated to be imprecise and un-

certain [41,42]. Therefore, there is the motivation to 

use the opinion of different decision makers or ex-

perts to find a suitable solution.  

Strategic decision making in innovation manage-

ment addresses diverse aspects that include not only 

imprecise information [43] but also a certain level of 

attitudinal character on the part of the decision mak-

ers, e.g., the possibility of different strategic out-

comes [44], complexity and unfamiliar interactions 

[45], the lack of information [46], time, flexibility 

and control. In this sense, the use of inducing varia-

bles should aid in the complex decision-making pro-

cedure.  

Innovation management considers a wide range of 

problems to be assessed, one of them is the correct 

selection new products to be developed, this from a 

portfolio of possible prototypes. The effectiveness 

with which an organization manages its new products 

portfolio is often a key determinant of competitive 

advantage [47]. Here, portfolio management deals 

with the allocation of the scarce resources of the 

business, namely: money, time, people, machinery, 

etc. to potential developments under uncertain condi-

tions. The key concepts to analyze are quantity, qual-

ity, and organizational capability for new product 

development. The selected new products to be devel-

oped must correctly align with business objectives 

and balance several elements such as timespan and 

risk.  

The process to follow in the selection of strategies 

in innovation management with the IGOWLA opera-

tor and the application when introducing a multi-

person analysis can be summarized as follows: 

Step 1. Assuming that  1 2,  , ,  mA A A A=   is a set 

of options, including  1 2,  , ,  mS S S S=   as a set of 

characteristics to be evaluated, both elements consti-

tute the payoff matrix, ( )hi m n
a


. Introducing the set 

 1 2,  , ,  qE e e e=   as a finite group of decision mak-

ers. In this case each decision-maker has a different 

level of relevance such that ( )1 2,  , ,  pX x x x=   rep-

resents the weighting vector such that 

1

1

p

k

k

x

=

=  and 

 0,1kx  . Each decision-maker is asked to provide a 

personal pay-off matrix ( )
k

hi m n
a


 based on its pref-

erences. 

Step 2. Based on the highly complex attitudinal 

character of the case, introduce a set of order-

inducing variables ( )hi m n
u


 corresponding to each 

alternative h  and characteristic i . Include a 

( )1 2  , , ,   nW w w w=   weighting vector, make sure 

that this verctor satisfies the IGOWLA operator for-

mulation, next, define a   value to be applied in the 

aggregation operation.  

Step 3. In this case we propose the weighted aver-

age to aggregate the information provided by the 

decision-makers E  and the vector X . The aggregat-

ed information results in the collective payoff matrix 

( )
k

hi m n
a


; therefore, ( )

1

p
k

hi hi

k

a x a

=

= . 

Step 4. Solve for the IGOWLA operator as de-

scribed in Eq. 6. Please note that   value is typically 

set as 1; however, any of the families described in 

section 3.2 can be used, depending on the problem 

analyzed. 

Step 5. After solving for the IGOWLA operator, 

set a ranking of the alternatives; compare the results 

of the specific problem and propose a decision-

making approach.  

5.2. Illustrative Example 

This paper proposes an illustrative example of the 

IGOWLA operator in a strategic decision-making 

process of portfolio management with multi-person 

inputs. Other business decision-making applications 

in the field of innovation  management can be as-

sessed e.g. knowledge management, project man-

agement, organization and structure, among others, 

please see [48]. 

