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ALTERATIONS IN GUT MICROBIOME IN CIRRHOSIS AS ASSESSED BY QUANTITATIVE
METAGENOMICS. RELATIONSHIP WITH ACUTE-ON-CHRONIC LIVER FAILURE AND PROGNOSIS

200 patients were studied using quantative metagenomics.
Progression of cirrhosis, is associated with changes in gut-
microbiome characterized by progressively reduced
metagenomic species richness and increase in
Peptostreptococous sp. Microbiome correlated with clinical
outcomes, survival and functional changes.
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BACKGROUND AND AIMS: Cirrhosis is associated with
changes in gut microbiome composition. Although acute-on-
chronic liver failure (ACLF) is the most severe clinical stage
of cirrhosis, there is lack of information about gut microbiome
alterations in ACLF using quantitative metagenomics. We
investigated the gut microbiome in patients with cirrhosis
encompassing the whole spectrum of disease (compensated,
acutely decompensated without ACLF, and ACLF). A group of
healthy subjects was used as control subjects. METHODS:
Stool samples were collected prospectively in 182 patients
with cirrhosis. DNA library construction and sequencing were
performed using the Ion Proton Sequencer (ThermoFisher
Scientific, Waltham, MA). Microbial genes were grouped into
clusters, denoted as metagenomic species. RESULTS: Cirrhosis
was associated with a remarkable reduction in gene and
metagenomic species richness compared with healthy sub-
jects. This loss of richness correlated with disease stages and
was particularly marked in patients with ACLF and persisted

after adjustment for antibiotic therapy. ACLF was associated
with a significant increase of Enterococcus and Peptos-
treptococcus sp and a reduction of some autochthonous bac-
teria. Gut microbiome alterations correlated with model for
end-stage liver disease and Child-Pugh scores and organ fail-
ure and was associated with some complications, particularly
hepatic encephalopathy and infections. Interestingly, gut
microbiome predicted 3-month survival with good stable
predictors. Functional analysis showed that patients with
cirrhosis had enriched pathways related to ethanol produc-
tion, y-aminobutyric acid metabolism, and endotoxin biosyn-
thesis, among others. CONCLUSIONS: Cirrhosis is
characterized by marked alterations in gut microbiome that
parallel disease stages with maximal changes in ACLF. Altered
gut microbiome was associated with complications of cirrhosis
and survival. Gut microbiome may contribute to disease pro-
gression and poor prognosis. These results should be
confirmed in future studies.
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C irrhosis of the liver is associated with marked al-
terations of the gut-liver axis that are believed to
play a role in some complications of the disease. One of the
most important consequences of an abnormal gut-liver axis
is the development of pathologic translocation of bacteria
and/or bacterial products from the gut to the lymph nodes.”
This increased translocation appears to be an important
triggering factor of systemic inflammation that is charac-
teristic of advanced cirrhosis and is key to the development
of bacterial infections, which are a major cause of morbidity
and mortality.”

It has been known for many years that in cirrhosis,
particularly in advanced stages of the disease, there is an
important gut dysbiosis.”” Earlier studies showed that this
dysbiosis is characterized by an overgrowth of some
potentially pathogenic bacteria together with reduced
amounts of some beneficial autochthonous bacteria, which
could contribute to bacterial translocation and increased
risk of infections.® Knowledge on alterations of gut micro-
biota in cirrhosis has improved in recent years with the use
of techniques that allow identification and quantification of
gut microbes. Several studies have shown a reduction in
autochthonous taxa, including Lachnospiraceae, Rumino-
coccaceae, and Clostridiales XIV and an increase in patho-
genic taxa such as Enterococcaceae, Staphylococcaceae, and
Enterobacteriaceae, an alteration that appears to worsen as
the disease progresses.”® Moreover, it has been shown that
these abnormalities correlate with development of some
complications of the disease, particularly hepatic encepha-
lopathy (HE).” These studies used targeted sequencing of
16S ribosomal RNA, a technique that is limited to assess-
ment of bacterial taxonomic composition and does not
provide a comprehensive study of bacterial genes.

Many recent studies in a number of diseases such as
obesity and diabetes have used high-throughput methods of
untargeted DNA sequencing in conjunction with human mi-
crobial gene catalogues, allowing microbial species-level and
strain-level resolution and detailed function annotations of
microbial communities."”'" To our knowledge, only 1 study
has reported the use of this technology in cirrhosis that
showed a profound alteration of gut microbiome character-
ized by reduced gene and metagenomic richness and marked
depletion of metagenomic species (MGS) together with colo-
nization of the gut by oral bacterial species.'? Nevertheless, in
this study most patients had compensated hepatitis B
cirrhosis, and the relationship between alterations in MGS and
disease stage or outcomes was not assessed. Moreover, the
study did not evaluate gut microbiome in patients with acute-
on-chronicliver failure (ACLF), a condition that represents the
end of the clinical spectrum of cirrhosis characterized by 1 or
more organs in failure, frequent association with bacterial
infections, and high mortali'cy,13 in which the assessment of
gut microbiome alterations is of marked relevance.

On this background, we aimed to investigate gut
microbiome using quantitative metagenomics in a large
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Cirrhosis is associated with alterations in gut microbiome.
However, little information exists on gut microbiome using
quantative metagenomics in cirrhosis. We investigated
gut-microbiome using quantative metagenomics in the
whole-spectrum of the disease, from compensated
cirrhosis to ACLF.

NEW FINDINGS

Using high-throughput analysis, progression of cirrhosis
was associated with profound reduction of gene and
metagenomic species richness, that are particularly
intense in ALCF. Gut microbiome predicted survival and
was associated with functional changes.

LIMITATIONS

Patients with decompensated cirrhosis and ACLF
frequently receive antibiotics for treatment of infections,
which can affect gut microbiome. This a single center
study with a relatively low number of patients.

IMPACT

This is the most in depth analysis of gut-microbiome in
patients with ACLF. Strategies to modify gut
microbiome composition and functionality in patients
with decompensated cirrhosis and ACLF should be
investigated.

series of patients with cirrhosis encompassing the whole
spectrum of the disease, from compensated to decom-
pensated cirrhosis and ACLF. Our study demonstrates a
profoundly abnormal gut microbiome in cirrhosis compared
with healthy subjects that is exceptionally altered in pa-
tients with ACLF and provides a characterization of abnor-
malities of MGS throughout the progression of the disease
and their correlation with clinical features and mortality.

Patients and Methods
Population and Study Design

This prospective study was performed in 182 patients with
cirrhosis seen at the Liver Unit of Hospital Clinic of Barcelona
between March 2015 and February 2017. Eleven patients were
studied at 2 time points when they were in different stages of
cirrhosis, and only the first sample of those patients was taken
into account for survival analysis. The study was aimed at
assessing gut microbiome in cirrhosis and its relationship with
clinical findings and disease stages. Inclusion criteria were age

* Authors share co-first authorship; $ Authors share co-senior authorship.

Abbreviations used in this paper: ACLF, acute-on-chronic liver failure;
FDR, false discovery rate; HE, hepatic encephalopathy; IHMS, Interna-
tional Human Microbiome Standards; KEGG, Kyoto Encyclopedia Genes
and Genomes; MELD, model for end-stage liver disease; MGS, meta-
genomic species.
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> 18 years and cirrhosis diagnosed by either liver biopsy or a
combination of clinical, analytic, ultrasound, elastographic,
and/or endoscopic findings. Exclusion criteria were severe
extrahepatic diseases, hepatocellular carcinoma beyond the
Milan criteria, previous organ transplantation, HIV infection,
and lack of informed consent. Patients with cirrhosis were
categorized in 4 groups: patients with compensated cirrhosis
(ie, without current complications of the disease), ambulatory
patients with stable decompensated cirrhosis, patients hospi-
talized because of acute decompensation of cirrhosis without
ACLF, and patients with ACLF. In addition, a group of healthy
subjects from the Spanish MetaHit project cohort were also
included as control subjects."*

When patients were included in the study, demographic,
clinical, and laboratory data were recorded and a fecal sample
collected. For outpatients, subjects were asked to provide a
stool within the following 7 days of the screening visit. For
hospitalized patients, data were collected at admission and the
fecal sample was collected when the patient provided the stool
(median, 2 days after admission [interquartile range, 1-4]).
Data collected was related to cirrhosis (etiology, alcohol con-
sumption, laboratory variables, and complications before in-
clusion in the study and during and after hospitalization),
current and past medications, and nonhepatic diseases. Special
care was taken in the assessment of the presence of infection
and current or past use of antibiotics. All patients were fol-
lowed for at least 3 months from study inclusion.

