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Abstract The rare earth elements (REEs) are widely used as geochemical tracers in the earth, planetary,
and ocean sciences. Inductively coupled plasma‐mass spectrometry (ICP‐MS) has become the method of
choice to analyze REE concentrations because it can rapidly measure the entire REE spectrum at the
same time. This Technical Report presents a user‐friendly “REE Calculation Workbook” in Microsoft Excel
to be used for calculating REE abundances in samples equilibrated with a multielement REE spike. This
Workbook can be conveniently used to calculate REE concentrations in natural samples for spiked and
unspiked elements measured by ICP‐MS. For the spiked elements, their concentrations are calculated using
isotope dilution equations. Using these spiked elements as references, concentrations of the four
mono‐isotopic REE elements, and other REE elements that are treated as mono‐isotopic elements (in our
case, La and Lu), can be calculated. The REE Workbook can be easily set up for use with different
REE spikes. Evaluation of our analytical quality using a quadrupole ICP‐MS on 10‐ml‐sized seawater
samples shows that our analyses are comparable to high‐precision thermal ionization mass spectrometry
(TIMS) studies, with much less time spent processing and analyzing, and with the added advantages of
determining mono‐isotopic elements. An important result is the clear demonstration of enrichments in Gd
and Er compared to neighboring elements in seawater samples. In addition, we compare and evaluate
commonly used reference standards BCR‐1, Post‐Archean Australian Shale (PAAS), and North American
Shale Composite (NASC).

1. Introduction

The lanthanide series, also called the rare earth elements (REEs), are a group of 15 elements from lantha-
num (La, atomic number 57) to lutetium (Lu, atomic number 71), in which the electrons are progressively
filled in the 4f orbitals with increasing atomic number. As a result, the REEs have similar outer electronic
configurations and thus show similar chemical characteristics. The decrease of ionic radius with increasing
atomic number results in small but important differences in their behavior under different geological and
cosmological conditions and leads to a wide variety of applications in natural samples as geochemical tra-
cers. For example, the “REE pattern,” reflecting the degree of enrichment or depletion of light versus middle
versus heavy REEs in rocks, can be used to constrain provenance or be applied to study partial melting, frac-
tional crystallization, and magma mixing processes (e.g., Henderson, 1984). In seawater, REEs are useful
tools to trace water mass mixing, redox processes, and lithogenic sources (e.g., Bertram & Elderfield, 1993;
de Baar, Bacon, et al., 1985; de Baar et al., 1983; Elderfield & Greaves, 1982; German et al., 1995;
Goldberg et al., 1963; Haley et al., 2014; Høgdahl et al., 1968; Lacan & Jeandel, 2001, 2004; Piper, 1974;
Sholkovitz & Schneider, 1991; Zheng et al., 2016). While all the REEs are trivalent, europium (Eu) also
has +2 and cerium (Ce) also has +4 charge under some natural conditions, which makes them additionally
useful for evaluating redox. For example, Eu2+ preferentially enters plagioclase feldspar compared to neigh-
boring REE samarium (Sm) and gadolinium (Gd), and its enrichment or depletion relative to other REEs is
used to trace processes associated with plagioclase fractionation (e.g., Drake &Weill, 1975; Henderson, 1984)
and even crust‐mantle recycling (e.g., Sobolev et al., 2000). The enrichment or depletion of Ce compared to
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La and praseodymium (Pr) or neodymium (Nd) is used to trace surface
redox processes (e.g., Henderson, 1984; Piper, 1974). For example, Ce is
highly depleted in the oxic seawater due to being scavenged in Mn oxides,
which is shown as a negative Ce anomaly (e.g., German et al., 1995;
Høgdahl et al., 1968; Sholkovitz & Schneider, 1991).

Total REE concentrations in natural samples range from tens of ppt
(10−12 g/g) in seawater (global data are available in the GEOTRACES
Intermediate Data Product 2017; Schlitzer et al., 2018) to hundreds of
ppm (10−6 g/g) in samples of the Earth's crust (e.g., Taylor &
McLennan, 1981; Wedepohl, 1995). The first measurements of REEs used
X‐ray spectrographic techniques to study REEs in meteorites
(Noddack, 1935) and shales (Minami, 1935). Since the early 1960s, neutron
activation analysis of REEs has been widely used for natural samples (e.g.,
Goldberg et al., 1963; Haskin & Haskin, 1966; Schmitt et al., 1960). Since
the late 1960s, mass spectrometry has emerged as the method of choice
to analyze REEs in natural samples, including thermal ionization mass
spectrometry (TIMS, first reported by Schnetzler et al., 1967), secondary

ion mass spectrometry (SIMS, first reported by Crozaz & Zinner, 1985), and inductively coupled
plasma‐mass spectrometry (ICP‐MS, first reported by Jenner et al., 1990; Shabani et al., 1990). All of the
mass spectrometric approaches require deconvolution of the raw data (e.g., Barbey et al., 1995, for SIMS),
which go back to the beginning of using mass spectrometers (e.g., Monteiro & Reed, 1969; Washburn
et al., 1943).

