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Abstract: In the present work, the SWIFT method for pricing European options is extended to Heston
model calibration. The computation of the option price gradient is simplified thanks to the knowledge
of the characteristic function in closed form. The proposed calibration machinery appears to be
extremely fast, in particular for a single expiry and multiple strikes, outperforming the state-of-the-art
method we compare it with. Further, the a priori knowledge of SWIFT parameters makes a reliable
and practical implementation of the presented calibration method possible. A wide range of stress,
speed and convergence numerical experiments is carried out, with deep in-the-money, at-the-money
and deep out-of-the-money options for very short and very long maturities.
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1. Introduction

The Heston model is a well-known stochastic volatility (SV) model for driving the
dynamics of the assets. In order to use the Heston model, we need to calibrate its five
parameters to real-market data. The goal of calibrating a model using market data is to
estimate the model parameters in such a way that, when it is used for option valuation with
an appropriate option valuation method, it yields prices similar to the real market ones.
Calibration is an important task that requires efficient numerical methods. It encompasses
machinery for option pricing as well as an optimization procedure, aiming at minimizing
the differences between the market option prices and the prices given by the valuation
method. Regarding the pricing, we use the SWIFT method presented in [1] for European
options. This belongs to the class of Fourier inversion methods and has already been
used for pricing Bermudan, barrier and Asian options (see [2,3]). The power of the SWIFT
method partly relies on the knowledge of the characteristic function (ChF) in analytical
form. Since the ChF associated with the Heston model is known in closed form, we can
tackle the optimization problem by means of the gradient-based Levenberg–Marquardt
(LM) algorithm [4]. For sake of comparison, we consider the state-of-the-art calibration
method of [5], which is based on the Fourier inversion pricing method of [6], and it also
uses the LM optimization algorithm. The main contributions of this work are the following:

• We extend the SWIFT method to the calibration problem by deriving the option
price gradient;

• We implement and test the speeding-up techniques mentioned in [1] based on multiple
strike valuation;

• We propose a novel method for calibrating the Heston model with a set of options
with certain fixed strikes that can be later used for arbitrary strikes by interpolation;

• We develop and implement speeding up techniques for the option price gradient.

We carry out a wide variety of stress, speed and convergence tests with at-the-money
(ATM), deep in-the-money (ITM) and deep out-the-money (OTM) options, ranging from
very short to very long maturities. The results show that SWIFT is extremely fast for sets
of options with a single expiry and different strikes, being about ten times faster than
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the calibration method of [5]. For options with a fixed number of maturities and a fixed
number of strikes per maturity, both methods perform similarly in terms of speed, with the
SWIFT method being more robust, thanks to the possibility of selecting the parameters of
the pricing machinery a priori. This last feature makes the SWIFT method a reliable and
practical methodology for the real-time updating of Heston model calibration.

The paper is organized as follows. We define the calibration and the valuation problem
in Section 1. The Heston model, the valuation method of [5] and the calibration challenges
are presented in Section 2. Section 3 is devoted to the SWIFT method and its speeding up
features. In Section 4, we put forward the calibraton problem with all the mathematical
details, and we test our proposed method through the numerical experiments of Section 5.
Section 6 concludes and gives some pointers for future research.

1.1. Option Valuation

The option valuation will be tackled under the framework of the expected discounted
payoff pricing formula that we recall next. Consider a European option contract with
strike price K, expiring at time T, with τ := T − t the time to maturity, and St the price of
its underlying asset at time t. Then, if one considers state variables x and y, which fully
describe St and the random variable ST , respectively, the general pricing formula becomes

v(x, t) = e−rτEQ(v(y, T)|x) = e−rτ
∫
R

v(y, T) f (y|x)dy, (1)

where v(x, t) denotes the option value at time t, v(y, T) is the payoff, r the risk-neutral in-
terest rate, EQ the expectation under the risk-neutral measure, and f (y|x) is the probability
density of y given x. A common choice for the state variables x and y is to define

y = ln
(

ST
K

)
, (2)

x = ln
(

St

K

)
. (3)

More precisely, given the states variables’ choice, we can express the payoff of a
European option in log-asset price as

v(y, T) = [α · K(ey − 1)]+ := K · g(y), with, α =

{
1, for a call,
−1, for a put,

(4)

where g(y) := max(α(ey − 1), 0) denotes the strike-free payoff.

2. Heston Dynamics and Calibration Issues

The widely used Black and Scholes (BS) model fails to capture essential well-known
properties of the real-world market dynamics of the underlying return distributions, such
as its high kurtosis, its negative skew, the correlation between the underlying price and
its volatility, the risk premium investors give deep (ITM) or (OTM) options, etc. All
these properties result in the well-known BS implied volatility surface. SV models treat
both the underlying price and its volatility as (potentially correlated) stochastic processes,
which helps to better capture some of these properties. One of the first and most well-
known SV models is the Heston model [6], defined by the following system of stochastic
differential equations.

Definition 1. The Heston model price–volatility dynamics are defined by

dSt = µStdt +
√

νtStdW(1)
t ,

dνt = κ(ν− νt)dt + σ
√

νtdW(2)
t ,



Mathematics 2021, 9, 529 3 of 20

where W(1)
t and W(2)

t are two correlated Wiener processes dW(1)
t dW(2)

t = ρdt and νt is the variance
of the underlying asset price at time t. Then, if one specifies the initial value of the variance ν0,
the model is properly defined. From now on, θ := (ν0, ν, ρ, κ, σ)T will refer to the vector of
model parameters.

Several works have shown the relationship between the Heston model parameters
and the shape of the implied volatility surface [7–10] necessary to obtain the same prices
with a BS model. It can be summarized as follows:

• ν0 controls the position of the volatility surface;
• ρ controls its skewness;
• κ and σ control the convexity of the surface;
• κ(ν0 − ν) controls the term structure of implied volatility.

A method for calibrating the Heston model is presented in [5]. This method starts
from the expression of the price of a European call option presented in the original work
by Heston [6], and it is adapted here in terms of the state variables x and y defined in
Section 1.1

v(x, τ) = KexP1(θ; x, τ)− Ke−rτ P2(θ; x, τ), (5)

where P1 and P2 are defined as

P1(θ; x, τ) =
1
2
+

1
π

∫ ∞

0
Re
(

eiux

iu
f̂ (−u + i)

)
du, (6)

P2(θ; x, τ) =
1
2
+

1
π

∫ ∞

0
Re
(

eiux

iu
f̂ (−u)

)
du, (7)

and f̂ (u) is the initial state independent ChF of the process. It is worth remarking that, as
we will see in Section 3, the SWIFT method will benefit from the fact that the ChF f̂ (u)
does not depend on the initial state variable.