Decompensated cirrhosis was defined when patients had 1
of the following complications: ascites, gastrointestinal
bleeding, HE grade > 2, and/or bacterial infections, without
meeting the diagnostic criteria of ACLF. ACLF was defined ac-
cording to the type and number of organ failures, as per the
Canonic study and EASL guidelines.”*"®

The study was approved by the Ethics Committee of the
Hospital Clinic of Barcelona (HCB/2014/0577). All patients
(and/or relatives) signed a written informed consent before
entering in the study.

Procedures

A quantitative metagenomic pipeline following the Inter-
national Human Microbiome Standards (IHMS; http://www.
microbiome-standards.org) was used to assess both composi-
tion and function of the gastrointestinal microbiome.*®

Fecal samples collection. Fecal samples from hospi-
talized patients were collected following the protocol IHMS
SOP002 and 003, using when needed an anaerobic generator
and processed within 24 hours. At the laboratory, 1 g of feces
was mixed with 4 mL of stabilizing solution (RNAlater Stabili-
zation Solution; ThermoFisher Scientific, Waltham, MA). Feces
sampling from outpatients was done following the protocol
IHMS SOP005, and self-collection samples were preserved in
stabilizing solution at room temperature and handed to the
biologic laboratory within 24 hours to 7 days after collection.
All samples were homogenized and aliquoted to 200 mg sub-
samples that were kept at -80°C until DNA extraction.

DNA extraction. DNA was extracted from 1 subsample
following IHMS SOP007 V2. DNA was quantitated using Qubit
Fluorometric Quantitation (ThermoFisher Scientific) and qual-
ified using DNA size profiling on a Fragment Analyzer (Agilent
Technologies, Santa Clara, CA).
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DNA library construction and sequencing. Three
micrograms of high-molecular-weight DNA (>10 kbp) was
used to build the library. Shearing of DNA into fragments of
approximately 150 bp was performed using an ultrasonicator
(Covaris, Woburn, MA), and DNA fragment library construction
was performed using the lon Plus Fragment Library and lon
Xpress Barcode Adaptaters Kits (ThermoFisher Scientific). Pu-
rified and amplified DNA fragment libraries were sequenced
using the Ion Proton Sequencer (ThermoFisher Scientific),
resulting in 21.9 + 3 million (mean + SD) single-end short
reads of 150-baselong single-end reads on average.

Quality control reads. Reads were cleaned using Alien
Trimmer24 to remove resilient sequencing adapters and to
trim low-quality nucleotides at the 3’ side using a quality and
length cutoff of 20 and 45 bp, respectively. Cleaned reads were
subsequently filtered from human and other possible food
contaminant DNA (using human genome RCh37-p10, Bos
taurus, and Arabidopsis thaliana with an identity score
threshold of 97%).

Gene abundance profiling. The gene abundance
profiling was performed using the 10.4 million gene integrated
reference catalog of the human microbiome.** Filtered high-
quality reads were mapped with an identity threshold of 95%
to the 10.4 million gene catalogue using Bowtie'” included in
METEOR software.'® The gene abundance profiling table was
generated by means of a 2-step procedure using METEOR. First,
the unique mapped reads (reads mapped to a unique gene in
the catalogue) were attributed to their corresponding genes.
Second, the shared reads (reads that mapped with the same
alignment score to multiple genes in the catalogue) were
attributed according to the ratio of their unique mapping
counts. The gene abundance table was processed for rarefac-
tion and normalization and further analysis using the MetaO-
MineR (momr) R package (https://cran.r-project.org/web/
packages/momr/index.html).*®

Read downsizing. To decrease technical bias due to
different sequencing depth and to avoid any artifacts of sample
size on low abundance genes, read counts were rarefied. The
gene abundance table was downsized to 12 million mapped
reads for each sample. After that, we found 4762 to 928,686
genes for the 182 samples, with an average of 325,147.5 genes.
The resulting rarefied gene abundance table was normalized
according to the FPKM strategy (Fragments Per Kilobase per
Million mapped reads) (normalization by gene size and number
of total mapped reads reported in frequency) to give the gene
abundance profile table.

MGS construction. The gene catalogue was clustered by
co-abundance as previously described,?’ which defined 6300
co-abundance gene groups with high correlations (Pearson
correlation coefficient > 0.9). The 1529 largest of these, with
more than 500 genes, were considered as MGS and are referred
to as species throughout the article.

The abundance profiles of the co-abundance gene groups
and MGS throughout the samples were determined as the mean
abundance of 50 marker genes. Furthermore, the co-abundance
gene groups and MGS were taxonomically annotated by sum-
ming up the taxonomic annotation of their genes as described
by Nielsen et al.”’

Microbial gene richness (gene count) was calculated by
counting the number of genes detected at least once in a given
sample, using the average number of genes counted in 10
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independent rarefaction experiments. MGS richness (MGS
count) was calculated directly from the MGS abundance matrix.

Statistical Analysis

Clinical data. Comparisons between groups were per-
formed using the Student ¢ test or analysis of variance for nor-
mally distributed continuous variables, the Mann-Whitney U test
or Kruskal-Wallis test for non-normally distributed continuous
variables, and the XZ test or Fisher exact test for categorical
variables. All statistical tests were 2-tailed, and P < .05 were
considered significant. Statistical analysis was performed using
SPSS Statistics Version 22.0 (IBM Corp, Armonk, NY).

Richness analysis. Global comparisons between groups
were performed using a Kruskal-Wallis test and pairwise
comparisons were performed with a post hoc Dunn test; we
identified a significant difference if P < .05. Comparison with
the MetaHit cohort'* was performed using a Wilcoxon rank-
sum test.

Similarity between samples. Spearman correlation
between samples was performed using the abundance of the
species detected in the samples. Hierarchical clustering of the
samples was performed using Ward’s method.

Taxonomy distribution. The abundance of each genus
was computed throughout samples as the sum of the abun-
dance of all species belonging to the considered genus. Mean
abundance of each genus in each group was next computed.
Only genus representing more than 1% of the total composition
were represented.

Barcode visualization. MGS occurrence and abundance
within samples are visualized using "barcodes," a heat map of
the frequency abundance table of 50 marker genes with sam-
ples in columns and genes in rows. A heat color code is used
(white for 0, light blue < blue < green < yellow < orange < red
for increasing abundance, each color change corresponding to a
4-fold abundance change). In these barcodes, MGS appear as
vertical lines (co-abundant marker genes in the sample)
colored according to gene abundance.

Gut metagenome analysis. To identify associations
between metagenomics profiles and populations, a Kruskal-
Wallis and post hoc Dunn test were performed. A Benjamini-
Hochberg correction®’ was applied to the results of the
Kruskal-Wallis test. We identified a MGS marker for a Kruskal-
Wallis-corrected P < .05 and Dunn P < .05.

Coefficients of correlation between metagenomics profiles
and clinical data and their significance were computed using a
Spearman correlation. A Benjamini-Hochberg correction was
applied, and MGS with at least 1 significant correlation at the
threshold of P < .01 were represented. Correlations with P <
.05 were printed.

Functional analysis. The annotation of the genes based
on the Kyoto Encyclopedia Genes and Genomes (KEGG) data-
base (version 82; https://www.genome.jp/kegg/) was used.
Through the functional annotation of the reference gene cata-
logue to KEGG orthology groups, abundances of KEGG orthol-
ogy were computed for each sample. Gut metabolic modules
information”” was also used: Gene counts for each KEGG
orthology have been summed and gut metabolic modules
abundance were computed using an internal pipeline taking
into account complex and alternative paths. An abundance
matrix for the functional modules was obtained. Differentially
abundant gut metabolic modules were computed with a Wil-
coxon rank-sum test between decompensated cirrhosis and
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ACLF samples and between healthy subjects and cirrhosis
samples in additional results.