A common approach for calculating the concentration of an element in a sample is to add a spike (enriched
in an isotope of that element) to the sample and use isotope dilution (ID) analysis (e.g., Albarède, 1996;
Dickin, 1995; Heumann, 1992; Webster, 1960) to calculate the sample concentration, which is based on
knowing the precise weights of the sample and spike, the isotope ratios of the natural sample and the spike,
and the isotope ratio of the spike‐sample mixture. The first mass spectrometric analyses of REEs in the geos-
ciences using multi‐REE spike ID date back to the late 1960s (e.g., Arth & Hanson, 1975; Gast, 1968;
Schnetzler & Philpotts, 1970; Schnetzler et al., 1967). Since then the approach has been used in studies to
determine REE concentrations in all kinds of natural samples (Stracke et al., 2014) including rocks (e.g.,
Hanson, 1980; Hooker et al., 1975; Schnetzler et al., 1967), meteorites (e.g., Evensen et al., 1978; Masuda
et al., 1973; Nakamura, 1974), ferromanganese sediments (e.g., Elderfield & Greaves, 1981; Elderfield
et al., 1981), seawater (e.g., Behrens et al., 2016; Bertram & Elderfield, 1993; Elderfield & Greaves, 1982;
Klinkhammer et al., 1983; Pahnke et al., 2012; Piepgras & Jacobsen, 1992; Rousseau et al., 2013;
Sholkovitz & Schneider, 1991; van de Flierdt et al., 2012; Zheng et al., 2015), hydrothermal fluids (e.g.,
Michard & Albarède, 1986; Michard et al., 1983), river water (e.g., Goldstein & Jacobsen, 1988;
Sholkovitz, 1995; Sholkovitz et al., 1999), marine particles (e.g., Cullen et al., 2001; Field & Sherrell, 1998;
Sholkovitz et al., 1994), and geological reference materials (e.g., Baker et al., 2002; Kent et al., 2004; Krogh
Jensen et al., 2003; Raczek et al., 2001; Willbold & Jochum, 2005), among others. Using the standard ID
equation (Dodson, 1963, 1969) for two isotopes, given an element x, its concentration (grams of x/grams
of sample) can be calculated as

x½ � ¼
ix
jx

� �
spk

−
ix
jx

� �
meas

ix
jx

� �
meas

−
ix
jx

� �
nat

×
jx
� �

spk
jAbnat

×
mspk

msmpl

� �
×Mx ;

where i is a non‐enriched isotope in the spike, j is the enriched isotope in the spike, ixjx
� 	

spk is the isotope

ratio in the spike, ixjx
� 	

meas is the isotope ratio in the measured sample‐spike mixture, ixjx
� 	

nat is the nat-

ural isotope ratio, [jx]spk is the molar concentration of jx in the spike (mol jx/g solution), jAbnat is the nat-
ural fractional abundance of jx (i.e., the mole fraction of jx atoms in a natural sample), mspk and msmpl are
spike and sample weights (g), and Mx is the atomic mass of element x (g/mol). Abbreviations used in this
paper are shown in Table 1.

Table 1
Abbreviations Used in This Paper

spk Spike
nat Natural
meas Measured
abc Acid blank correction
acid_blk Acid blank
smpl Sample
procedural_blk Procedural blank
cal Calibration
intf Interference
oxd_cor Oxide correction
mb Mass bias
spkfree Spike free
sens Sensitivity
std Standard
smpl_spkfree Sample‐spike free
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Since ICP‐MS was developed in the early 1980s (Gray & Date, 1983), it has
been increasingly used for rapid multielement analysis and has become
the preferred method for REE analyses. For example, REE measurements
using ID‐TIMS are precise but time consuming: Fractions of the REEs need
to be collected, loaded onto different filaments, and analyzed separately; a
sample requires ~1–3 days; and only the spiked multi‐isotopic elements
are measured. With ID ICP‐MS analysis, many studies analyze REEs in
two fractions (light and heavy REEs). In this study, by ICP‐MS the entire
REE spectrum of 14 elements can be analyzed in a single fraction in
~10 min. Combining the use of multielement REE spikes and ICP‐MS offers
a convenient means to obtain high‐precision REE analyses, and because the
results are based on measurement of isotope ratios, their use avoids some of
the pitfalls associated with reliance on signal intensities alone.

With the increasing number of labs performing REE analyses, in order to
encourage the use of multielement REE spikes, help to ensure the accuracy
of the results, and promote cross laboratory consistency, this Technical
Report presents an REE Calculation Workbook (Data Set S1 in the support-
ing information) for convenient use by the community to calculate REE
concentrations of samples equilibrated with a multielement spike and mea-

sured by ICP‐MS. The Workbook is set up for the procedure used at the Lamont‐Doherty Earth Observatory
(LDEO) of Columbia University, in which concentrations of eight spiked elements are determined using ID,
and the concentrations of the spiked elements are used as references to calculate concentrations of the
mono‐isotopic REE elements, and La and Lu. The Workbook can be easily modified for other combinations
of spiked and nonspiked elements.

2. Explanation of the REE Calculation Workbook

The LDEO lab uses amultielement REE spikemixed by Robert D. Vocke and calibrated by Vocke and Steven
B. Shirey in Professor Gilbert Hanson's lab at Stony Brook University. The spike is enriched in 138La, 142Ce,
145Nd, 149Sm, 153Eu, 155Gd, 161Dy, 167Er, 171Yb, and 176Lu (Table S1). An aliquot of the stock solution was
later diluted by Diane K. McDaniel (the “DKM aliquot”), who remeasured the isotope ratios and calibrated
the concentrations using gravimetric REE solutions made from metal ingots. At LDEO we use a further
diluted split of the Stony Brook‐DKM aliquot and its calibration for the isotope ratios and the relative con-
centrations. We recalibrated the absolute concentrations against a Nd standard from High‐Purity™
Standards Inc., with a certified ±0.3% error on the Nd concentration, using “reverse ID,” where the spike
is treated as the “sample” and the natural Nd standard is treated as the “spike.”

This contribution uses seawater REE analyses as our example, although the Workbook can be used for any
type of sample. We use seawater because it illustrates the possibility of obtaining high‐quality analyses on
very small samples, as discussed in section 5. LDEO methods for seawater REE analyses are described in
Behrens et al. (2016). Each sample is spiked to aim for an ideal 145Nd/143Nd ratio for the sample‐spike mix-
ture (~9.0, Table S1) that allows for analyses of all the multi‐isotope REE elements except La and Lu. After
the spike is added to the acidified seawater sample, it is allowed to equilibrate for at least 24 hr. The
sample‐spike mixture is then purified using a commercially available preconcentration unit that separates
the REEs, the seaFast Automated Preconcentration System for Undiluted Seawater (Elemental Scientific
Inc. or ESI, Omaha, Nebraska, USA). The seaFast processing time to obtain the REE fraction is ~15 min.
We analyze the samples using a VG PlasmaQuad ExCell® quadrupole ICP‐MS. The instrument is coupled
to a desolvating introduction system (a CETAC Aridus™) that minimizes molecular oxide ion formation
with a self‐aspirated Apex ST PFA micro flow nebulizer (ESI). The mass spectrometer is optimized for sen-
sitivity and operated in pulse counting mode with 10 ms of dwell time for all isotopes. The analyzing time for
a sample is ~10 min for the entire REE spectrum. The isotopes analyzed for each element are listed in
Table 2.