Remark 1. The dependence of the ChF on time and the model parameters is omitted for readability.

Remark 2. The expression (5) omits the dividend yield term q, which appears in [5] but is assumed
to be 0 here for readability. The results presented here are valid for any constant value q.

Remark 3. Typically, the ChF of a random variable with density function f is defined as f̃ (u) =∫
R f (x)eiuxdx. However, to be consistent with [1], it is defined in this work as f̂ (u) =∫
R f (x)e−iuxdx. We can see that there is a sign difference in all the u-dependent equations and

expressions in [5].

We write expression (5) in a more compact form in the following lemma

Lemma 1 (Heston’s pricing method). Let V(θ; x, τ) be the price of a European call option with
strike K and Heston dynamics, given by expression (5). If we define f̂ (u; x) = e−iux f̂ (u), then

V(θ; x, τ) = K

[
1
2
(
ex − e−rτ

)
+

e−rτ

π

∫ ∞

0
Re

(
f̂ (−u + i; x)− f̂ (u; x)

iu

)
du

]
. (8)

Proof. Having into account that St/K = elog(St/K) = ex then, from expression (5)–(7)
we have

V(θ; x, τ) = K
1
2
(
ex − e−rτ

)
+ K

e−rτ

π

[∫ ∞

0
Re

(
ei(u−i)x

iu
f̂ (−u + i)

)
du −

∫ ∞

0
Re

(
eiux

iu
f̂ (u)

)
du

]
.

Finally, since f̂ (u; x) = e−iux f̂ (u), then the result follows.
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2.1. Calibration Challenges

As opposed to simpler one-dimensional models, Heston model calibration is a multidi-
mensional optimization problem with five degrees of freedom given by θ := (ν0, ν, ρ, κ, σ)T .
Furthermore, the structure of this optimization problem is not known. According to [5],
no consensus exists among researchers regarding whether the objective function of this
optimization problem is convex or not. Some results point to a non-convex function, such
as the calibration methods proposed in [11,12] (which yielded different results for different
initial points) and one must use long- or short-term approximations and rules to provide a
convenient initial guess. Recent research [13] claims to provide methods that reach a unique
solution independently of the initial point which, according to that study, indicates some
structure that, even if not necessarily convex, tends to lead an initial guess to a stationary
result. There is also no consensus on whether the problem always has a single optimum.
In particular, it is known that there exist dependencies between the parameters that yield

similar results. For example, limt→∞ Var(νt) =
σ2ν

κ
(where Var(·) refers to the variance

operator), so large values of κ and σ can provide a model that prices options similarly to
one with proportionally smaller values of these two parameters. The work by [5] claims
that this results in the objective function of the optimization problem being flat close to
the optimum.

As said above, there is no guarantee that a gradient-based method converges to
the global optimum of the model parameters, but even obtaining a local optimum has
traditionally been difficult. Many papers in the literature use numerical gradients (see [13])
for these methods when trying to solve the Heston calibration problem (which are less
accurate and more computationally consuming), because no simple analytical gradients
were available and the ones obtained with symbolic algebra packages from the expressions
of the ChF were intractable. Prior to [5], the existing methods could be summarized
as follows:

• Heuristic based models. Using the relationships outlined above, some works reduce
the dimension of the optimization problem by assuming some values or relationships
between the parameters from the observation of a specific volatility surface. For
example, [8] sets ν0 to the short-term ATM implied variance, obtained by using a BS
model, a heuristic further justified by [11], where the linearity between ν0 and the
BS implied volatility was verified for short maturities (less than 2 months). Other

heuristics used in the industry are κ =
2.75

τ
and setting ν to the BS short-term

volatility [7]. These assumptions may restrict the optimization problem domain and
exclude the optimum;

• Stochastic methods. They are typically used in combination with deterministic search
methods, such as the Nelder–Mead simplex method [14] and avoid the pitfalls of the
gradient-based methods if the optimization problem is not convex. Some examples
are used in [11], and differential evolution and particle swar are used in [15]. These
methods are too computationally expensive for real-time use as [16], which employs
GPU computations to calibrate options using an SV model called SABR, and it took
421.72 s to calibrate 12 instruments with a tolerance of 10−2 using 2 NVIDIA Geforce
GTX470 GPUs.

In this work, we consider the analytical expression for the ChF provided in [5].

2.2. The Characteristic Function

For long-term maturities, [17] shows that the original ChF provided in [6] has dis-
continuities as u increases, which can lead to numerical problems. The source of these
discontinuities was discussed in [18], and an alternative expression which was continuous
in the full parameter space was presented in [19]. A more compact version of the ChF was
later derived in [20] from the moment-generating function of the process. This expression
has the benefit of having simpler analytical expressions of the gradient of the ChF than
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in previous expressions, but it also presents discontinuities as u increases. Finally, an
expression with both simple derivatives and continuity in the full-parameter domain was
provided in [5]

f̂ (u) = exp
(
−iurτ +

κν̄ρτiu
σ

− A +
2κν̄

σ2 D
)

, (9)

where
ξ := κ + σρiu,
d :=

√
ξ2 + σ2(u2 − iu),

A1 :=
(
u2 − iu

)
sinh dτ

2 ,
A2 := d

ν0
cosh dτ

2 + ξ
ν0

sinh dτ
2 ,

A := A1
A2

,

B := deκτ/2

ν0 A2
,

D := log d
ν0
+ (κ−d)τ

2 − log
(

d+ξ
2ν0

+ d−ξ
2ν0

e−dτ
)

.

(10)

Further, its gradient with respect to the Heston model parameters θ = (ν0, ν, σ, κ, ρ)T

is given by
∇ f̂ (u) = h(u) f̂ (u), (11)

with h(u) = [hν0(u), hν(u), hσ(u), hκ(u), hρ(u)]T and

hν0(u) = −
A
ν0

,

hν(u) =
2κ

σ2 D +
κρτiu

σ
,

hσ(u) = −
∂A
∂ρ

+
2κν̄

σ2d

(
∂d
∂ρ
− d

A2

∂A2

∂ρ

)
+

κν̄τiu
σ

,

hκ(u) = −
1

σiu
∂A
∂ρ

+
2ν̄

σ2 D +
2κν̄

σ2B
∂B
∂κ

+
ν̄ρτiu

σ
,

hρ(u) = −
∂A
∂σ
− 4κν̄

σ3 D +
2κν̄

σ2d

(
∂d
∂σ
− d

A2

∂A2

∂σ

)
− κν̄ρτiu

σ2 ,

where the partial derivatives of A, A2, B, and d are given in [5] and can be seen in
Appendix A.