Model construction and validation. The predictive
power of gut microbiota for the prediction of mortality was
assessed using a penalized logistic regression model. Logistic
regression is a supervised method for a 2-class or multiclass
classification problem.?* Model construction, parameter fine-
tuning, and validation were performed using the caret pack-
age (Classification And REgression Training).”* We used
penalized logistic regression to build a predictive model of
mortality at 3 months based on the gut microbiota profiles
using for input the species-level abundance data.

Input data were restricted to the samples with a status
alive, A (np, = 137), or deceased, D (np = 37, total ny = 174), at
3 months and to the species with an occurrence > 10% in the
cohort. Training and discovery cohorts were, respectively, 65%
(np =80, np = 23, ny = 103) and 35% (ny = 43, np = 11, ny =
54) of the global cohort, randomly drawn. Three preprocessing
steps were applied to the features in the training cohort: Near-
zero variance and high-correlated variables were filtered, and
linear combinations were removed, using caret built-in
functions.*®

For each model, the performance was evaluated on the
discovery cohort with the area under the curve, sensitivity, and
specificity. The coefficients of the regression were used as a
way to measure the importance of the features in the prediction
of each status. A positive coefficient indicated alive status,
whereas a negative coefficient indicated deceased status.

To evaluate the global robustness and performance of the
models, 300 repetitions were performed, each time with a
new random draw of the samples in the training and dis-
covery cohort. The mean value of the area under the curve,
sensitivity, specificity, and number of predictors was
computed. For each predictor, the mean value and SD of all
coefficients were computed. A list of stable predictors was
obtained, composed of the features selected in more than 10%
of all models and for which abs(mean(coef)) > abs(sd(coef)),
to keep only predictors that were always indicating the same
status.

We also used random forest models with the caret package
based on the random forest R function. In our validation
scheme, 80% of the cohort was used for model training and
20% for model testing, repeated 100 times. The number of
trees was set to 500 by default, and the mtry parameter was
adjusted during the training process. The accuracy for model on
training data is based on the out-of-bag error. The unbalanced
dataset was compensated by an oversampling strategy to give
equal importance to the “alive” and “death” classes.

Results

Characteristics of Study Population

Demographic, clinical, and laboratory data of patients
included in the study are shown in Table 1. Most patients
were men (71%) with a mean age of 60 + 11 years. The
most common causes of cirrhosis were excessive alcohol
consumption and hepatitis C infection. As expected, patients
with ACLF had more advanced liver disease compared with
other groups. In fact, they had higher frequencies of ascites
and HE, more marked impairment of liver and renal
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Table 1.Demographic and Clinical Data and Liver and Kidney Function Tests in All Patients

Compensated  Decompensated = Decompensated Inpatients
(n = 24) Outpatients (n = 9) Without ACLF (n = 84) ACLF (n = 65)

Age, y 63 (57-70) 54 (51-59) 60 (53-67) 60 (50-65)
Male gender 7 (71) 9 (100) 57 (68) 47 (72)
Diabetes mellitus 6 (25) 2 (22) 1(37) 1(32)
Etiology: alcohol and/or hepatitis C 13 (54)/3 (13) 8 (89)/0 51 (61)/14 (17) 40 (62)/5 (8)
Presence of ascites 0 7 (78) 5 (54) 55 (85)
Presence of encephalopathy 0 1(11) 12 (14) 37 (57)
Presence of bacterial infection 0 0 47 (56) 38 (59)
Serum creatinine (mg/dL) 0.8 (0.7-0.9) 7 (0.6-1) 0.84 (0.5-1.2) 2 (1.1-2.4)
Serum bilirubin (mg/dL) 1(0.9-1.8) 9 (1-4) 1.9 (1-4) 5 (1.3-16)
International normalized ratio 1.2 (1.1-1.3) 5 (1.3-1.6) 1.4 (1.2-1.7) 1.9 (1.4-2.2)
Serum sodium (mEg/L) 142 (141-143) 139 (134-142) 136 (134-139) 136 (131-138)
Serum albumin (g/L) 41 (37-45) 5 (30-39) 29 (25-34) 29 (26-34)
Platelets (x70%/L) 104 (68-136) 8 (81-117) 93 (60-124) 71 (54-111)
Blood leukocytes (x 10%/L) 6 (4-7) 4 (3-7) 5 (4-7) 7 (5-12)
C-reactive protein (mg/dL) — — 2.2 (0.7-5) 2.4 (1-4)
Mean arterial pressure (mm Hg) 98 (88-105) 90 (82-93) 81 (73-91) 80 (68-90)
MELD score 9 (8-12) 14 (11-17) 14 (10-19) 26 (18-31)
Child-Pugh score 5 (5-6) 8 (7-9) 8 (6-9) 11 (9-12)
Body mass index (kg/m?) 28 (25-31) 28 (24-29) 27 (23-30) 27 (23-30)
Beta-blocker treatment’® 11 (46) 1(11) 31 (37) 28 (44)
Norfloxacin treatment” 14 1(11) 17 (20) 11 (17)
Rifaximin treatment® 14 2 (22) 10 (12) 11 (17)
Lactulose/lactitol treatment® 1) 4 (44) 29 (35) 23 (36)
Proton pump inhibitor treatment” 4 (17) 6 (67) 43 (51) 27 (42)
Metformin treatment” 4 (16) 1(11) 7 (8) 8 (12)
Antibiotic treatment at fecal sample collection 0 0 52 (62) 44 (68)

NOTE. Values are median and (interquartile range) for quantitative variables and n (%) for qualitative variables.

@0ther etiologies of cirrhosis were alcohol and hepatitis C (n =

1); NAFLD (6); primary biliary cholangitis (PBC) (1) in

compensated cirrhosis, alcohol, and hepatitis C (1) in decompensated outpatients; alcohol and hepatitis C (7), hepatitis B (1),
NAFLD (5), cryptogenetic (4), and PBC (2) in decompensated inpatients without ACLF; and alcohol and hepatitis C (10),
hepatltls B (1), NAFLD (4), cryptogenetic (3), PBC (1), and hemochromatosis (1) in patients with ACLF.

bIn hospitalized patients, refers to treatments received before hospital admission. Fecal samples for microbiome analysis were

collected a median of 2 days after admission to the hospital.

function tests, and higher Child-Pugh and model for end-
stage liver disease (MELD) scores compared with patients
with decompensated cirrhosis without ACLF. By contrast,
the frequency of bacterial infections in patients with
decompensated cirrhosis without ACLF and in those with
ACLF was similar. The type and characteristics of bacterial
infections in both groups are shown in Supplementary
Table 1. Finally, the number of patients receiving prophy-
lactic antibiotics, either rifaximin or norfloxacin, was also
similar between these 2 groups.

Comparison of Gut Microbiome Between Healthy
Subjects and Patients With Cirrhosis

A hierarchical clustering analysis including all samples
was performed and showed that patients with cirrhosis
were clearly separated from healthy subjects. Moreover,
gene and MGS richness were strikingly decreased in patients
with  cirrhosis compared with healthy subjects
(Supplementary Figure 1). Overall, 613 MGS had significant
differential abundance between healthy subjects and the
whole series of patients with cirrhosis, and 566 MGS were
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Figure 1. (Top) Comparison of gene (left) and MGS (right) richness in healthy subjects (n = 75, green) and in patients with
cirrhosis divided according to disease stage: compensated cirrhosis (n = 24, maroon), decompensated outpatients (n = 9,
red), decompensated inpatients without ACLF (n = 84, blue) and ACLF (n = 65, dark blue). (Bottom) Comparison of gene (left)
and MGS (right) richness for the same group of subjects shown above, categorized according to whether they were receiving

antibiotics (turquoise) or not (pink).

enriched in healthy subjects and 47 in patients with
cirrhosis. Remarkably, Enterococcus sp and oral species such
as Streptococcus oralis and Streptococcus parasanguinis
were significantly enriched in patients with cirrhosis
(Supplementary Figure 2).