We perform blank corrections (section 2.1), oxide corrections (section 2.2), and mass bias corrections (sec-
tion 2.3) for all REEs. Then we divide the REEs into three groups and calculate their concentrations for

Table 2
Analyzed Isotopes of Each Element for Samples, Procedural Blank, Pure
Pr Solution, and Mass Bias Solution

Element Analyzed isotopes

Ba 135 137
La 138 139
Ce 140 142
Pr 141
Nd 143 144 145 146
Sm 147 148 149
Eu 151 153
Gd 155 157 160
Tb 159
Dy 161 163
Ho 165
Er 166 167
Tm 169
Yb 171 172 174
Lu 175 176
Hf 177
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ID elements (section 2.4), mono‐isotopic REE elements (section 2.5), and elements treated like the
mono‐isotopic REE elements (section 2.6). A flow chart for the REE data reduction is summarized in
Figure 1.

2.1. Blank Correction

Background intensities of REEs are measured on the mass spectrometer using a 3% nitric acid solution. All
intensities for the procedural blank (this section), a pure praseodymium (Pr) solution (section 2.2), a mass
bias solution (section 2.3), and samples are corrected by subtracting the counts of the 3% nitric acid blank
using Iabc ¼ Iraw − Iacid ¯ blk, where Iraw is the raw intensity, Iacid ¯ blk is the intensity of the acid blank,
and Iabc is the intensity after acid blank correction.

In our study, every batch of samples is accompanied by a procedural blank that is processed using the same
method as samples. These procedural blanks provide information of howmuch signal comes from the whole
sample processing procedure, an important step to ensure high‐quality data. Sample intensities are corrected
by subtracting the procedural blank using Ismpl ¼ Iabc − Iprocedural ¯ blk, where Iabc is the intensity after acid
blank correction, Iprocedural ¯ blk is the intensity of the procedural blank after acid blank correction, and Ismpl

is the intensity of sample after procedural blank correction. In our study, procedural blanks (n ¼ 5) of 1%
HNO3 typically represent ≤0.9% of the sample intensities except for Ce (≤1.7%).

2.2. Oxide Correction

To correct for molecular oxide formation and interference at REE isotope masses, we perform an oxide cali-
bration analysis by measuring masses of M and MO in pure, single element solutions of barium (Ba) and
REEs. We analyze Ba and all the REEs once to construct a calibration matrix and use them, along with a
measurement of Pr and PrO during each measurement session to scale up or down the oxide corrections
for the individual measurement session. The isotopes analyzed for each single element solution are listed

in Table 3. The oxide calibration value is expressed as the ratio of
MOIcal
MIcal

, where MIcal is the intensity of mass

M and MOIcal is the intensity of mass MO measured during the calibration. For an unknown sample, the

oxide interference for any mass M is calculated as MOIintf ¼
MOIcal
MIcal

× MIsmpl, where
MIsmpl is the measured

intensity for any mass and MOIintf is the intensity of its oxide interference.

The oxide calibration values are not constant and can vary between different analytical sessions. Thus, oxide
formation rates must be assessed and adjusted at every analytical session in which REEs are measured.
However, we can assume that all the REEs show the same fractional change in oxide formation (e.g.,

Figure 1. Flow chart summarizing the steps of REE data reduction in the REE Calculation Workbook.
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Zhao et al., 2019; http://minerva.union.edu/hollochk/icp-ms/ree_correc-

tions.html). Therefore, we analyze the
157PrO
141Pr

ratio of a 100 ng/L Pr solu-

tion during each measurement session to determine the oxide correction

factorC ¼
157PrO
141Pr

� �
today

157PrO
141Pr

� �
cal

, where
157PrO
141Pr

� �
cal

is measured during the oxide cali-

bration analysis and
157PrO
141Pr

� �
today

is measured each time we analyzed REEs.

Then the oxide interference is expressed as MOIintf ¼ C ×
MOIcal
MIcal

× MIsmpl .

The final true intensity without oxide interference is calculated asMOIoxd¯cor

¼ MOIsmpl − C ×
MOIcal
MIcal

× MIsmpl.

The above calculation is based on the assumption that the ratio of
MOIcal
MIcal

is

identical in a pure, single element solution and in a sample solution.
However, there is a possibility of a temperature‐dependent reaction such
as LaO + Ce ⇔ La + CeO in the plasma, which can add additional oxide
variables in the calculating equations and result in additional uncertainties
to calculate elements (e.g., Yb) with oxide interference (e.g., GdO) from an
element with similar isotopic abundance (e.g., Gd) (e.g., Albalat

et al., 2012). Therefore, it is very important to minimize this effect by minimizing the oxide formation in
our analysis. In each REE measurement session, we adjust the gas flows to an optimal state to obtain the
minimum oxide formation (0.0066 ± 0.0017, 1σ, for the Pr monitor solution) so that the oxide correction
is extremely small. Our high‐quality data for natural samples used for international calibration (Behrens
et al., 2016; Pahnke et al., 2012; van de Flierdt et al., 2012) agree very well with results from different research
groups in the world (section 5). In addition, the repeated analysis of samples yields very good long‐term
external reproducibility (section 5).