Step 1. Let’s assume that company Y is involved in 

the design of fast-moving consumer goods in the 

alimentary sector. The company must decide from its 



portfolio of new products and select one of five po-

tential enhanced beverage concepts. Thus, we have: 

• A1  Super Sport: vitamin C with electrolytes  

• A2  High Energy: vitamin C with caffeine 

• A3  Fast Recover: vitamins B5, B6 and B12 

• A4  0 Sugar Sport: vitamin C with electro-

lytes and no sugar 

• A5  AntiOx: manganese plus vitamin B3 

This problem requires the inputs of several experts 

of the company to assure the relevance, appropriate-

ness and a strategic alignment to the requirements of 

the business. The company sets 6 key factors to be 

analyzed in the selection process: 

• S1  Expected benefits 

• S2  Alignment to business 

• S3  Development costs 

• S4  Technical viability 

• S5  Risk 

• S6  Time to market 

The experts are divided in groups of 3 (Tables 4 – 

9). The first group (Table 4 and 5) has two engineer-

ing experts, the second includes two experts from 

marketing and sales (Table 6 and 7), and in the third 

group two financial experts (Table 8 and 9). The ex-

perts are asked to provide their opinion in a scale of 1 

to 100, their opinions are bounded to the expected 

performance of each product based on the key factors 

selected by management. This case requires, firstly to 

generate a multi-aggregation process so the opinions 

of the groups can be aggregated. Secondly, we need 

to aggregate all the information into a sole collective 

payoff matrix. Once we obtain the matrix, we use the 

IGOWLA operator to generate the final results and 

aid the board of directors in the selection of the most 

suitable alternative for the elements that constitute 

the problem.  

Step 2. Due to the complex attitudinal character of 

the administration, the next set of order-inducing 

variables are included in the problem: 

( )7, 5, 4, 2,1  0, 9U = . Also, the experts have consid-

ered a weighting vector ( )0.1, 0.1, 0.1, 0.2, 0.1, 0.4W = . 

Step 3. For this case, we will consider the 

weighting vectors X , representing the different im-

portance of each expert in the analysis. For the first 

group of experts we have ( )1 0.4, 0.6X = , the second 

group of experts ( )2 0.7, 0.3X = , and the third group 

of experts ( )3 0.5, 0.5X = . Please note that the col-

lective payoff matrix has ( )4 0.3, 0.4, 0.3X = . All the 

elements have been correctly defined, therefore we 

can obtain results by first aggregating the opinions of 

the three groups of experts using the weighted aver-

age; the results are shown in Tables 10, 11 and 12. 

Using this information, we now aggregate the three 

subgroups into a collective payoff matrix. The results 

are shown in Table 13. 

Step 4. Solving for the IGOWLA operator families, 

we aggregate the collective information and obtain 

results. Table 14 show the final aggregations. 

Step 5. The problem requires a visualization of the 

diverse decisions that can be generated. Therefore, 

we establish a ranking of the performance of each 

product. The preferred ordering of the alternatives is 

presented in Table 15. The ≻ symbol represents pre-

ferred to.  
 

Table 4. Payoff Matrix – Expert 1. 

 S1 S2 S3 S4 S5 S6 

A1 81 99 98 100 86 89 

A2 27 42 29 48 34 37 

A3 65 82 87 88 98 98 

A4 97 100 88 82 88 100 

A5 50 49 53 48 46 50 

 
Table 5. Payoff Matrix – Expert 2. 

 S1 S2 S3 S4 S5 S6 

A1 92 94 98 88 86 100 

A2 56 26 36 27 28 32 

A3 42 48 43 100 86 79 

A4 81 80 94 95 92 81 

A5 59 60 43 55 46 44 

 
Table 6. Payoff Matrix – Expert 3. 

 S1 S2 S3 S4 S5 S6 

A1 94 82 88 94 85 100 

A2 57 53 58 36 20 25 

A3 93 50 100 48 100 77 

A4 93 91 89 90 93 98 

A5 42 57 46 44 44 51 

 
Table 7. Payoff Matrix – Expert 4. 

 S1 S2 S3 S4 S5 S6 

A1 97 87 85 89 82 97 

A2 25 48 38 52 47 27 

A3 93 79 61 57 98 73 

A4 92 83 92 84 94 100 

A5 51 51 40 57 44 40 

 
Table 8. Payoff Matrix – Expert 5. 