To assess the existence of possible differences between
healthy subjects and patients with early stages of cirrhosis,
we compared the group of patients with compensated
cirrhosis with that of healthy subjects. Thirty-six MGS had
significant differential abundance between the 2 groups;
23 MGS were enriched in healthy subjects and 13 in
compensated cirrhosis (Supplementary Figure 3). Patients
with compensated cirrhosis had higher levers of Clos-
tridium sp, Erysipelatoclostridium ramosum, and Strepto-
coccus parasanguinis as compared with healthy subjects.
We performed prediction models to evaluate microbial
profiles that could discriminate healthy subjects from pa-
tients with compensated cirrhosis. A model was obtained

with 52 stable predictors (20 associated with healthy
subjects and 32 associated with compensated cirrhosis)
(area under the receiver operating characteristic curve,
0.81).

Characterization of Gut Microbiome Across
Different Stages of Cirrhosis: Relationship With
Compilications and Disease Severity

Metagenomic sequencing revealed that gene richness
and MGS richness significantly decreased with disease
progression (P < .001) (Figure 1). Among the different
stages of cirrhosis, patients with ACLF had the lowest
richness, which was significantly lower than that of patients
with decompensated cirrhosis without ACLF (P < .01). By
contrast, patients with compensated cirrhosis had the
highest richness yet significantly lower than that of healthy
subjects. Of interest, outpatients with stable decompensated

-3
5
-]
g
=
=
S




212  Solé et al

comp.

decomp.

Gastroenterology Vol. 160, No. 1

AD ACLF

CAG00248,2251,Roseburia sp. CAG:45,Roseburia i [ 1.83e-07
CAGO0780, 1496, Fi CAG:41,ur Fimicutes i 18307
CAG01272,725,Adlercreutzia equolifaciens,Adlercreutzia —t * l : r 1.83e-07
CAG00164,2551,Blautia wexlerae,Blautia 5: 3 j - 5.51e-07
CAG00189,2446,Roseburia sp. CAG:100,Roseburia -] | : i i [ 5.51e-07
CAG00563,1756,Clostridium sp. CAG:91,unclassified Clostridiales - _ E |- = .  9.25e-07
CAG00937,1230,unclassified,unclassified 'E 4 8 9.25e-07
CAG00294,2173 ified Firmicutes, unclassified Firmicutes | | [ 1.39¢-06
CAG01214,822,unclassified,unclassified - l l I: E H I @ I ;— 1.39e-06

B T i
CAG00506,1862,unclassified,unclassified - Fl 'E ' ]I ” | E;} 1.53e-06
CAG01094,1020,C idium sp. CAG:273, Clostridiales ) - 1.53e-06
CAG00782,1489,E n rectale,E . N i EEIE i o= POl 24806
CAG00218,2364, intestinihominis,B i = I d - 3.07e-06
CAG00284,2188, ified R Rumir T ! 2 3.24e-06
CAG00452,1941,Cl sp. CAG:167 ified Clostridiales [ 3.33e-06
CAG01162,933,unclassified,unclassified - l I 3.33e-06

I F il 1. = = ¥ = =
CAG00347,2079,Er faecium,Ent is | -0 E“;J\:l 0N o= ! [ < ' 3.91e-06
CAG00057,1397,Homo sapiens,Homo | i o s 391606

H s Bt

CAG00257,2252,Enterococcus faecalis,Enterococcus - H I 1 H | !' - 3.91e-06
CAG00077,3095,unclassified,unclassified - E t I i - 3.91e-06

Figure 2. Differentially abundant MGS in patients with cirrhosis divided according to disease stages. MGS are in rows; MGS
identification, genes number, and taxonomy (species name and genus) are indicated on the left. Abundance is indicated by
color gradient from white (not detected) to red (most abundant). Individuals ordered by increased richness for each disease
stage (MGS mean) are in columns. Significance Kruskal-Wallis test (g value, false discovery rate [FDR] adjusted) is given on the
far right. Comp, compensated; Decomp, decompensated outpatients; AD, decompensated inpatients without ACLF; ACLF,

acute-on-chronic liver failure.

cirrhosis had higher gene and MGS richness compared with
that of inpatients with decompensated cirrhosis. Interest-
ingly, this loss of richness that paralleled disease progres-
sion persisted after adjustment for antibiotic therapy,
suggesting that findings observed could not be explained on
the basis of a distinct or more broad-spectrum antibiotic
therapy frequently given to patients with advanced stages of
cirrhosis (Figure 1).

To further explore the relationship between microbiome
findings and disease stages, we then analyzed significantly
different MGS in the different stages of cirrhosis. Overall,
354 MGS were significantly contrasted between at least 2
groups. The most contrasted MGS are shown in Figure 2. Of
interest, 72 MGS contrasted between patients with decom-
pensated cirrhosis without ACLF and patients with ACLF.
Particularly, patients with ACLF were enriched in MGS of
Enterococcus and Peptostreptococcus species. On the con-
trary, patients with ACLF had loss of some species such as
Roseburia and Firmicutes. To further assess the relationship
between MGS and clinical features, we categorized patients
according to relevant clinical findings, including etiology of
cirrhosis, active alcohol consumption, treatment with beta-
blockers, presence of complications, chronic antibiotic
therapy, and laxative therapy (Table 2). Of note, active
alcohol consumption, history of HE, and chronic treatment
with rifaximin, norfloxacin, or lactulose/lactitol were asso-
ciated with significantly lower MGS richness compared with
their respective counterparts (Supplementary Figures 4-6),
whereas differences according to alcoholic etiology and
presence of infections were close to statistical significance.
By contrast, chronic treatment with beta-blockers or proton

pump inhibitors was not associated with significant differ-
ences in MGS richness.

Interestingly, in the overall group of patients with
cirrhosis, a cluster of MGS positively correlated with the
severity of cirrhosis, as estimated by MELD and Child-Pugh
scores and the number of organ failures, indicating a strong
relationship between disease severity and gut microbiome
findings (Figure 3). Similar findings were observed when
only patients not treated with antibiotics were analyzed
separately (Supplementary Figure 7). The most relevant
MGS that correlated significantly with MELD score are
shown in Supplementary Figure 8. Thoroughly, 3 MGS
correlated positively with MELD score, including Entero-
coccus faecium, Enterococcus faecalis, and the MGS Homo
sapiens. By contrast, 276 MGS correlated negatively with
MELD score, indicating that the loss of some species, such as
Clostridiales, Faecalibacterium, or Lachnoclostridium, was
associated with disease severity.

To reduce the complexity of the dataset, a network
representation of MGS from patients with cirrhosis was
performed (Supplementary Figure 9). Moreover, a
Spearman correlation showed that a community composed
of MGS of the genus Enterococcus and oral bacteria like
Streptococcus and Veillonella were positively correlated with
the severity of the disease, as estimated by MELD score and
negatively correlated with all other communities.

At the genus level, comparison between the overall
group of patients with cirrhosis and healthy subjects
showed an increase of genus Bacteroides, Enterococcus, and
Streptococcus in patients with cirrhosis. On the contrary, in
healthy subjects there was an increase of beneficial
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Table 2.Comparison of Metagenomics Richness According to Patient Characteristics

Richness in MGS Number of Significantly

Category Condition”  No. of Cases P value Contrasted MGS
Etiology of cirrhosis (alcohol vs other) Alcohol 123 .07 97 MGS 14 MGS
Other 48 83 MGS
Alcohol consumption Active alcohol 56 .01 172 MGS 10 MGS (including MGS of
S salivarius and E faeaclis)
Never 43 62 MGS
Hepatic encephalopathy Yes 54 .04 83 MGS 17 MGS
No 117 66 MGS
Infection Yes 77 .06 98 MGS 7 (including MGS of E faecium
and E faecalis)
No 94 91 MGS
C-reactive protein 34 MGS® 2 MGS
32 MGS
Leukocytes 27 MGS” 2 MGS
25 MGS
Systemic inflammatory Yes 41 .05 47 MGS 3 MGS (including Homo sapiens,
response syndrome E faecalis and E faecium)
No 130 44 MGS
Rifaximin treatment® Yes 22 .01 78 MGS 8 MGS
No 149 70 MGS
Norfloxacin treatment® Yes 28 .05 55 MGS 5 MGS
No 143 50 MGS
Proton pump inhibitor treatment® Yes 75 .91 14 MGS 8 MGS
No 96 6 MGS
Beta-blocker treatment® Yes 65 97 42 MGS 18 MGS
No 105 24 MGS
Lactulose/lactitol treatment® Yes 49 <.001 16 MGS 1 MGS
No 121 15 MGS

NOTE. For patients evaluated on 2 different occasions (n = 11), only the first assessment is included in this table.
%n all cases, the presence of the condition is associated with lower richness compared with the absence of the condition.
Alcohol etiology and alcohol consumption have lower richness compared with other etiologies and no alcohol consumption,

respectively.
bMGS significantly correlated.