2.3. Mass Fractionation Correction

We use the exponential mass fractionation law Rc ¼ Rm × mi
mj

� �β
(e.g., Maréchal et al., 1999; Russell

et al., 1978; Wasserburg et al., 1981) to correct for mass fractionation, where Rc is the mass fractionation
corrected isotope ratio in the sample, Rm is the measured isotope ratio in the sample,mi is the atomic mass
of the spike isotope, usually the one enriched in the spike, and mj is the atomic mass of the reference iso-
tope. To calculate β, the exponential law mass fractionation factor, we use a mass bias solution in which
each REE has concentration of 100 ng/L, and we measure it during each REE measurement session. β is

expressed as β ¼
Ln

Rn

Rmb

� �

Ln
mi

mj

� � , where Rn is the ratio in natural samples and Rmb is the measured ratio in the

mass bias solution.

The correction for instrumental mass fractionation has very little impact on the final results of REE con-
centrations. The differences between mass bias corrected values and nonmass bias corrected values are
within 0.1% for La, Ce, Pr, and Nd, within 1% for Tb, Ho, Er, Tm, Yb, and Lu, and within 1–2% for Sm,
Gd, and Dy, and 3–4% for Eu. We use the same β values for each analytical session. Based on 59 analytical
sessions, β values (1σ) are as follows: Nd, −0.9723 (±0.9942); Sm, −1.0309 (±0.7166); Eu, −1.5044
(±0.8249); Gd, 3.2681 (±5.8387); Dy, −0.8947 (±0.6918); Er, −0.1470 (±1.6342); and Yb, −0.9719
(±0.7546).

Table 3
Analyzed Isotopes for Each Pure and Single Element Solutions of Ba and
REE for Oxide Calibration Analysis

Analyzed elements and their oxides Analyzed isotopes

Ba 135 137
BaO 151 153
La 139
LaO 155
Ce 140 142
CeO 156 158
Pr 141
PrO 157
Nd 143 144 145 150
NdO 159 160 161 166
Sm 147 149 150
SmO 163 165 166
Eu 151 153
EuO 167 169
Gd 155 156 158 160
GdO 171 172 174 176
Tb 159
TbO 175
Dy 161
DyO 177
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2.4. Concentrations of ID Elements

The concentrations of spiked elements are calculated using ID equations (section 1). Taking Nd as an exam-
ple, we use a 145Nd spike, and the Nd concentration (g Nd/g sample) is calculated as

Nd½ � ¼
143Nd
145Nd

� �
spk

−
143Nd
145Nd

� �
meas

143Nd
145Nd

� �
meas

−
143Nd
145Nd

� �
nat

×
145Nd
� �

spk
145NdAbnat

×
mspk

msmpl
×MNd; (1)

where
143Nd
145Nd

� �
spk

is the isotope ratio in the spike after mass bias correction,
143Nd
145Nd

� �
meas

is the isotope ratio in

the measured sample‐spike mixture after mass bias correction,
143Nd
145Nd

� �
nat

is the natural isotope ratio

(¼ 1.468), [145Nd]spk is the molar concentration of 145Nd in the spike (mol 145Nd/g solution), 145NdAbnat
is the natural abundance of 145Nd (i.e., the mole fraction of 145Nd atoms in a natural sample ¼ 0.0829),
mspk and msmpl are spike and sample weights (g), and MNd is the atomic mass of Nd (144.24 g/mol).
Other elements calculated using the ID equation are Sm, Eu, Gd, Dy, Er, and Yb and henceforth will
be called “ID elements.”

Since 142Ce has an isobaric interference from Nd, 142Ce in the sample is calculated by subtracting interfer-
ence of 142Nd from the sample and the spike (Jones, 2010) using

142CeIsmpl ¼ 142TotalIsmpl −
143NdIsmpl ×

142Nd
143Nd

� �
nat

− 143NdIspk ×
142Nd
143Nd

� �
spk

;

where 142TotalIsmpl is the intensity of mass 142 in the sample, 143NdIsmpl is the intensity of 143Nd in the

sample,
142Nd
143Nd

� �
nat

is the natural isotope ratio (¼ 2.230), 143NdIspk is the intensity of 143Nd in the spike (cal-

culating equation given in Equation 2 in section 2.5), and 142 Nd
143Nd

� �
spk

is the isotope ratio in the spike.

Then the Ce concentration is calculated using the ID Equation 1.

2.5. Concentrations of Mono‐Isotopic Elements

For the mono‐isotopic elements Pr, Tb, Ho, and Tm, their concentrations are calculated by comparing their
intensities to intensities of nonspike isotopes of ID elements. To calculate intensities of nonspike isotopes of
ID elements, contributions from the spike need to be subtracted (Jones, 2010). Taking Nd as an example, the
spike‐free intensity for 143Nd is calculated as

143NdIspkfree ¼ 143NdItotal −
143NdIspk ¼ 143NdItotal −

143 Nd
145Nd

� �
nat

× 145NdItotal − 143NdItotal

143 Nd
145Nd

� �
nat

143 Nd
145Nd

� �
spk

− 1

; (2)

where 143NdItotal is the intensity of 143Nd in total, 143NdIspk is the intensity of 143Nd in the spike, 145NdItotal

is the intensity of 145Nd in total, 143 Nd
145Nd

� �
nat

is the natural isotope ratio, and 143 Nd
145Nd

� �
spk

is the isotope

ratio in the spike. Then the relationship between the intensities of the ID element and mono‐isotopic ele-
ment is established by comparing their sensitivities in the mass bias standard solution. Here sensitivity is
defined as the ratio of the intensity of an isotope versus its concentration in a standard solution (e.g., Field
& Sherrell, 1998; Kent et al., 2004; Willbold & Jochum, 2005; Willbold et al., 2003). As an example, for Nd,

the sensitivity of 143Nd is calculated as 143Ndsens ¼
143NdIstd

Nd½ �std × 143NdAbnat
, where 143NdIstd is the intensity of

143Nd in the standard solution, [Nd]std is the Nd concentration in the standard solution (g Nd/g solution),
and 143NdAbnat is the fractional molar abundance of 143Nd in a natural sample (¼ 0.1217). For Pr, the sen-

sitivity of 141Pr is calculated as 141Prsens ¼
141PrIstd

Pr½ �std × 141PrAbnat
, where 141PrIstd is the intensity of 141Pr in the
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standard solution, [Pr]std is the Pr concentration in the standard solution (g Pr/g solution), and 141PrAbnat

is the fractional molar abundance of 141Pr in a natural sample (¼ 1). Then the sensitivity ratio
143Ndsens
141Prsens

in

the standard solution is used to calculate the Pr concentration in the sample (g Pr/g sample) using