3. European Option Valuation and Calibration with SWIFT

In this section, we give a brief overview on the SWIFT method, originally developed
for pricing European options in [1]. In this work, the method will be extended to European
options’ calibration. For sake of completeness, a section is devoted to the basic theory on
Shannon wavelets.

3.1. Multi-Resolution Analysis and Shannon Wavelets

Consider the space of square-integrable functions, denoted by L2(R), where

L2(R) =
{

f :
∫ +∞

−∞
| f (x)|2dx < ∞

}
.

Then, we can define a useful structure for function approximation called multi-
resolution analysis (MRA). Let us start with a family of closed nested subspaces in L2(R)

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

where ⋂
m∈Z
Vm = {0} ,

⋃
m∈Z
Vm = L2(R),
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and
f (x) ∈ Vm ⇐⇒ f (2x) ∈ Vm+1.

If these conditions are met, then there exists a function φ ∈ V0, known as scaling
function, that generates a family of orthonormal bases of Vm, denoted {φm,k}k∈Z

φm,k(x) = 2m/2φ(2mx− k).

These families allow one to approximate any f ∈ L2(R) with increasing resolution by
means of the projection map Pm : L2(R)→ Vm

Pm f (x) = ∑
k∈Z

Dm,kφm,k(x),

where Dm,k =
〈

f , φm,k
〉
, 〈 f , g〉 =

∫
R f (x)g(x)dx, and · is the complex conjugate operator.

Increasing the considered number of elements of the finite family will increase the
resolution of the approximation, converging to a perfect representation when all the
functions of the original family are used (see [21]). Apart from increasing the resolution by
means of m, wavelets can be moved by means of k and stretched or compressed by means
of m to represent the local properties of a function. A basic reference on wavelets is [22].

In this work, we employ Shannon wavelets [23], since they are regular and orthogonal
functions with compact support in the Fourier domain. The regularity, as opposed to
the Haar family used in [24], gives us much better accuracy. The rapid decay of the
scaling function in the Fourier domain replicates the behaviour of the ChF of the heavy-tail
processes that we encounter in finance. A set of Shannon scaling functions φm,k in the
subspace Vm is defined as

φm,k(x) = 2m/2 sin(π(2mx− k))
π(2mx− k)

= 2m/2φ(2mx− k), k ∈ Z, (12)

where

φ(z) = sinc(z) =


sin(πz)

πz
, if z 6= 0,

1, if z = 0,

is the scaling function, also called cardinal sine function.
The following lemma about the bound on the error of the orthogonal projection

εm(x) := f (x)− Pm f (x) is provided in [3].

Lemma 2 (Lemma 3 of [3]). Let εm(x) := f (x)− Pm f (x) be the point-wise approximation error
due to the projection of f into Vm. Then

|εm(x)| ≤ H(2mπ), (13)

where
H(ξ) :=

1
2π

∫
|u|>ξ

∣∣∣ f̂ (u)∣∣∣du,

is the normailzed mass of the two-side tails of f̂ .

3.2. SWIFT Method

The SWIFT method belongs to the class of Fourier inversion methods for pricing
European options within the discounted expected payoff formula (1). The density function
f of (1) is replaced by a finite combination of Shannon wavelets, and the coefficients of the
approximation are computed from its ChF. The overall process provides an efficient way to
obtain the value of an option, and it can be summarized, as in [1,3], by a set of consecutive
approximation steps, which are described below.
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• Wavelet projection: the function f is replaced by its Shannon wavelet projection at
scale m ∈ Z,

f (y|x) ≈ f1(y|x) := Pm f (y|x) = ∑
k∈Z

Dm,k(x)φm,k(y), (14)

with Dm,k(x) := 〈 f (·|x), φm,k〉.
• Series truncation: the set of values of k involved in the sum of expression (14) is

reduced to a finite interval [k1, k2],

f1(y|x) ≈ f2(y|x) =
k2

∑
k=k1

Dm,k(x)φm,k(y). (15)

It is important to notice that the first approximation lets us express

f (2−mk|x) ≈ f1(2−mk|x) = 2m/2Dm,k(x), (16)

which quickly justifies that, for any given x, the density coefficients vanish as |k|
increases, because the mass at the tails of f tends towards 0. It is also worth noting
that increasing m will result in this mapping being less favorable. That is, for each k,
Dm,k will be bounded by a point closer to the center of the density function, potentially
requiring an increase in the range of values for k in interval [k1, k2].

Remark 4. From this point onward, a symmetric interval [1− η, η] will be considered for
both convenience and consistency with the code implementation.

• Density coefficients approximation: the integral required to compute Dm,k is replaced
by an approximation D∗m,k, as will be shown in Section 3.2.1

f2(y|x) ≈ f3(y|x) =
η

∑
k=1−η

D∗m,k(x)φm,k(y), (17)

We can then define Vm,k :=
∫
R φm,k(y)v(y, T)dy, and substitute f3(y|x) into expres-

sion (1), obtaining

v(x, t) ≈ v3(x, t) := e−rτ
η

∑
k=1−η

D∗m,k(x)Vm,kdy,

For European options, one can instead express it in terms of the strike-free payoff by

defining Um,k :=
Vm,k

K
=
∫
R φm,k(y)g(y)dy, obtaining

v3(x, t) := Ke−rτ
η

∑
k=1−η

D∗m,k(x)Um,kdy. (18)

• Payoff coefficients approximation: the integral required to compute Um,k is approxi-
mated in an analogous way as the integral to compute the density coefficients, and
Um,k is replaced by an approximation U∗m,k, as will be shown in Section 3.2.1

v3(x, t) ≈ v4(x, t) = e−rτ
η

∑
k=1−η

D∗m,k(x)U∗m,k. (19)

These coefficients can be precomputed when initializing the SWIFT procedure and
shared across different strikes and maturities, saving computation time.
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3.2.1. Density and Payoff Coefficients Approximation

Density and payoff coefficients calculation rely on the approximation of sinc(x) by a
finite combination of cosines (all the details can be found in [1,3] and the references therein).
As a result of this approximation, a new parameter called J appears. This parameter will
be labeled Jd and Jp to denote density and payoff coefficients, respectively. Following the
notation of [3], the density coefficients are given by