°In hospitalized patients, refers to treatments received before hospital admission. Fecal samples for microbiome analysis were

collected a median of 2 days after admission to the hospital.

autochthonous bacteria, such as Faecalibacterium, Eubacte-
rium, and Ruminococcus. Moreover, in parallel with cirrhosis
progression, there was a significant increase of some path-
ogenic bacteria, particularly Enterococcus and Peptos-
treptococcus, and a significant decrease of some beneficial
autochthonous bacteria, such as Faecalibacterium Rumino-
coccus, Paraprevotella, Eubacterium, Phascolarctobacterium,
Dorea, Oscillibacter, Lachnoclostridium Roseburia, and Blau-
tia, (Supplementary Figure 10).

Relationship Between Gut Microbiome and
Prognosis

Of the 171 patients included in the analysis, 34 died
during the 3-month follow-up period (7 from the decom-
pensated cirrhosis group [8%] and 27 from the ACLF
group [42%]). Patients who died had a significant loss of
gene richness compared with those who survived
(Figure 4A4). At the MGS level, 17 were enriched in patients
who died and 132 in patients who survived. Remarkably,
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some Enterococcus species were more abundant in patients
who died.

Prediction models were built to evaluate the capacity of
gut microbiome to predict 3-month mortality. Overall, gut
microbiome was a good predictor of mortality with an area
under the receiver operating characteristic curve of 0.708.
Some species were strongly associated with good prognosis,
particularly Paraprevotella clara, Bacteroides salyersiae,
Clostridium sp, and Roseburia hominis. On the contrary,
other species, such as E faecium, Streptococcus thermophilus,
and Ruminococcus lactaris, were predictors of poor short-
term survival (Figure 4B). As an example, R hominis was
found in 42% of patients who survived versus only 8% of
those who died. By contrast, E faecium was found in 66% of
patients who died versus 29% of patients who survived.

To simplify and potentially improve the models predic-
tive of 3-months mortality, we used random forest models
based on microbiome richness and MELD taken separately
or together. Accuracy was superior for MELD than for
richness, both on the training and test sets; it was expect-
edly higher for both on the training than on the test sets,
possibly because of overfitting during training (Figure 4C
and D). However, accuracy of prediction by richness alone
on the test sets was already high, with an accuracy close to
0.75. Interestingly, accuracy was significantly improved by
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showing Spearman corre-
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o variables and gut micro-
biome, global view. MGS
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efficient matrix with color-
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on MGS associated with
disease severity. FDRs are
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0.001. Spearman correla-
tion coefficient matrix with
color-coded  correlation
(blue denotes positive
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combining MELD and richness, above that obtained by each
separately, approaching 0.9 on the test sets. This was mostly
because of improving prediction of death rather than alive
(Supplementary Figure 114-D). These findings suggest that
determining microbiome richness could have clinical rele-
vance for prioritization for liver transplantation.

Functional Analysis

Overall, 132 functional modules were present in at
least 1 sample. Eighty-two functional modules were
significantly different between healthy subjects and pa-
tients with cirrhosis, 34 were more abundant in healthy
subjects, and 48 were more abundant in patients with
cirrhosis (Figure 5). Pathways enriched in cirrhosis were
related to ethanol production, tryptophan degradation
(amino acid degradation), lactose degradation (carbohy-
drate degradation), glycolysis, y-aminobutyric acid degra-
dation/metabolism, endotoxin biosynthesis, gas
metabolism, mucine degradation, nitrate metabolism, lipid
degradation, and organic acid metabolism. By contrast,
pathways diminished in patients with cirrhosis were pro-
tection against oxidative stress, carbohydrate, amino acid
and lipid degradation, and gas metabolism such as buty-
rate production.
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Figure 5. Contrasted functional modules between healthy subjects and patients with cirrhosis significantly enriched in patients

with cirrhosis (q < 0.05, FDR correction).

Discussion

The current study demonstrates the existence of marked
alterations in gut microbiome in cirrhosis that paralleled the
disease stages, already obvious in compensated cirrhosis,
progressing in decompensated cirrhosis, and striking in
ACLF. The alterations of gut microbiome consisted of
marked reduction in gene and metagenomic richness and
progressive enrichment by unusual gut bacteria, particu-
larly Enterecoccus species, some of them from the oral flora.
The alteration of gut microbiome was associated with dis-
ease complications and impaired prognosis.

One of the main findings of the current study was a
clear progression in reduction of gene and metagenomic
richness from compensated to decompensated cirrhosis
and, finally, ACLF. Low richness of gut microbiota has been
reported in patients with inflammatory bowel disorders,
elderly patients, and obese individuals and might be
affected by treatments and genetic and individual factors.’
The alteration of gut microbiome found in the current
study is among the most remarkable seen in any disease
condition  studied so far using metagenomic
sequencing.'”'*'? One possible mechanism is that as liver

disease progresses, the composition and richness of gut
microbiome may be modified by altered composition of bile
acids and also influenced by agent(s) responsible for
cirrhosis development, such as alcohol.” In parallel, altered
gut microbiome and low gene count may lead to altered
functionality of microbiome, which may be a key factor for
induction and maintenance of intestinal inflammation,
disruption of intestinal barrier, and translocation of mi-
crobial material to lamina propia and adjacent organs,
aggravating systemic and liver inflammation and dysbiosis
that exists in cirrhosis, which may contribute to progres-
sion of disease. Interestingly, the impairment in gut
microbiome was not due to antibiotic therapy because
differences persisted when patients with or without anti-
biotics were analyzed separately. This lack of relationship
between impaired gut microbiome and antibiotic therapy is
consistent with observations from previous studies.”®*’
The impairment in gut microbiome in decompensated
versus compensated cirrhosis has also been observed in
prior studies using 16S methodology’; however, the
current study provides a more comprehensive analysis of
changes at the metagenomic level. Moreover, it also provides
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a complete characterization of gut metagenomic changes in
patients with ACLF. Patients with ACLF had significantly
higher levels of Enterococcus and Peptostreptococcus species;
by contrast, patients with decompensated cirrhosis had higher
levels of Faecalibacterium, Ruminococcus, and Eubacterium,
among others, as compared with ACLF patients. Indeed, a
cluster of MGS was clearly associated with the presence and
number of organ failures.

Abnormalities in gut microbiome were associated with
some complications of cirrhosis, specifically HE and bacte-
rial infections, the complications of cirrhosis most likely
related pathogenically to alterations of gut-liver axis." There
were marked differences between patients with HE versus
those without; 17 MGS were enriched in patients with HE,
whereas 66 were enriched in patients without HE. These
results extend the observations from previous studies using
16S technology in patients with recurrent HE and confirm
the existence of profound abnormalities in gut microbiome
characterized by higher abundance of Streptococcus sali-
varius that correlated with ammonia accumulation in pa-
tients with HE, indicating an important pathogenic role of
gut microbiome in HE.?® In fact, correction of gut dysbiosis
by fecal microbiota transplantation has more recently been
shown to prevent recurrent HE.??° An interesting obser-
vation of the current study was that patients under chronic
treatment with rifaximin to prevent recurrence of HE had
significant changes in gut microbiome composition
compared with those not receiving rifaximin, with enrich-
ment in 8 MGS with functional modules related with amino
acid and carbohydrate degradation and gas metabolism.
Although differences may in part be due to diverse pop-
ulations, these results suggest that rifaximin affects the
composition and functionality of gut microbiome. Differ-
ences in gut microbiome composition were also observed in
patients under chronic norfloxacin treatment for prevention
of spontaneous bacterial peritonitis recurrence and also in
patients under laxative treatment. The effects of laxatives on
gut microbiome are of interest and deserve further inves-
tigation. The effect of statins on gut microbiome, although of
interest, could not be investigated in the current study
because of the low number of patients treated (only 15
patients in the whole cohort).