Pr½ �smpl ¼
143Ndsens
141Prsens

*
141PrIsmpl

143NdIsmpl¯spkfree
×

Nd½ �smpl ×
143NdAbnat

141PrAbnat
; (3)

where 141PrIsmpl is the intensity of 141Pr in the sample, 143NdIsmpl ¯ spkfree is the spike‐free intensity for
143Nd in the sample, [Nd]smpl is the Nd concentration in the sample (g Nd/g sample), 143NdAbnat is the
fractional abundance of 143Nd in a natural sample (¼ 0.1217), and 141PrAbnat is the fractional abundance
of 141Pr in a natural sample (¼ 1).

2.6. Concentrations of Multi‐Isotope Elements Treated as Mono‐Isotopic Elements

For La and Lu, 138La has isobaric interferences with 138Ba and 138Ce and 176Lu has isobaric interferences
with 176Yb and 176Hf. In addition, 138La and 176Lu both have very low abundances (0.1% and 2.6%, respec-
tively) in natural samples. Using the Stony Brook‐DKM spike at LDEO, typically, only ~2% of the signal
intensity on mass 138 comes from 138La and ~5% of the signal intensity of mass 176 comes from 176Lu. As
a result, subtracting interferences adds major uncertainty to the ID calculations. For these reasons, after sub-
tracting the 139La and 175Lu spike contributions, at LDEO we treat La and Lu as mono‐isotopic elements,
and their concentrations are calculated using equations for mono‐isotopic elements.

Some multielement spikes have fewer enriched REE isotopes than the Stony Brook‐DKM spike. In these
cases, the Workbook can be easily modified so that they can be treated as mono‐isotopic elements with their
concentrations calculated using the equations for mono‐isotopic elements.

3. Structure of the REE Calculation Workbook

The REE Calculation Workbook is downloadable as Data Set S1 in the supporting information. The work-
sheet “General Info” lists the isotopes measured during sample analysis and oxide calibration analysis. It
also explains the parameters required for concentration calculations. Sample‐related information is shown
in blue, and spike‐related information is shown in green. The worksheet “Raw Data” is used for entering
the measured intensities for the blank solution, procedural blank, pure Pr solution, mass bias solution,
and sample solution (in blue). The worksheet “Weights” is used for entering the sample (in blue) and spike
(in green) weights for each sample. The worksheet “Spike” contains the concentrations of each isotope in the
spike (in green), and the natural isotope ratios and atomic masses of these isotopes, isotopic compositions in
the spike (in green) and in nature, and atomic masses of each REE element. The dilution factor (in green) is
entered in the “Spike” worksheet to calculate the REE concentrations of the diluted spike. The worksheet
“Isotope Abundances” contains the natural isotope abundances of Ba, each REE, and hafnium (Hf)
(Holden et al., 2018). The worksheets “Blank Cor,” “Oxide Cor,” and “Mass Bias Cor” are used for blank cor-
rection (on 2.1), oxide correction (section 2.2), and mass bias correction (section 2.3), respectively. The work-
sheets “ID,” “Ce,” “Mono,” “La,” and “Lu” are used to calculate concentrations of ID elements (section 2.4),
Ce (section 2.4), mono‐isotopic elements (section 2.5), La (section 2.6), and Lu (section 2.6), respectively. The
final results of calculated REE concentrations are shown in the worksheet “REEs.”

4. Evaluation of REE Standard Reference Values for BCR‐1, NASC, and PAAS

In this contribution we show as an example some REE concentrations for some seawater samples calculated
using theWorkbook. Information for samples and spike were entered following the instructions in section 3.
Seawater REEs are usually referenced to shale standards, based on the reasoning that in seawater these ele-
ments are mainly derived from weathering of the continental surface and shales represent admixtures of
large portions of the continental surface. Also, shales, like average upper continental crust, show Eu deple-
tions when compared to solar system and planetary reference values such as bulk silicate earth or chondrites
(McDonough & Sun, 1995; Rudnick & Gao, 2003), and this is propagated into seawater; normalizing sea-
water to shales minimizes Eu anomalies in the seawater REE patterns. An important challenge is to
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decide which reference values to use. The most used shale reference stan-
dards are Post‐Archean Australian Shale (PAAS), whose values are
averages of analyses of multiple samples (Nance & Taylor, 1976), and
the North American Shale Composite (NASC), which is a sample com-
posed of a mixture of 40 shale samples (Haskin et al., 1966). We have eval-
uated these reference standards to determine which values are best to use,
and the USGS Columbia River basalt reference standard BCR‐1, which as
a mantle partial melt should show a smooth REE pattern for all the REEs
except Eu. For BCR‐1 we compare three sets of reference values, the pre-
ferred values of two compilations (Gladney et al., 1990; Jochumet al., 2016)
and the analyses reported in Asmerom et al. (1994), henceforth BCR‐1‐
G90, ‐J16, and ‐A94, respectively. For PAAS we use the classic values of
Taylor and McLennan (1985) and the reevaluation by Pourmand
et al. (2012), henceforth PAAS‐TM85 and ‐P12, respectively. For NASC
we use Gromet et al. (1984) and Goldstein and Jacobsen (1988), hence-
forth NASC‐G84 and ‐GJ88, respectively. The values used are listed in
Tables 4 (in ppm) and S2 (in pmol/kg, the units often used for seawater,
and ppm). The BCR‐1‐A94 REE values use the data from Goldstein and
Jacobsen (1988) for the ID elements and Asmerom et al. (1994) added
the mono‐isotopic elements. The PAAS‐TM85 values (Taylor &
McLennan, 1985) are the same as Nance and Taylor (1976) with the excep-
tions of Tm and Lu. The NASC‐GJ88 values include a modification to Lu
(in Piepgras & Jacobsen, 1992) and until now unpublished mono‐isotopic
elements measured along with Lu by quadrupole ICP‐MS (S. B. Jacobsen,
personal communication, May 18, 2020).