D∗m,k =
2m/2

Jd

Jd

∑
j=1
<
(

f̂
(

ud
j 2m; x

)
eikud

j

)
, (20)

where < denotes the real part, ud
j =

π

2Jd
(2j− 1), and the payoff coefficients are given by

Um,k ≈ U∗m,k(−c, c) :=
2m/2

Jp

Jp

∑
j=1
<
(

eikup
j Ij(c)

)
,

where
Ij(c) :=

∫
|y|≤c

g(y)e−iup
j ydy = H(c)− H(−c), (21)

and

H(y) := −ieiup
j y
(

1
up

j
− ey

−i + up
j

)
, up

j =
π

2Jp
(2j− 1). (22)

We can see that the value of Ij(c) is periodic on c. In general, all the approximations to
sinc(x) used in the SWIFT method are periodic, which can give rise to boundary issues and
undervaluation of option prices when the option strikes approach the boundary of (−c, c).
This issue also appears in the COS option pricing method [25], another Fourier-transform-
based option-pricing method closely related to the SWIFT method, and is discussed in [3].
In that work, the authors use the independence between the parameter c regulating the
payoff integral domain and the parameter η regulating the wavelet series truncation
to carefully choose a value for c to avoid this problem. An iterative method to choose
appropriate values for m, η, Jd, and Jp is provided in [1,3].

As most operators used in the SWIFT method are linear, one can easily obtain an
expression for the option price gradient that will be used for calibration. In particular, the
only dependence the European option price formula has on the model parameters vector θ
appears in the term D∗m,k, so we can simply define,

D∗(n)m,k (x; θi) :=
∂nD∗m,k(x; θi)

∂θn
i

=
2m/2

Jd

Jd

∑
j=1
<

∂n f̂
(

ud
j 2m; x; θi

)
∂ςn eikud

j

, (23)

and replace it in expression (19) to obtain the expression of the gradient.

3.3. Speeding Up the SWIFT Method

We elaborate on several enhancements of the SWIFT method in terms of efficiency,
either on the pricing or during the calibration process. In Section 3.3.1, how the density and
payoff coefficients can be computed by means of the Fast Fourier Transform is explained (in
all the numerical examples in this article, the C library FFTW will be used to compute the
FFT [26]) (FFT). Section 3.3.2 is devoted to the adaptation of the SWIFT pricing machinery
for multiple strikes valuation. Those two transformations were already pointed out in [1].
Moreover, when the vector of strikes meets a certain property, then the calibration can
be carried out in a two-stage procedure detailed in Section 3.3.3. Finally, Section 3.3.4
describes another improvement in regard to the option price gradient calculation.
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3.3.1. Fast Computation of the Density and Payoff Coefficients

We start with a general expression of the summation term that appears in both the
density and payoff coefficients approximation

fk =
J

∑
j=1

gje
i
2j− 1

2J
πk

(24)

We can extend this by defining gj = 0 for j = 0 and J < j < 2J and take the
j-independent terms outside of the summation, obtaining,

fk = e

−iπk
2J

2J−1

∑
j=0

gje
i
2jπk

2J (25)

This last summation expression coincides with the Discrete Fourier Transform (DFT)
of length 2J of {gj}, and the computation of all the values fk can then be speeded up by the
FFT implementation.

Remark 5. Note that computing the density or payoff coefficients imposes a restriction on the
wavelet series truncation parameter 2η < J.

3.3.2. Valuation with Multiple Strikes

A key property of the SWIFT method is that, given a scale of approximation m, the
payoff and density coefficient associated to each wavelet φm,k can be computed through two
FFTs (one for all the density coefficients, and one for all payoff coefficients). Without this
property, the SWIFT computation speed would not be competitive with other numerical
option pricing methods [27].

In the option calibration problem, one usually needs to consider the option prices
of several options at different strikes. In this specific case, if one were to compute the
option prike of M options at strikes K := (K1, . . . , KM)T , then the formulation proposed
in expression (19) would need to recompute the density and payoffs coefficients for every
strike Ki. This involves evaluating the ChF η · Jp ·M times, an operation which, for the
Heston model, is more costly than evaluating the strike-free payoff function, or its integral.
As stated in [1] one can improve the computation time of option pricing for multiple strikes
when f̂ (u; x) = f̂ (u)e−iux, a property present in both Lévy and Heston models.

As stated in [3], let us start from expression (19), and considering the previously
mentioned vector of strikes K, with its associate vector of initial states x := (log(S0/K1), . . . ,
log(S0/KM))T . We can then substitute the density coefficients approximation (20) into the
option price expression (19) and interchange the two resulting summations, obtaining

v4(x, t) : = e−rτK
η

∑
k=1−η

<
{

Jd

∑
j=1

f̂ (ud
j 2m; x)eiud

j kU∗m,k(−c, c)

}
(26)

= e−rτK
Jd

∑
j=1
<
{

f̂ (ud
j 2m; x)

[
η

∑
k=1−η

U∗m,k(−c, c)eiud
j k
]}

(27)

= e−rτK
Jd

∑
j=1
<
{

f̂ (ud
j 2m)e−iud

j 2mx
[

η

∑
k=1−η

U∗m,k(−c, c)eiud
j k
]}

(28)

= e−rτK
Jd

∑
j=1
<
{

f̂ (ud
j 2m)e−iud

j 2mxŨj(−c, c)
}

. (29)
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where,

Ũj(−c, c) :=
η

∑
k=1−η

U∗m,k(−c, c)eiud
j k.

The original formulation from expression (19) requires the following computations:

• For each of the M strikes:
– 1 FFT of length 2Jd to compute 2η density coefficients;
– Jd evaluations of the ChF f̂ (ud

j 2m; x);
• 1 FFT of length 2Jp to compute 2η payoff coefficients;
• Jp evaluations of the strike-free payoff integral Ij(c) defined in expression (21).

The payoff computations are independent of the strike price and can be computed
only once, and be reused for all strikes.

On the other hand, the alternative formulation provided in expression (29) requires:

• For each of the M strikes:

– Jd evaluations of the x-dependent term of the ChF e−iud
j x;

• Jd evaluations of the x-independent ChF f̂ (ud
j 2m);

• 2 FFT of lengths 2η and 2Jp to compute the Jd values of Ũj(−c, c);
• Jp evaluations of the strike-free payoff integral Ij(c) defined in expression (21).

The required values of f̂ (ud
j 2m), Ũj(−c, c), and the values of Ij(c), required to compute

the latter, can be computed only once and be reused for all strikes.