Abnormalities in gut microbiome composition correlated
with cirrhosis severity, as estimated by the 2 scores most
commonly used in the assessment of prognosis in cirrhosis,
Child-Pugh and MELD scores. A high risk of short-term mor-
tality was associated with markedly reduced microbiome
richness and enrichment with certain bacterial species,
particularly E faecium, S thermophilus, and R lactaris, among
others. By contrast, some species were associated with low
risk of death. Of interest, microbiome richness improved the
accuracy of the MELD score in outcome prediction.

Metagenomic technology allows the evaluation of func-
tional modules that indicate pathways by which abnormal-
ities in the microbiome may theoretically influence the
course of some disease states. Pathways enriched in the
current series of patients with cirrhosis with respect to
healthy subjects that may be of potential pathogenic sig-
nificance are endotoxin biosynthesis; ethanol production;
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amino acid, carbohydrate, and lipid degradation; mucine
degradation; nitrate metabolism; and +y-aminobutyric acid
metabolism. Alteration in nitrate and vy-aminobutyric acid
modules was also found in a previous study.'” Changes in
some functional pathways may represent a mechanism by
which the marked abnormalities in gut microbiome can affect
the progression of cirrhosis by causing profound alterations in
body metabolism leading to some clinical consequences of
cirrhosis. Confirmation of this hypothesis would require spe-
cific assessment of some key metabolic pathways and evalu-
ation of changes after gut microbiota modulation.

Some issues important to the interpretation of the cur-
rent findings deserve discussion. First, this was a single-
center study performed in a tertiary referral hospital;
therefore, it is unknown whether our findings could be
generalized to all settings. Second, many patients, particu-
larly those with decompensated cirrhosis with and without
ACLF, were treated with antibiotics that could affect gut
microbiome composition; however, findings were quite
similar in patients treated and not treated with antibiotics, and
differences among disease stages persisted after excluding
patients receiving antibiotics. Moreover, this is an intrinsic
limitation of the study because most patients hospitalized for
management of decompensated cirrhosis, either with or
without ACLF, receive antibiotics because of proven or sus-
pected bacterial infections. Finally, although the alterations
found in the gut microbiome are very remarkable and were
associated with disease outcomes, it is unknown whether that
played a pathogenic role in disease complications and mor-
tality. Confirmation of this hypothesis requires prospective
studies with a high number of patients focused on improving
or modulating gut microbiome alterations, such as those
already reported in patients with HE.?**°

In conclusion, the results of the current study indicate
that human cirrhosis is characterized by remarkable ab-
normalities in gut microbiome composition with profound
reduction in gene and metagenomic richness and marked
changes in microbiota composition, with enrichment by
unusual gut species, with changes being maximal in patients
with ACLF compared with compensated cirrhosis and
decompensated cirrhosis without ACLF. In addition, altered
gut microbiome correlates with some complications,
particularly HE and bacterial infections and short-term
prognosis. Alterations in gut microbiome may contribute
to disease progression and poor survival in cirrhosis.

Supplementary Material

Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org and at https://doi.org/10.1053/
j.gastro.2020.08.054.
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Supplementary Figure 1. (Left) Hierarchical clustering between healthy subjects and patients with cirrhosis. Healthy subjects
are represented in green. Patients with cirrhosis are divided into those who received or did not receive antibiotics (maroon and
red, respectively). (Right) Sequencing data and richness in genes and metagenomic species in healthy subjects (green) and
patients with cirrhosis (red).
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Supplementary Figure 2. The most contrasted metagenomic species significantly enriched in patients with cirrhosis
compared with healthy subjects. Metagenomic species are in rows; MGS identification, genes number, and taxonomy (species
name and genus) are indicated on the left. Abundance is indicated by color gradient from white (not detected) to red (most
abundant). Individuals ordered by increased richness (MGS mean) are in columns. Significance Wilcoxon test (q value, FDR
adjusted) is given on the right.
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Supplementary Figure 3. Contrasted metagenomic species between healthy subjects and patients with compensated
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p=1.08e-02/q=1.17e-01/no
p=1.23e-02/q = 1.25e-01/no
p=1.25e-02/q=1.25e-01/no
p=1.27e-02/q=1.25e-01/no
p=1.29e-02/q=1.25e-01/no
p=1.88e-02/q=1.3e-01/no

p=1.44e-02/q=1.32e-01/no
p=1.58e-02/q=1.41e-01/no
p=1.7e-02/q = 1.45e-01/no

p=1.72e-02/q =1.45e-01/no
p=1.87e-02/q = 1.53e-01/no
p=1.91e-02/q=1.53e-01/no
p=2.01e-02/q=1.58e-01/no
p=2.18e-02/q = 1.63e-01/no
p=2.18e-02/q=1.63e-01/no
p =2.25e-02/q=1.63e-01/no
p=228e-02/q=1.63e-01/no
p =2.36e-02/q = 1.64e-01/no
p =2.39e-02/q=1.64e-01/no
p =2.45e-02/q = 1.65e-01/no
p=2.77e-02/q=1.69e-01/no
p=2.78e-02/q=1.69e-01/no
p=2.81e-02/q=1.69e-01/no

p =3.08e-02/q=1.8e-01/no

Supplementary Figure 4. Contrasted metagenomic species significantly different between patients receiving or not receiving
rifaximin. Metagenomic species are in rows; MGS identification, genes number, and taxonomy (species name and genus) are
indicated on the /eft. Abundance is indicated by color gradient from white, not detected, to red, most abundant. Individuals
ordered by increased richness (MGS mean) are in columns. Significance of the correlation (g value, FDR adjusted) and di-
rection of the correlation are given on the right.
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CAG00049_hs_9.9,3535,Bacteroides caccae,Bacteroides
CAG00697_hs_9.9,1602,unclassified,unclassified

4813,Clostridium sp. KLE 1755 & Clostridiales bacterium VE202-27,unclassified Clostridiales
CAGO01380_hs_9.9,553,unclassified Clostridiales,unclassified Clostridiales
CAG00384_hs_9.9,2009,unclassified,unclassified

CAG00653_hs_9.9,1653,Eubacterium siraeum,Ruminiclostridium
CAG01025_hs_9.9,1122,Clostridium citroniae,Lachnoclostridium

CAGO00708_hs_9.9,1605,Alistipes senegalensis,Alistipes

CAGO00994_hs_9.9,1166,unclassified Firmicutes,unclassified Firmicutes i

CAGO01293_hs_9.9,681,Blautia sp. CAG:257,Blautia

CAG00460_hs_9.9,1929,unclassified Clostridiales,unclassified Clostridiales —IEEE] B
CAG00407_hs_9.9,1997,unclassified Lachnospiraceae,unclassified Lachnospiraceae

CAG00408_hs_9.9,1987,Clostridium sp. CAG:75,unclassified Clostridiales —[Em:i] :

CAG00672_hs_9.9,1642,Clostridium sp. CAG:169,unclassified Clostridiales

CAG00168_hs_9.9,2534,Clostridiales bacterium VE202-14,unclassified Clostridiales

CAG00218_hs_9.9,2364,Barnesiella intestinihominis,Barnesiella %

CAGO00718_hs_9.9,1583,Eubacterium ventriosum,Eubacterium
CAG00272_hs_9.9,2201,Faecalibacterium 5 (sp. CAG:74),Faecalibacterium
CAG00572_hs_9.9,1752,unclassified Firmicutes,unclassified Firmicutes
CAGO01018_hs_9.9,1132,unclassified Bilophila,Bilophila
CAG00549_hs_9.9,1763,Bifidobacterium longum,Bifidobacterium
CAG00253_hs_9.9,2254,Lactococcus lactis,Lactococcus
CAG00931_hs_9.9,1256,unclassified,unclassified
CAG01377_hs_9.9,552,unclassified,unclassified
CAGO00186_hs_9.9,2433,Streptococcus salivarius,Streptococcus
CAGO00014_hs_9.9,5112,Lachnospiraceae bacterium x4,unclassified Lachnospiraceae
CAGO00469_hs_9.9,1921,Eubacterium sp. CAG:146,Eubacterium