We compared all seven data sets (listed in Table 4) in order to evaluate the
reference values. The distilled results are shown in Figure 2; while not all

of the possible data combinations are shown, those that are shown confirm our conclusions. As the differ-
ences in chemical behavior between the REEs are primarily due to the systematic changes in cationic
volume, we expect that more accurate analyses would result in smoother REE patterns, excepting Ce and
Eu. Comparison of the three BCR‐1 values with NASC‐GJ88 (which we conclude below are the best shale
reference values), on a linear scale to emphasize variability (Figure 2a), shows that BCR‐1‐A94 is smoother
than the others; therefore, we use BCR‐1‐A94 as our BCR‐1 reference. Comparing it to the PAAS reference
values (Figure 2b) shows a smoother pattern for PAAS‐P12. Comparing BCR‐1‐A94 to the NASC reference
values (Figure 2c) shows a smoother value for NASC‐GJ88. These indications that NASC‐GJ88 and
PAAS‐P12 are the better NASC and PAAS reference values are seemingly confirmed by direct comparison
of the shales (Figure 2d), where normalizing NASC‐GJ88 and PAAS‐P12 yields a smoother REE pattern than
normalizing NASC‐G84 and PAAS‐TM85. Finally, comparing all four shale reference values to BCR‐1‐A94
(Figures 2b and 2c) shows that the NASC‐GJ88 has the smoothest shale REE pattern. Thus, we recommend
using NASC‐GJ88 (with the appropriate modifications in Table 4), PAAS‐P12, and BCR‐1‐A94, as reference
values for these standards, and NASC‐GJ88 as the preferred shale reference values.

5. Evaluation of Analytical Quality From Seawater Analyses

For seawater REE studies, the LDEO lab processes ~10 ml of seawater. Concentrations have ranged between
1–9 ppt (7–64 pmol/kg) for Nd, 0.2–2 ppt (1–14 pmol/kg) for Yb, and 0.3–3 ppt (2–21 pmol/kg) for Ce
(Wu, 2019). Thus for the higher abundance REEs such as Nd, the total amount of element analyzed in a sam-
ple has ranged from ~10 to 90 pg, while for the lowest abundance REEs, Tm, the amount has ranged between
~0.5 and 5 pg. For quality control, the LDEO lab repeatedly analyzes seawater samples from a GEOTRACES
intercalibration station Bermuda Atlantic Time Series (BATS; 31.7°N, 64.1°W) in the North Atlantic at 20 m
(n ¼ 18) and 2,000 m (n ¼ 16) (Figures 3a–3d and Table S3). Internal measurement errors are <2%. As
expected, the long‐term uncertainty is much larger than internal measurement errors and is regarded as
reflecting our real uncertainty associated with measuring REEs in natural seawater. By monitoring and
reporting long‐term external reproducibility, we ensure that the LDEO lab is consistently producing

Table 4
Reference Values of BCR‐1, PAAS, and NASC Used in This Study and
Their Sources

BCR‐
1‐G90

BCR‐
1‐A94

BCR‐1‐
J16

PAAS‐
TM85

PAAS‐
P12

NASC‐
G84

NASC‐
GJ88

La 24.9 25.0 25.46 38 44.56 31.1 34.0
Ce 53.7 53.6 53.94 80 88.25 66.7 66.7
Pr 6.80 6.90 6.765 8.9 10.15 7.90 7.93
Nd 28.8 28.6 28.68 32 37.32 27.4 30.1
Sm 6.59 6.55 6.603 5.6 6.884 5.59 5.80
Eu 1.95 1.92 1.957 1.1 1.215 1.18 1.16
Gd 6.68 6.82 6.725 4.7 6.043 5.40 5.12
Tb 1.05 1.05 1.063 0.77 0.8914 0.850 0.779
Dy 6.34 6.37 6.391 4.4 5.325 5.33 4.67
Ho 1.26 1.34 1.268 1.0 1.053 1.04 0.983
Er 3.63 3.71 3.658 2.9 3.075 3.21 2.73
Tm 0.560 0.545 0.5350 0.40 0.4510 0.500 0.414
Yb 3.38 3.39 3.377 2.8 3.012 3.06 2.67
Lu 0.510 0.497 0.4988 0.43 0.4386 0.456 0.406

Note. Concentrations are in ppm (they are also listed in pmol/kg in
Table S3, often used in seawater studies). Sources: G90: Gladney
et al. (1990); A94: Asmerom et al. (1994) (the multi‐isotopic elements
are from Goldstein & Jacobsen, 1988); J16: Jochum et al. (2016); TM85:
Taylor and McLennan (1985) (the values with the exceptions of Tm and
Lu are those of Nance & Taylor, 1976); P12: Pourmand et al. (2012);
G84: Gromet et al. (1984); GJ88: Goldstein and Jacobsen (1988) (Lu is
from Piepgras & Jacobsen, 1992; the mono‐isotopic elements were mea-
sured at Harvard by quadrupole ICP‐MS and are included here courtesy
of S. B. Jacobsen).
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high‐quality data and that we realistically estimate the uncertainties that are achieved with the current
technological setup.