Remark 6. In general, whenever the dependency on x in f̂ (u; x) can be easily isolated and is cheap
to compute, one can benefit from the alternative formulation proposed in this section.

The computation of the ChF tends to be more expensive than the computation of the
payoff integral, so a SWIFT implementation through expression (29) tends to outperform
the one through expression (19) when several strike prices are involved. A discussion on the
benefits of using a formulation equivalent to the one provided in (29) for multiple strikes
appears in [1], where it is shown that is possible to define Fj := f̂ (ud

j 2m) and compute its Jd
required values once in advance, and reuse them for all strikes.

3.3.3. Fixed Set of Strikes

Let us consider

Gj :=
{

Fj, Ũ(−c, c) for j ≤ Jd,
0, for Jd < j ≤ 2Jd.

(30)

Then, expression (29) can be rearranged as

v4(x, t) = e−rτK<

e

πi2mx
Jd .

2Jd

∑
j=1

Gje
−

2πij2mx
2Jd

 (31)

If one selectively chooses the values of the strikes Kl , so that 2mxl is an integer num-
ber, this computation can be sped up by the use of an FFT algorithm. If one chooses

xk :=
2k− Jd
2m+1 , then expression (31) becomes

v4(x, t) = e−rτKRe

e

πi2mx
Jd ∑2Jd

j=1 Gje
−

2πijk
2Jd eπij

 = e−rτKRe

e

πi2mx
Jd ∑2Jd

j=1 G̃je
−

2πijk
2Jd

, (32)



Mathematics 2021, 9, 529 11 of 20

where
G̃j := Gjeπij = Gj(−1)j. (33)

Remark 7. Note that, as with other FFT-based computations presented in this work, this approach
imposes a bound M ≤ Jd on the number of different strikes that can be computed with the FFT.

If one considers the domain D of x = log(St/K), this approach allows pricing options

in a symmetrical boundary (− Jd
2m+1 ,

Jd
2m+1 ) ∈ D at Jd uniformly distributed points at

distance 2m. We cannot usually choose the strike prices at which to price the options,
particularly not when calibrating a model with real market data, as only a limited set of
strike values are listed on any exchange market, but this method could be used to quickly
compute the option prices of an already calibrated model at a grid of points that could be
tuned by the choice of m and Jd. Then, the option prices at any intermediate strike could be
interpolated with the help of a derivative-free spline (or, if the derivative with respect to K
in expression (32) preserves the same speed properties, with the help of any spline method
that uses derivatives).

3.3.4. Option Price Gradient

The option price gradient must be computed during the calibration process that will
be presented in Section 4. All the aforementioned techniques can be applied to the option
price gradient. We can also enumerate three more speed-up properties,

• The value of e−iud
j 2mxl can be reused for the price as well as for the gradient computa-

tions;
• If the parameters of the SWIFT method, are not changed during the gradient descent

used in the calibration problem, then the values of both Ũj(−c, c) and e−iud
j 2mxl can be

reused throughout all the calibration steps;
• We can reuse the values of f̂ (ud

j 2m) from the price computation to compute the gradient.

Therefore, combining all the speed properties above, when solving a gradient-based

calibration problem, we only need to first compute Ũj(−c, c) and e−iud
j 2mxl , and then, in each

gradient-descent step, one can simultaneously calculate both the price and the gradient of
all strikes by computing once for each j ∈ [1, Jd] the values of f̂ (ud

j 2m) and h(ud
j 2m).

4. Calibration

Calibrating a model for the asset underlying the option is a sophisticated procedure
that requires highly efficient numerical methods. In particular, the pricing of the options
used for calibration should be carried out by means of an accurate, fast and robust valuation
method. In this work, we calibrate the Heston model by means of the SWIFT method,
and compare it with the Heston’s pricing method of [5], which we have written in a more
compact form in Lemma 1. It is worth noting that the choice of a specific objective function
will have an impact on how accurately the model of the underlying asset that we will obtain
through callibration will describe different real market scenarios [28]. For comparison sake,
the same one as in [5] will be used.

Let V∗(xi, τi) be the market price of a European call option and V(θ; xi, τi) be the
price at the same strikes and maturities obtained by using either the SWIFT method or the
Heston pricing formula in expression (8) of Lemma 1. Let us also assume that we use a set
of n different options to calibrate the model, so that i ∈ [1, n] ⊂ Z. Then the calibration of
the model is defined as the minimization problem

minθ∈R5 f (θ), f (θ) :=
1
2
||r(θ)||2 =

1
2

rT(θ)r(θ), (34)
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where r(θ) is the n-dimensional vector of the residuals obtained when pricing the options
considered for calibration using the model parameters. That is

r(θ) := [r1(θ), . . . , rn(θ)]
T , ri(θ) := V(θ; xi, τi)−V∗(xi, τi), i = 1, . . . , n. (35)

If we calculate the Jacobian of r, it gives us

J := ∇θrT = ∇θV(θ; x, τ), (36)

where

Jji =

(
∂ri
∂θj

)
=

(
∂V(θ; xi, τi)

∂θj

)
. (37)

The Hessian matrix of the residual element ri reads

H(ri) := ∇θ∇T
θ ri = ∇θ∇T

θ V(θ; xi, τi), (38)

where

Hjk(ri) =

(
∂2ri

∂θj∂θk

)
=

(
∂2V(θ; xi, τi)

∂θj∂θk

)
. (39)

Then, the gradient and Hessian matrix of the objective function defined by expres-
sions (34) and (35) are

∇θ f (θ) = Jr, (40)

∇θ∇T
θ f (θ) = J JT +

M

∑
i=1

ri H(ri). (41)

We solve the optimization problem (34) by means of the LM (for the implementation,
we use the LEVMAR C package [29] as well as the LAPACK linear algebra package [30])
method. This method is as a blend of gradient descent (GD) and Gauss–Newton (GN)
iteration, depending on whether the current guess is close to or far from the optimum. The
exact expression of the step ∆θ is

∆θ = (J JT + µI)−1∇θ f (θ), (42)

where I is the identity matrix and J JT + µI substitutes the Hessian matrix used in the
Newton method. When the current guess is far from the optimum, a large value is given to
µ, so that

∆θ ≈ ∆θ(SD) := (µI)−1∇θ f (θ), (43)

and a small step of a steepest-descent method is taken. When the current guess is close to
the optimum, a small value is given to µ, so that

∆θ ≈ ∆θ(GN) := (J JT)−1∇θ f (θ), (44)

and the Hessian usually used in the Newton method is replaced by its GN approximation.
This approximation is reliable if either ri or H(ri) are small, and [5] justifies its usage by
conjecturing that f is nearly linear, a condition that guarantees the latter. We should note
that even if f were not linear, then LM should only use small values of µ when |r| is small
at the current step of the optimization problem.
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The iterative algorithm implemented for the LM method stops when, at a certain
iteration n, any of the following criteria are fulfilled,

|rn| ≤ ε1, (45)

|Jn|∞ ≤ ε2, (46)

|∇θn|
|θn|

≤ ε3. (47)

The first stopping criteria (45) is fulfilled when the objective function defined by
expressions (34) and (35) has reached a value closer to zero than the prescribed tolerance.
It is only when the method stops due to this criteria that we will consider that the model
has been properly calibrated. The second criteria (46) corresponds to a flat gradient, and
the third (47) corresponds to a stagnating update (this last one has never happened while
testing the convergence during the Heston model calibration).