 S1 S2 S3 S4 S5 S6 

A1 96 100 100 99 80 85 

A2 52 47 45 60 38 34 

A3 51 50 66 40 50 47 

A4 100 86 97 99 95 86 

A5 48 54 57 44 43 50 



 
Table 9. Payoff Matrix – Expert 6. 

 S1 S2 S3 S4 S5 S6 

A1 93 86 89 98 81 94 

A2 59 23 57 57 20 57 

A3 90 64 59 98 99 52 

A4 88 84 96 98 94 81 

A5 50 54 54 53 46 52 

 
Table 10. Payoff Matrix – Group 1 (Experts 1 and 2). 

 S1 S2 S3 S4 S5 S6 

A1 87.60 96.00 98.00 92.80 86.00 95.60 

A2 44.40 32.40 33.20 35.40 30.40 34.00 

A3 51.20 61.60 60.60 95.20 90.80 86.60 

A4 87.40 88.00 91.60 89.80 90.40 88.60 

A5 55.40 55.60 47.00 52.20 46.00 46.40 

 
Table 11. Payoff Matrix – Group 2 (Experts 3 and 4). 

 S1 S2 S3 S4 S5 S6 

A1 94.90 83.50 87.10 92.50 84.10 99.10 

A2 47.40 51.50 52.00 40.80 28.10 25.60 

A3 93.00 58.70 88.30 50.70 99.40 75.80 

A4 92.70 88.60 89.90 88.20 93.30 98.60 

A5 44.70 55.20 44.20 47.90 44.00 47.70 

 
Table 12. Payoff Matrix – Group 3 (Experts 5 and 6). 

 S1 S2 S3 S4 S5 S6 

A1 94.50 93.00 94.50 98.50 80.50 89.50 

A2 55.50 35.00 51.00 58.50 29.00 45.50 

A3 70.50 57.00 62.50 69.00 74.50 49.50 

A4 94.00 85.00 96.50 98.50 94.50 83.50 

A5 49.00 54.00 55.50 48.50 44.50 51.00 

 
Table 13. Collective payoff matrix. 

 S1 S2 S3 S4 S5 S6 

A1 92.59 90.10 92.59 94.39 83.59 95.17 

A2 48.93 40.82 46.06 44.49 29.06 34.09 

A3 73.71 59.06 72.25 69.54 89.35 71.15 

A4 91.50 87.34 92.39 91.77 92.79 91.07 

A5 49.20 54.96 48.43 49.37 44.75 48.30 

 
Table 14. Aggregated Results 

  MIN MAX 
IGOWLA 
λ = -1 

IGOWLA 
λ = 1  

IGOWLA 
λ = 2  

IGOWLA 
λ = 3  

A1 83.59 95.17 92.08 92.11 92.12 92.14 

A2 29.06 48.93 41.08 41.34 41.46 41.58 

A3 59.06 89.35 69.64 69.84 69.94 70.04 

A4 87.34 92.79 90.92 90.93 90.94 90.95 

A5 44.75 54.96 49.68 49.73 49.75 49.77 

  OWA IOWA 
GOWLA 

λ = -1  

GOWLA 

λ = 1  

GOWLA 

λ = 2 

GOWLA 

 λ = 3 

A1 89.18 92.17 89 89.05 89.08 89.11 

A2 37.15 41.77 35.96 36.38 36.59 36.8 

A3 68.34 70.27 67.49 67.75 67.89 68.02 

A4 90.04 90.95 90 90.01 90.02 90.02 

A5 47.77 49.81 47.63 47.67 47.7 47.72 

 
Table 15. Ranking of the options 

Ranking Ranking 

MIN 1 3 5 24A A A A A  OWA 4 1 3 5 2A A A A A  

MAX 4 3 5 21A A A A A  IOWA 1 4 3 5 2A A A A A  

IGOWLA  

( )λ=-1  1 4 3 5 2A A A A A  
GOWLA 

( )λ=-1  1 3 5 24A A A A A  

IGOWLA  

( )λ=1  1 4 3 5 2A A A A A  
GOWLA 

( )λ=1  1 3 5 24A A A A A  

IGOWLA 

( )λ=2  1 4 3 5 2A A A A A  
GOWLA 

( )λ=2  1 3 5 24A A A A A  

IGOWLA 

( )λ=3  1 4 3 5 2A A A A A  
GOWLA 

( )λ=3  1 3 5 24A A A A A  

 