5.1. Repeated Analyses of BATS 20 and 2,000 m Seawater

For the BATS 20 and 2,000 m samples, long‐term external reproducibilities (2σ RSD%) range from 1.5% to
6.2%, depending on the element, using a two standard deviation filter on the data. Those elements showing
small errors of <2% to ~5% include high (10–23 pmol/kg, for La, Ce, Nd), intermediate (3–6 pmol/kg, for Pr
in the 2,000 m sample, Sm, Dy, Er, Yb), and low (0.7–0.8 pmol/kg, for Ho in the 2,000 m sample, Tb, Tm)
abundance elements; this includes elements treated as mono‐isotopic (La, Pr, Tb, Ho, Tm) and as ID ele-
ments (the rest). Those showing higher errors of 5–6% include both intermediate (3–5 pmol/kg for Pr in
the 20 m sample, Gd) and low (Eu, Ho in the 20 m sample, Lu; 0.7–1.5 pmol/kg) abundance elements,
and also elements treated as mono‐isotopic (Pr, Tb, Ho, Tm) and as ID elements (the rest).

We also monitor the long‐term reproducibilities of REE ratios of the BATS 20 and 2,000 m seawater samples
to evaluate the quality of our analysis. The long‐term external errors of La/Nd, Pr/Nd, Sm/Nd, and Yb/Nd
range from 4–5% (2σ RSD) for the BATS 20 m sample and 2–5% (2σ RSD) for the BATS 2,000 m sample.
The errors for REE ratios are not systematically higher or lower than the errors of the individual elements
(Table S3), indicating that these are random rather than systematic errors.

5.2. BATS and SAFe Seawater Intercalibrations

The LDEO lab participated in the international intercalibration of seawater REEs from the BATS
GEOTRACES station (van de Flierdt et al., 2012) that included a sample from 2,000 m. In that study, seven
labs contributed, and LDEO is Lab 3 (Figures 3c and 3d and Table S3). Overall agreement for six of the seven
participants (one lab's results were clear outliers) ranged from 9–12% (2σRSD) for La, Pr, Sm, Eu, Gd, and Tb

Figure 2. Comparison of published REE abundances of USGS rock standard BCR‐1 (a–c), North American Shale
Composite (NASC) (a, c, d), and Post‐Archean Australian Shale (PAAS) (b, d). (a) Relative REE abundances of BCR‐1
values from Gladney et al. (1990), Asmerom et al. (1994), and Jochum et al. (2016) normalized to NASC values from
Goldstein and Jacobsen (1988). BCR‐1‐A94 shows the smoothest pattern. (b, c) Comparison of PAAS values from Taylor
and McLennan (1985) and Pourmand et al. (2012) to BCR‐1‐A94. PAAS‐P12 shows the smoother pattern. (c) Comparison
of NASC values from Gromet et al. (1984) and Goldstein and Jacobsen (1988) to BCR‐1‐A94. NASC‐GJ88 shows the
smoother pattern. (d) Comparison of NASC and PAAS reference values, those showing smoother patterns relative to
BCR‐1 (NASC‐GJ88 and PAAS‐P12) also show smoother patterns when the four sets of reference values are compared.
Thus, we recommend using BCR‐1‐A94, PAAS‐P12, and NASC‐GJ88, and between the shale normalizations, we
recommend NASC‐GJ88. Values and citations are listed in Table 4. For NASC‐GJ88, Lu uses the updated value in
Piepgras and Jacobsen (1992), and the mono‐isotopic element abundances are courtesy of S. B. Jacobsen (personal
communication, 2020).
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and 2–5% for all the others with the exception of Ce, where the 2σ RSDwas 44%. The range of concentrations
for the group showing better agreement with 2–5% 2σ RSD (0.8–17 pmol/kg) and worse agreement with 9–
12% 2σ RSD (0.8–24 pmol/kg) is similar, and both groups include spiked elements and those treated as
mono‐isotopic elements. The higher error for Ce occurred despite a moderately high concentration of
~5 pmol/kg. A potential reason for the higher error is a higher Ce blank level compared to the other REEs
(4–10%, van de Flierdt et al., 2012). Another possibility could be a sample storage artifact resulting from
variable Ce oxidation in the samples of different labs. For that study LDEO contributed two analyses of
the REEs from 50 to 150 ml seawater samples. Our deviations from the average values are 3–7% for La,
Ce, and Eu (25, 5, and 0.9 pmol/kg, respectively) and 0–2% for all other REEs (0.7–18 pmol/kg). It is
important to note that a deviation from the average does not mean that our value is less correct. In that
study, our lab was the only one that used a multielement spike.

The LDEO lab also participated in a later international intercomparison of seawater REEs from
GEOTRACES station Sampling and Analysis of Fe (SAFe) in the North Pacific (30°N, 140°W) at 3,000 m
(Behrens et al., 2016). In that study, four labs contributed, and ours is Lab 2 (Figures 3e and 3f and
Table S3). Overall agreement ranged from 2–5% 2σ RSD for all REEs (2–15 pmol/kg) except for La, Pr, Nd
(6–7% 2σ RSD; 10–65 pmol/kg), Gd and Lu (12–14% 2σ RSD; 13 and 2 pmol/kg, respectively), and Ce
(71% 2σ RSD; ~4 pmol/kg). Our deviations from the average values are 1–4% for all REEs except for Gd
and Lu (7–9%) and Ce (38%). In that study, our lab and the University of Oldenburg used different splits
of the same (Stony Brook‐DKM) spike. A third lab used a spike that has 150Nd, 172Yb, indium, and rhenium.
The fourth lab only used external standards.

Figure 3. Average seawater REE concentrations from the BATS (Bermuda Atlantic Time Series) GEOTRACES intercalibration station (31.7°N, 64.1°W) at 20 and
2,000 m and the SAFe (Sampling and Analysis of Fe) GEOTRACES intercomparison station (30°N, 140°W) at 3,000 m, normalized to NASC‐GJ88 (values from
Goldstein & Jacobsen, 1988, with updates as explained in Table 4 note), on linear (a, c, e) and logarithmic (b, d, f) scales. For quality control, the LDEO lab
repeatedly analyzes these BATS samples. (a, b) Average REEs for BATS 20 m sample (n ¼ 18) in this study. (c, d) REEs for BATS 2,000 m (n ¼ 16) in this study
compared with the GEOTRACES intercalibration study (van de Flierdt et al., 2012), in which LDEO contributed data as Lab 3. (e, f) REEs for SAFe 3,000 m from
the GEOTRACES intercomparison study (Behrens et al., 2016), in which LDEO contributed data as Lab 2. The error bars represent absolute two standard
deviations from the mean values.