5. Numerical Results

In this word, the SWIFT (the code implemented for this work can be consulted in the
following Github public repository: https://github.com/eudaldrg/SWIFTOptionCalibration
accessed on 2 March 2020) method is used to calibrate a Heston model with European call
options price data at different strikes and maturities, and it will be compared to the pricing and
calibration method based on expression (8) proposed by [5], which, for the sake of readability,
will be called Cui pricer (CP). CP will be implemented using a Gauss–Legendre quadrature
with 64 nodes for its numerical integration step. The upper limit of the integral will be truncated,
whenever possible, at u = 200, but will be adjusted if necessary. The calibration process will
consist of applying an LM method to the objective function defined in expression (34). The
SWIFT method will be implemented using the ChF expression and its derivatives, provided
in [5]. We perform a wide variety of tests that can be summarized as follows:

• Stress tests: the CP and SWIFT methods will be tested with several combinations
of extreme strikes (ATM and deep ITM and OTM) as well as with long-term and
short-term maturities, to detect any possible limitation or numerical issue in a wide
usage range;

• Speed (The computations were performed on a 64-bit Ubuntu 18.04.4 LTS with a
3.70GHz Intel Core i7-8700K processor and 62.8 gigabytes of ram.) tests: the option
calibration speeds for the regular SWIFT method (defined by expression (19)) and the
one devised to quickly compute several option prices with different strike and the
same maturity (defined by expression (29), which will be denoted KSWIFT), will be
compared against CP for three different strike and expiry sets to check whether the
multiple-strike alternative formulation is necessary to obtain a competitive option
calibration method. These scenarios will represent:
– A single expiry and multiple strikes;
– A fixed number of maturities and a fixed number of strikes per maturity;
– Different expiries for each strike.
When computing options with more than one different strike, a combination of OTM
and ITM options will be used to provide an heterogeneous sample of contracts.
Similarly, when more than one maturity is considered, a sample of long- and short-
term expiries will be used;

• Realistic convergence tests: as in [5], convergence of the method will be tested for re-
alistic model parameters representative of long-dated Foreign Exchange (FX), interest
rate, and equity options, as they are relevant and, according to [31], challenging for
simulations of the Heson model.

Several sets of Heston parameters will be used for the different numerical tests and
are presented in Table 1. The last three sets of parameters are representative of long-term
FX, interest rate, and equity options, respectively [32].

https://github.com/eudaldrg/SWIFTOptionCalibration
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Table 1. Set of Heston parameters used in the numerical tests.

Name κ ν σ ρ ν0

θ(1) 3 0.1 0.25 −0.8 0.08

θ(2) 1.5768 0.0398 0.0175 −0.5711 0.0175

θ(FX) 0.5 0.04 1 −0.9 0.04

θ(IR) 0.3 0.04 0.9 −0.5 0.04

θ(EQ) 1 0.09 1 0.04 0.09

Remark 8. θ(1) is obtained from [5] and θ(2) is a plausible set of parameters proposed by us. It
may not be representative of any real-world market, but it is only used as our objective value in our
speed tests. In Section 5.2, we will use an initial guess of θ

(2)
0 = (1.5768, 0.0398, 0.5751,−0.5711,

0.0175)T .

5.1. Stress Tests

Deep ITM and OTM call options are priced together with ATM call options for long-
and short-term maturities using the SWIFT method at two different scales of approximation
(m = 3 and m = 7) and the CP method. The time until maturity τ is given in years. Thus,
the expiries of 0.04 attempt to simulate a situation of around two weeks until expiration of
the option contract.

Table 2 presents the pricing results. We call V3
SW and V7

SW to the prices given by the
SWIFT method at scales of approximation m = 3 and m = 5, respectively, while VCP
refers to the price obtained with the CP method. Both methods run into numerical issues
with either extremely large or extremely small expiries, provided no other changes are
performed in the methods.

Table 2. Set of Heston parameters used in the numerical tests.

Parameters S K τ V3
SW V7

SW VCP

θ(1) 100 50 45 65.565 nan nan

θ(1) 100 100 45 46.911 nan nan

θ(1) 100 200 45 27.198 nan nan

θ(1) 100 50 0.04 44.221 50.000 50.000

θ(1) 100 100 0.04 0.380 1.045 1.046

θ(1) 100 200 0.04 0 0 1.079·10−3

• CP and V7
SW did not produce number (nan) results when evaluating very long expiries.

Looking at the option price execution with the integrated debugger of the GDB
compiler [33] showed that expression (9) runs into numerical overflow when the
exponent dτ

2 of its hyperbolic functions is big enough (the same error happened when
using the original expression provided in [20]). In most of the tests above, the overflow
could be avoided when carefully setting an appropriate value for the upper bound u
of integral in expression (8), and by using a smaller value of the scale m. The error can
also be avoided by selecting the ChF expression provided in [19] (we use this later on,
and we denote the obtained prices by VSH and present the results in Table 3);

• The SWIFT method at scale m = 3 tends to underprice short expiry options. After
checking the SWIFT parameters obtained through the parameter choice method
defined in Section 3, it was observed that the initial value for η, obtained by simply
using the cumulant expression proposed in [1], resulted in a truncated Shannon
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wavelet expansion that did not cover a sufficient domain of the density function
f (y|x). A dynamical choice of the parameter η based on the calculation of the area
underneath the curve of the density function, as described in [1], can avoid this issue.
Increasing the value of m also fixes the problem;

• None of the methods can handle the deep OTM option with a short expiry. The
expected value should be close to but bigger than 0, as there are only 10 trading
days to expiry and the price of the underlying should increase 50% so that the option
contract would not expire and become worthless. CP value seems too high and, in fact,
when moving the value of u in the interval [100, 400], the price never clearly converges
to a certain value, and it can give higher estimates for u > 200 than 1.079× 10−3, or
even negative values. Changing the ChF expression does not fix this issue. SWIFT
consistently gives it a price of 0. The contribution that makes the price different than
zero probably lies in the tails of the distribution function, and one would require
a really big value of c so that a point with a positive payoff is even considered in
expression (29).