Results show that the elements have been ordered 

in different ways, depending directly on the operator 

utilized in the aggregation of the arguments. In this 

hypothetical case, which includes the diverse expert 

opinion of six persons and the highly complex attitu-

dinal characteristics of the direction board, the exer-

cise concludes that the concepts that should be firstly 

developed are products: 1A  (Super Sport) and 4A  

(No Sugar Sport). Please note that the induced opera-

tors show a different ranking from the traditional 

ones, this indicates a clear difference when introduc-

ing order-induced mechanism to the reordering pro-

cess. The aggregated results show no specific ties; 

therefore, the use of the proposed quasi-arithmetic 

means is not required in this case. Please also note 

that the multi-person process can be aggregated and 

presented in many other approaches; in this example 

it is assumed that the management board needed the 

information presented as represented in the example.  

6. Conclusions 

This paper presents the IGOWLA operator, it is a 

generalization of the GOWLA operator, therefore the 

introduced operator shares its main characteristics. 

The order-induced variables included in the formula-

tion of the IGOWLA operators, allows an even wider 

representation of the possible highly complex attitude 

of decision makers in certain problems.  

Diverse measures for characterizing the weighting 

vector have been analyzed; specifically, we have 



studied the degree of orness measure, the dispersion 

measure, the balance measure and the divergence 

measure. Note that some of these measures can be 

calculated from two different perspectives, depend-

ing on the attitudinal character or the numerical value 

of the weighting vector. Furthermore, we describe 

several families of the IGOWLA operator based on 

the  parameter, including the IOWLGA operator, 

the IOWLHA operator, the IOWGA operator, the 

IOWLA operator, the IOWLQA operator, the 

IOWLC operator, and the maximum and minimum 

IGOWLA operators. 

We introduce diverse generalizations of the 

IGOWLA operator. First, using the notion of quasi-

arithmetic means, we introduce the QWLA operator, 

the QOWLA operator, and the QIOWLA operator, 

therefore adding the option of considering geometric 

aggregations, quadratic aggregations and harmonic 

aggregations into the process.  

The IGOWLA operator has been designed to aid 

group decision making, and could be used in several 

areas, such as economics, statistics and engineering 

problems. This paper proposes an illustrative exam-

ple of a possible utilization of the IGOWLA operator. 

Here, a multi-expert for strategic decision-making 

process in the area of innovation management is ex-

emplified. The case deals with the assessment of a 

decision in portfolio management of a company. The 

objective is the selection of new products to be de-

veloped based on diverse characteristics of the prod-

ucts and the alignment to the objectives and prefer-

ences of the studied case. This example seeks to 

show the components of the IGOWLA operator, i.e. 

the order-induced variables, the construction of sce-

narios including the generalized lambda vector, and 

the option of dealing with diverse expert opinions 

and the highly complex attitudinal characteristics of 

the aggregation elements. 

Further developments and research need to be as-

sessed. Firstly, deepen the mathematical characteris-

tics of the logarithmic properties that build the 

IGOWLA operator. Secondly, new extensions should 

be developed e.g. to assess uncertain information, i.e., 

fuzzy numbers, linguistic variables and interval num-

bers, the inclusion of distance measures and the pos-

sibility of working with heavy aggregations, the new 

extensions allow the construction of complex formu-

lations that could aid decision making problems in 

wider scenarios. Finally, new decision-making prob-

lems in diverse fields of knowledge should be con-

sidered for the application of the newly introduced 

tools. 
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