CAG00304_hs_9.9,2158,unclassified,unclassified

Supplementary Figure 4. Continued.
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p=3.15e-02/q=1.8e-01/no
p=3.17e-02/q=1.8e-01/no
p=23.22e-02/q=1.8e-01/no

p =3.34e-02/q = 1.82e-01/no
p=3.36e-02/q=1.82e-01/no
p=3.71e-02/q=1.97e-01/no
p=3.82e-02/q=1.97e-01/no
p =3.93e-02/q=1.97e-01/no
p=3.93e-02/q=1.97e-01/no
p=3.93e-02/q=1.97e-01/no
p=4.16e-02/q =2.05e-01/no
p=4.41e-02/q=2.05e-01/no
p=4.41e-02/q=2.05e-01/no
p=4.41e-02/q=2.05e-01/no
p =4.47e-02/q=2.05e-01/no
p =4.73e-02/q =2.09e-01/no
p =4.87e-02/q = 2.09e-01/no
p =4.95e-02/q =2.09e-01/no
p =4.95e-02/q=2.09e-01/no
p =4.95e-02/q =2.09e-01/no
p =2.09e-04/q=2.76e-02/ yes
p =6.88e-03/q=9.73e-02 / yes
p=1.19e-02/q=1.25e-01/yes
p =2.58e-02/q=1.69e-01/yes
p=2.63e-02/q=1.69e-01/yes
p=2.68e-02/q=1.69e-01/yes
p = 4.46e-02/q =2.05e-01/yes

p=4.81e-02/q=2.09e-01/ yes
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CAGO00309_hs_9.9,2134,Alistipes onderdonkii,Alistipes
CAG00931_hs_9.9,1256,unclassified,unclassified
CAG00692_hs_9.9,1620,unclassified,unclassified
CAGO00618_hs_9.9,1686,unclassified,unclassified
CAGO00384_hs_9.9,2009,unclassified,unclassified
CAG00508_hs_9.9,1859,unclassified,unclassified

CAG00603_hs_9.9,1714,Firmicutes bacterium CAG:114,unclassified Firmicutes
CAGO00304_hs_9.9,2158,unclassified,unclassified
CAG00249_hs_9.9,2264,Clostridium leptum,Ruminiclostridium
CAG00653_hs_9.9,1653,Eubacterium siraeum,Ruminiclostridium
CAG00873_hs_9.9,1353,unclassified Butyricimonas,Butyricimonas
CAG00210_hs_9.9,2366,Ruminococcus bicirculans,Ruminococcus
CAG00321_hs_9.9,2118,Clostridium sp. CAG:138,unclassified Clostridiales
CAG01052_hs_9.9,1073,Firmicutes bacterium CAG:103,unclassified Firmicutes
CAG00251_hs_9.9,2254,Alistipes sp. CAG:157,Alistipes
CAG00420_hs_9.9,1976,unclassified,unclassified
CAG00439_hs_9.9,1952,unclassified Clostridiales,unclassified Clostridiales
CAG00270_hs_9.9,2220,0scillibacter sp. KLE 1728 / KLE 1745 / VE202-24,Oscillibacter
CAG00897_hs_9.9,1315,0scillibacter sp.,Oscillibacter
CAG00672_hs_9.9,1642,Clostridium sp. CAG:169,unclassified Clostridiales
CAG00231_hs_9.9,2302,0doribacter splanchnicus,Odoribacter
CAG00375_1_hs_10.4,861,unclassified,unclassified
CAGO00414_hs_9.9,1968,Eubacterium sp. CAG:76,Eubacterium
CAG00272_hs_9.9,2201,Faecalibacterium 5 (sp. CAG:74),Faecalibacterium
CAG00572_hs_9.9,1752,unclassified Firmicutes,unclassified Firmicutes

CAGO01018_hs_9.9,1132,unclassified Bilophila,Bilophila
CAGO00327_hs_9.9,2116,unclassified,unclassified
CAGO00559_hs_9.9,1772,unclassified,unclassified

CAG00454_hs_9.9,1939,unclassified Ruminococcaceae,unclassified Ruminococcaceae
CAGO00675_hs_9.9,1628,Clostridium sp. CAG:217,unclassified Clostridiales
CAGO01308_hs_9.9,662,unclassified Firmicutes,unclassified Firmicutes
CAG01408_hs_9.9,507,unclassified Butyricimonas,Butyricimonas
CAG00792_hs_9.9,1481,Firmicutes bacterium CAG:65,unclassified Firmicutes

4813, Clostridium sp. KLE 1755 & Clostridiales bacterium VE202-27,unclassified Clostridiales
CAG01190_hs_9.9,875,Butyricimonas virosa,Butyricimonas
CAG00597_hs_9.9,1721,Candidatus Alistipes marseilloanorexicus,Alistipes
CAGO00470_hs_9.9,1926,unclassified,unclassified

CAG00293_hs_9.9,2175,Firmicutes bacterium CAG:145,unclassified Firmicutes
CAG01020_hs_9.9,1130,unclassified Firmicutes,unclassified Firmicutes
CAG01320_hs_9.9,629,Clostridium bolteae,Lachnoclostridium
CAG00218_hs_9.9,2364,Barnesiella intestinihominis,Barnesiella
CAG00324_hs_9.9,2121,Firmicutes bacterium CAG:94,unclassified Firmicutes
CAGO00019_1_hs_9.9,2092,unclassified,unclassified
CAG00696_hs_9.9,1614,unclassified,unclassified

CAG00424_hs_9.9,1974,Firmicutes bacterium CAG:137,unclassified Firmicutes
CAG00492_hs_9.9,1888,unclassified Ruminococcaceae,unclassified Ruminococcaceae
CAG00604_hs_9.9,1700,Firmicutes bacterium CAG:110,unclassified Firmicutes
CAG00796_hs_9.9,1466,Eubacterium sp. CAG:202,Eubacterium

CAG01130_hs_9.9,978,unclassified,unclassified

CAGO1169_hs_9.9,912,unclassified,unclassified — |11

Supplementary Figure 5. Continued.
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p=7.08e-04/q=1.15e-01/no
p=1.37e-03/q=1.15e-01/no
p=1.42e-03/q=1.15e-01/no
p=1.6e-03/q=1.15e-01/no

p=1.74e-03/q=1.15e-01/no
p=2.91e-03/q=1.52e-01/no
p =3.23e-03/q=1.52e-01/no
p =3.79e-03/q = 1.56e-01/ no
p=7.7e-03/q=2.31e-01/no

p =1.04e-02/q=2.31e-01/no
p=1.08e-02/q=2.31e-01/no
p=1.11e-02/q=2.31e-01/no
p=1.12e-02/q=2.31e-01/no
p=1.12e-02/q=2.31e-01/no
p=1.3e-02/q=2.53e-01/no

p=1.76e-02/q=2.69e-01/no
p=1.76e-02/q =2.69e-01/ no
p=1.87e-02/q=2.69e-01/no
p =1.89e-02/q=2.69e-01/no
p =2.04e-02/q =2.69e-01/no
p =2.04e-02/q =2.69e-01/no
p =2.09e-02/q=2.69e-01/no
p =2.23e-02/q =2.69e-01/no
p =2.36e-02/q=2.69e-01/no
p =2.36e-02/q=2.69e-01/no
p=2.36e-02/q=2.69e-01/no
p=2.74e-02/q=2.77e-01/no
p=2.74e-02/q=2.77e-01/no
p=2.77e-02/q=2.77e-01/no
p=2.86e-02/q=2.78e-01/no
p=3.16e-02/q =2.92e-01/no
p =3.18e-02/q =2.92e-01/no
p =3.59e-02/ q = 2.92e-01/ no
p=3.61e-02/q=2.92e-01/no
p=3.71e-02/q =2.92e-01/ no
p =3.8e-02/q=2.92e-01/no

p =3.97e-02/q=2.92e-01/no
p =4.18e-02/q =2.92e-01/no
p =4.22e-02/q =2.92e-01/no
p =4.26e-02/q =2.92e-01/no
p =4.34e-02/q=2.92e-01/no
p =4.36e-02/q =2.92e-01/no
p =4.46e-02/q=2.92e-01/no
p=4.51e-02/q=2.92e-01/no
p =4.87e-02/q =2.92e-01/no
p =4.87e-02/q =2.92e-01/no
p =4.87e-02/q=2.92e-01/no
p =4.87e-02/q =2.92e-01/no

p=4.87e-02/q=2.92e-01/no

|- p=487e-02/q=292e-01/no
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CAGO01377_hs_9.9,552,unclassified,unclassified