Table 3 shows some results either selecting an appropriate value u or keeping u equal
to 200 and using the ChF from [19]. The column u indicates the value at which CP integral
is truncated, and the option price obtained is shown in column VCP. Column VSH shows the
price obtained when keeping u = 200 but implementing CP using the ChF provided in [19].
The last row is an example of the negative values obtained in the deep OTM short-term call.

Table 3. Results for different u and/or using the ChF from [19].

Parameters S K τ u VCP VSH

θ(1) 100 50 45 6 65.565 65.565

θ(1) 100 100 45 6 46.911 46.911

θ(1) 100 200 45 6 27.198 27.198

θ(1) 100 50 0.04 200 50.000 50.000

θ(1) 100 100 0.04 200 1.046 1.046

θ(1) 100 200 0.04 300 −1.174·10−5 1.079·10−3

As it has been shown so far, a crucial step of the calibracion process is the selection
of u for the CP method and m for the SWIFT method. A method to set an optimal value
u is not provided in [5], and it is, therefore, a matter of trial and error, since it must be
manually determined when changing the time to expiry of the options one wants to price.
As for the SWIFT method, we can use the iterative parameter choice provided in [3]. In
particular, a suitable scale of approximation m can be selected by means of Lemma 2. Once
the level of approximation m is fixed, the parameter η can be adaptively calculated in order
to determine the wavelet series truncation more accurately.

5.2. Speed Tests

The calibration speed has been tested for three different sets of strike prices and
maturities, which are available in Appendix B. In order to be sure that the calibration
problem was properly converging, we chose θ(2) as the objective value for the Heston
parameters. When testing each set, we perform the following actions,

• Generate option price values for each strike-expiry pair using θ(2) as input. For this
step, we used the SWIFT method (we also generated them using the CP method and
checked that the difference between both results stayed under 10−7);

• Chose an initial guess for the calibration problem θ
(2)
0 ;
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• Solve the calibration problem with the desired method using θ
(2)
0 as the initial guess

and use the strike–expiry pairs and the prices obtained in the first step as inputs.

Set 2 was obtained from the code provided in [5], and represents a total of 40 options,
distributed in eight different maturities, with each maturity having five different strikes.
Set 1 and set 3 are extreme cases derived from set 2, in order to test the best and worst
calibration points distribution for KSWIFT. Set 1 has the same 40 different strike prices
than set 2, but only a single maturity. What we denote as set 3 is not really a different
dataset, since it consists of running the calibration problem with set 2 and preventing the
KSWIFT algorithm from applying the speed-up techniques discussed in Section 3.3.2. For
this reason, in Table 4, set 3 contains values only for KSWIFT (as set 3 is equivalent to set 2
for the other two calibration methods).

Table 4. Iterations, time needed to calibrate each speed scenario and objective function value reached. I refers to the number
of iterations that LM requieres until it stops, and ε1 corresponds to the LM first stopping criteria (see Section 4), which refers
to the objective function final value.

Strike and Maturities Set Heston Parameters Method Time (Seconds) I ε1

Set 1 θ(2) SWIFT 6.9 10 3.932·10−11

Set 1 θ(2) KSWIFT 4.5·10−3 10 3.932·10−11

Set 1 θ(2) CP 4.6·10−2 10 3.932·10−11

Set 2 θ(2) SWIFT 35.9 13 1.002·10−12

Set 2 θ(2) KSWIFT 5.0·10−2 13 1.002·10−12

Set 2 θ(2) CP 6.3·10−2 13 1.002·10−12

Set 3 θ(2) KSWIFT 1.7·10−1 13 1.002·10−12

The values for KSWIFT and CP have been averaged over 100 executions of the calibra-
tion to provide a good estimate of the required calibration time. It can be seen that regular
SWIFT is orders of magnitude slower without averaging the required time over several
executions. Hence, the multiple-strike alternative formulation presented in Section 3.3.2
and all the speed-up techniques discussed through Section 3 are necessary to provide a
competitive method that can be used for real-time model updating.

KSWIFT performance is comparable to CP for set 2, an order of magnitude faster for
set 1, and an order of magnitude slower for set 3. It can be argued that both set 1 and
set 3 are extreme cases that are not really relevant for real option trading situations. One
would rarely use a single strike per expiry to calibrate an option pricing model, and using
data from a single expiry only seems reasonable when trading a single-option expiry (in
this case, one could benefit from the speed properties of KSWIFT on scenarios like set 1).
According to [5], a reasonable calibration scenario consists of using option prices from
strikes at 0%, ±25%, and ±50% BS delta (derivative of the option price with respect to the
underlying price value. It has a closed analytical expression for European BS options).

The calibration time of KSWIFT and CP is about 0.05 seconds, which seems sufficient
for real-time model updating to provide market information to a human trader. In a more
computationally demanding trading environments, like high-frequency trading, neither
KSWIFT nor CP would be competitive enough.

Remark 9. All the single expiry tests (the first three tests on Table 4) converged to an approximated
value different than θ(2) but approximated all the option prices properly. Using different initial
guesses led to different approximated values, which minimized the objective function. It would
be interesting to see whether this is a property of the Heston distribution (that is, it has at least a
degree of freedom when defined from option prices in a single expiry) or due to the specific scenario
being tested.
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5.3. Realistic Convergence Tests

We use the same procedure as in previous section to solve several different calibration
problems. For each case, we use one of the proposed realistic parameter sets as objective
value and generate option prices for each strike–expiry pair. Then, for each objective
parameter set, 100 different initial guesses are generated. Each component of the initial
parameters guess is drawn uniformly and randomly within ±10% distance of the optimal
value. According to [5], this is representative of real option calibration as, usually, the initial
guess used for a certain calibration problem is the last available parameter estimation.
If the calibration is updated fast enough, it is expected that the initial guess will be this
close to the optimum. The maturities used in [5] are not available, so, for these tests, the
strike–expiry set 2 will be used.