10.1029/2020GC009042Geochemistry, Geophysics, Geosystems

WU ET AL. 10 of 15



5.3. A Seawater Station Depth Profile and Gd and Er Enrichments

The quality of the LDEO seawater results is illustrated in a depth profile (Figure 4 and Table S4) from the
Southwest Atlantic (RRS James Cook JC057, GEOTRACES GA02 Leg 3, Station 2, 49.0°S, 48.9°W). The
shale‐normalized REE patterns are typical for seawater, with negative Ce anomalies and HREE/LREE
enrichments. The absolute concentrations and the HREE/LREE enrichments both increase with increasing
depth, which are also typical for seawater depth profiles. Scientific interpretations of the data are discussed
in Wu (2019). We compare these results with two classic seawater REE studies that used multielement REE
spikes and high‐precision TIMS measurements (Bertram & Elderfield, 1993; Piepgras & Jacobsen, 1992)
(Figure 5). The uncertainties reported by these studies are the internal measurement errors, better than
1% (2σ) in Piepgras and Jacobsen (1992), and better than 1% in Bertram and Elderfield (1993) except for
La (2.8%), Yb (3.4%), and Lu (1.6%) (they did not report whether the uncertainty estimates were at 1σ or
2σ). Their high‐precision results show smooth patterns of REE ratios such as Sm/Nd, Nd/La, and Er/La in
depth profiles (Figure 5) that indicated much better data quality than previous studies that used neutron
activation, where the REE ratio depth profiles show much more scattered patterns (Piepgras &
Jacobsen, 1992, and Figure S1). Our results also show smooth patterns of REE ratios in depth profiles
(Figure 5), indicating data quality comparable to theirs. The multielement spike ID approach thus yields
high‐quality data on both TIMS and quadrupole ICP‐MS, with ICP‐MS allowing for much faster analysis
and the opportunity to analyze all the REEs at once.

A noteworthy characteristic of the Southwest Atlantic REE patterns is that they clearly show positive devia-
tions at Gd and Er when normalized to shales (Figure 4), and although partly obscured by the Eu anomaly,
they are also clearly present when normalized to BCR‐1 (Figure S2). The Gd and Er positive deviations have
been discussed as present in seawater REE patterns (e.g., de Baar, Brewer, et al., 1985; Kawabe et al., 1998;
Masuda & Ikeuchi, 1979). Deviations of Gd and Er in particular from the otherwise smooth changes
expected in REE behavior are consistent with “lanthanide tetrad effects,” resulting from increased stability
at 1/4 (between Nd and Pm), 1/2 (Gd), and 3/4 (between Ho and Er) filled 4f electron orbitals (e.g.,
Kawabe, 1992). The tetrad effect divides the REEs into four tetrad groups (first: La, Ce, Pr, Nd; second:
Pm, Sm, Eu, Gd; third: Gd, Tb, Dy, Ho; fourth: Er, Tm, Yb, Lu). Because Pm is absent in nature, it is

Figure 4. An example of REE results for seawater samples calculated using the REE Workbook. These seawater samples
were collected between 99 and 5,000 m water depths from Station 2 (49.0°S, 48.9°W) of the GEOTRACES Southwest
Atlantic Meridional Transect (RRS James Cook JC057, GA02 Leg 3) (Wu, 2019). (a–d) Relative abundances of
REEs normalized to PAAS‐P12 (Pourmand et al., 2012) (a, c) and NASC‐GJ88 (Goldstein & Jacobsen, 1988) (b, d) on
linear scales (a, b) and logarithmic scales (c, d). The depth profiles show typical seawater REE patterns, including
negative Ce anomalies, HREE/LREE enrichment, and higher concentrations with increasing depth. Many of the samples
clearly show positive deviations for Gd and Er.
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difficult to investigate the first tetrad effect in seawater REE patterns. The identification of both the Gd and
Er positive deviations benefit from measurement of the mono‐isotopic elements Tb, Ho, and Tm (Figure 4),
which are not an option using TIMS but are afforded by ICP‐MS analysis. While the Er anomalies are
recognizable in the Piepgras and Jacobsen (1992) and Bertram and Elderfield (1993) TIMS data, with the
neighboring mono‐isotopic elements Ho and Tm missing, they require a four‐element interpolation
between Dy and Yb, making them less clear, while the ICP‐MS data allow comparison with Ho and Tm.
For identification of the Gd deviations, the ability to use the neighboring element mono‐isotopic element
Tb is critical, allowing for a three‐element interpolation using Sm, as neighboring Eu cannot be used due
to the possibility of a Eu anomaly.

6. Summary

This Technical Report contributes and explains an REE Calculation Workbook, in MS Excel, that reduces
REE data for multielement spiked samples measured by ICP‐MS, here offered for use by the community.
The Report also compares and evaluates the commonly used reference standards BCR‐1, PAAS, and
NASC. The Workbook can be easily tailored for the needs of individual labs. It provides a convenient means
for determining concentrations of all of the REEs in natural samples analyzed by ICP‐MS, based on ID ana-
lysis for the spiked elements, and using ID elements as references for mono‐isotopic elements and any
multi‐isotope elements treated as mono‐isotopic elements. The data for the Stony Brook‐DKM spike used
at LDEO are in the REE Workbook and can be modified with concentrations and isotopic compositions of
those spikes used in other labs. We show that the use of a multi‐REE spike combined with ICP‐MS analysis
is a means to efficiently generate high‐quality REE data, comparable to high‐precision ID‐TIMS, in about
10 min of analytical time rather than a couple of days, and including the unspiked elements. Thus, this
Technical Report provides a framework to aid and encourage laboratories to adopt the multispike ID tech-
nique to measure REE concentrations by ICP‐MS in natural samples.

Data Availability Statement

Data in Figures 4 and 5 and Table S4 are also available through Wu (2019).
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