As can be seen in Table 5, even under challenging parameters setups representative
of real option trading, KSWIFT is able to provide accurate estimations of the Heston
parameters, taking, on average, a computation time of hundreds of milliseconds. These
results, in terms of both speed and accuracy, are comparable to the tests in [5], so it is
concluded that KSWIFT is as efficient as CP for real market scenarios. Further, if we
take into account the robustness of KSWIFT in terms of the a priori knowledge of its
parameters, as stated in Section 3.2, we conclude that KSWIFT is a very competitive
method for calibration.

Table 5. Convergence statistics averaged over 100 calibrations. xa refers to the calibration problem’s
estimation of variable xa. For example, |κa − κ∗| refers to how close LM approximation of κ was to
the real value.

θ(FX) θ(IR) θ(EQ)

|κa − κ∗| 6.640·10−4 2.657·10−4 1.160·10−3

|νa − ν∗| 1.547·10−4 1.321·10−5 1.746·10−5

|σa − σ∗| 1.978·10−3 2.248·10−4 3.725·10−4

|ρa − ρ∗| 2.649·10−4 1.365·10−5 8.661·10−6

|νa
0 − ν∗0 | 3.629·10−5 4.790·10−6 8.339·10−6

Iterations 14 6 7

Time (seconds) 3.3 ·10−1 1.9·10−1 2.0·10−1

ε1 2.867·10−11 2.030·10−11 3.643·10−11

6. Conclusions and Future Research

We have investigated the problem of calibrating the Heston model, which belongs to
the class of stochastic volatility models. An extension of the SWIFT method has been pro-
vided in this work for European options calibration, along with novel speed-up techniques,
which can radically improve the performance when several of the priced and calibrated
options have the same time to maturity.

Some numerical issues arise with the ChF for very long-term expiries. Following
the a priori knowledge of parameter selection for the SWIFT method seems to be enough
to avoid these problems, while the parameters of CP need to be adjusted manually. The
proposed speed-up techniques are deemed necessary in order to make SWIFT a competitive
calibration method, as has been seen in the numerical speed tests. In particular, it has
been shown that the only situation where the proposed calibration is significantly slower
than CP is when one calibrates the model with many different maturities with no more
than one or two strikes per maturity. As the number of strikes per expiry increases,
the relative speed of the SWIFT method increases, and it is about ten times faster than
CP when calibrating 40 options with a single maturity. Both extreme situations are not
representative of real option trading needs, and for a reasonably real situation of five
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strikes per expiry, the SWIFT technique is slightly faster than CP. A SWIFT implementation
without the previously discussed speed-up techniques has also been tested and deemed
non-competitive, with calibration times that reached dozens of seconds. Further, the
proposed calibration strategy passes the realistic calibration tests for challenging Heston
model parameters setups presented.

In summary, the proposed SWIFT method is a robust and efficient machinery for
real-time updating of option models used in human-supervised trading schemes. Nei-
therthe SWIFT nor the CP method are suitable for the most demanding algorithmic trading
situations, like high-frequency trading. Future work may encompass the following topics:

• Most of the calibration tests with a single expiry have run into an optimal value
different than the original one. It is to be seen if this is a property of the Heston
model or if this was due instead to the specific parameter or strike/maturity values
being used;

• It would be interesting to study the properties of the SWIFT implementation proposed
for a chosen set of strikes in expression (32). We could interpolate the values at all
strikes with spline methods that require derivatives, and not only derivative-free ones;

• Options with very long maturities may hamper the calibration process due to nu-
merical overflows during the pricing step. The problem of long maturities has been
tackled with Haar wavelets in [24]. It might be worth investigating whether we can
do the same with Shannon wavelets;

• Deep OTM options with very short maturities are challenging to price. The prob-
lem seems to be the lack of accuracy of the approximation on the tails of the den-
sity function;

• Comparison with other calibration methods based on approximation formulae, like,
for instance, the work by [34].
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Appendix A. Gradient Complimentary Formulas

Partial derivatives for gradient computation of the Heston model ChF from [5],

∂d
∂ρ

=
ξσiu

d
, (A1)

∂A2

∂ρ
=

σiu(2 + ξτ)

2dν0

(
ξ cosh

dτ

2
+ d sinh

dτ

2

)
, (A2)

∂B
∂ρ
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eκτ/2

ν0

(
1

A2

∂d
∂ρ
− d

A2
2

∂A2

∂ρ

)
, (A3)

∂A1

∂ρ
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iu
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)
τξσ

2d
cosh

dτ

2
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∂A
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Appendix B. Strike and Maturity Test Sets

Set 1 and set 2 are provided in Tables A1 and A2, respectively. The goal of set 3 is just
to check the behavior of KSWIFT in the worst configuration possible for its speeding up
techniques. This scenario is only be applied to KSWIFT, and consists of the same strikes
and maturities as set 2. The code implementation of KSWIFT generated for this work
receives as inputs a vector of expiry-defined-data (EDD). Each element of the vector of
EDD contains a single expiry and a vector of strikes. Thus, set 2 will have all the strikes
with the same expiry grouped in a single EDD, and set 3 will have an EDD consisting on a
single strike. This will enforce full recomputation of the density and payoff coefficients for
each strike.

Table A1. Set 1 of strikes and expiries. All the strikes have the same expiry τ = 0.119047619047619.

Strike Strike Strike Strike Strike

0.9371 0.9956 1.0427 1.2287 1.3939

0.8603 0.9868 1.0463 1.2399 1.4102

0.8112 0.9728 1.0499 1.2485 1.4291

0.7760 0.9588 1.0530 1.2659 1.4456

0.7470 0.9464 1.0562 1.2646 1.4603

0.7216 0.9358 1.0593 1.2715 1.4736

0.6699 0.9175 1.0663 1.2859 1.5005

0.6137 0.9025 1.0766 1.3046 1.5328

Table A2. Set 2 of strikes and expiries.

Expiry Strike Strike Strike Strike Strike

0.119047619047619 0.9371 0.9956 1.0427 1.2287 1.3939

0.238095238095238 0.8603 0.9868 1.0463 1.2399 1.4102

0.357142857142857 0.8112 0.9728 1.0499 1.2485 1.4291

0.476190476190476 0.7760 0.9588 1.0530 1.2659 1.4456

0.595238095238095 0.7470 0.9464 1.0562 1.2646 1.4603

0.714285714285714 0.7216 0.9358 1.0593 1.2715 1.4736

1.07142857142857 0.6699 0.9175 1.0663 1.2859 1.5005

1.42857142857143 0.6137 0.9025 1.0766 1.3046 1.5328
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