CAG00987_hs_9.9,1174,unclassified,unclassified

CAG00549_hs_9.9,1763,Bifidobacterium longum,Bifidobacterium

CAGO00720_hs_9.9,1590,unclassified,unclassified ST p=276e-02/q=2770-01/yes

CAG00686_hs_9.9,1600,Prevotella copri,Prevotella ;— p=4.34e-02/q = 2.92e-01/ yes

Lkt

j: §sti

Supplementary Figure 5. Continued.
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Supplementary Figure 5. Contrasted metagenomic species significantly different between patients receiving or not receiving
norfloxacin. Metagenomic species are in rows; MGS identification, genes number, and taxonomy (species name and genus)
are indicated on the left. Abundance is indicated by color gradient from white, not detected, to red, most abundant. Individuals
ordered by increased richness (MGS mean) are in columns. Significance of the correlation (q value, FDR adjusted) and di-
rection of the correlation are given on the right.
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CAG00360_hs_9.9,2045,unclassified,unclassified

- p=5.49e-06/q=6.366-03/n0
CAG00243_hs_9.9,2271,Ruminococcus torques 1,Blautia F

p =6.43e-05/q =2.48e-02/ no
| p=987e-05/q=286e-02/n0
CAG00508_hs_9.9,1859,unclassified unclassified i SEIE B — p=1.62e-04/q=23.75e-02 / no

CAG00520_hs_9.9,1830,Firmicutes bacterium CAG:56,unclassified Firmicutes

CAG00071_hs_9.9,3113,Bacteroides cellulosilyticus,Bacteroides i I3 ] ‘I~ p=226e-04/q=2379-02/no

CAG00873_hs_9.9,1353,unclassified Butyricimonas,Butyricimonas p=2.31e-04/q=3.79e-02/ no
p =2.62e-04 /q=3.79e-02/ no
p =6.47e-04 / q = 4.68e-02 / no
p =5.03e-04 / q = 4.68e—02 / no
p =5.78e-04/ q = 4.68e-02/ no
p =4.22e-04 / q = 4.68e-02 / no
p =6.12e-04 / q = 4.68e-02 / no
p =5.44e-04 / q = 4.68e-02 / no
p =5.42e-04/ q = 4.68e-02/ no

CAG01202_hs_9.9,858,Bacteroides cellulosilyticus,Bacteroides

CAG00025_hs_9.9,4407,Hungatella hathewayi 1,Hungatella

CAG00140_hs_9.9,2638,Subdoligranulum sp. 4_3_54A2FAA,Subdoligranulum

CAG00218_hs_9.9,2364,Barnesiella intestinihominis,Barnesiella

CAG00309_hs_9.9,2134,Alistipes onderdonkii,Alistipes

CAG00320_hs_9.9,2121,Phascolarctobacterium sp. CAG:207,Phascolarctobacterium

CAG00460_hs_9.9,1929,unclassified Clostridiales,unclassified Clostridiales

CAG00780_hs_9.9,1496,Firmicutes bacterium CAG:41,unclassified Firmicutes

CAG01380_hs_9.9,553,unclassified Clostridiales,unclassified Clostridiales — . RiE R E :,i p =5.19e-04 / q = 4.68e—02 / no

CAG00549_hs_9.9,1763,Bifidobacterium longum Bifidobacterium —J{ | |- §{Hi 22 HHHR T i 1 p=1.99e-05/q=1.15e-02/ yes

Supplementary Figure 6. Contrasted metagenomic species significantly different between patients receiving or not receiving
laxative treatment. Metagenomic species are in rows; MGS identification, genes number, and taxonomy (species name and
genus) are indicated on the left. Abundance is indicated by color gradient from white, not detected, to red, most abundant.
Individuals ordered by increased richness (MGS mean) are in columns. Significance of the correlation (g value, FDR adjusted)
and direction of the correlation are given on the right.
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CAGO00074_1_hs_10.4, unclassified

CAG00864, unclassified

CAGO00458, Fusobacterium nucleatum
CAGO01296, Peptostreptococcus stomatis

CAG00057, Homo sapiens

CAGO00060_1_hs_10.4, unclassified
CAG01303, Enterococcus avium

CAG01259, Streptococcus oralis
CAG00752, Peptostreptococcus anaerobius

CAGO00104, Enterobacter cloacae 4
CAGO00002_2_hs_10.4, unclassified
CAG00258_1_hs_10.4, unclassified

Supplementary Figure 7. (Top) Spearman correlation between clinical variables and gut microbiome in the group of patients
not treated with antibiotics, global view. Metagenomic species were selected with at least 1 significant correlation (g < 0.05,
FDR correction). (Bottom) Enlarged picture of the cluster in the right corner on metagenomic species associated with disease
severity. FDRs are denoted: 'q < 0.1; *g < 0.05; **q < 0.01; ***q < 0.001. Spearman correlation coefficient matrix with color-
coded correlation (blue denotes positive correlation; red denotes negative correlation; P < .01. Blank spaces indicated a
nonsignificant correlation).
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CAG00347,2079,Enterococcus faecium,Enterococcus | i -1 T 3.28e-04 | POS
CAG00057,1397,Homo sapiens,Homo - “I [ 1.76e-03 | POS
CAG00257,2252,Enterococcus faecalis,Enterococcus - 1.19e-02 | POS
CAG01380,553,unclassified Clostridiales,unclassified Clostridiales + i~ 7.49e-06 | NEG
CAGO00506,1862,unclassified,unclassified I~ 3.59e-05 | NEG
CAG00931,1256,unclassified,unclassified 7z — 3.59e-05 | NEG
CAG00231,2302,0doribacter splanchnicus,Odoribacter &} 5.01e-05 | NEG
CAG00270,2220,0Oscillibacter sp. KLE 1728 / KLE 1745 / VE202-24,Oscillibacter 5.01e-05 | NEG
CAG00304,2158,unclassified,unclassified & i~ 5.01e-05 | NEG
CAGO00508,1859,unclassified,unclassified ‘[E]:[i_l 1+ 5.20e-05 | NEG
CAG00218,2364,Barnesiella intestinihominis,Barnesiella - 3- 6.93¢-05 | NEG
CAG00164,2551,Blautia wexlerae,Blautia gll 1:]- -8 8.19e-05 | NEG
CAG00672,1642,Clostridium sp. CAG:169,unclassified Clostridiales - 1.55e-04 | NEG
CAG00025,4407 Hungatella hathewayi 1,Hungatella E ; - 7 1.74e-04 | NEG

27 17404 ine

CAG00577,1718,Faecalibacterium prausnitzii 3 ( L2-6),Faecalibacterium =
CAG00612,1673,Faecalibacterium prausnitzii 2 ( A2-165),Faecalibacterium i ,g o } 1.74e-04 | NEG
CAG01025,1122,Clostridium citroniae,Lachnoclostridium [: g = 1.74e-04 | NEG
CAGO01263,750,Clostridium clostridioforme, Lachnoclostridium . L 3 | : 1.91e-04 | NEG
CAG00249,2264,Clostridium leptum,Ruminiclostridium o i BN _. - z_-g— 2.20e-04 | NEG
CAG00937,1230,unclassified,unclassified E 21 1B 7 [ | f : i 3 - 2.34e-04 | NEG
CAG01094,1020,Clostridium sp. CAG:273,unclassified Clostridiales I 3= - I ~ [~ 2.64e-04 | NEG
CAG00578,1731,Alistipes putredinis, Alistipes 4= =] - 01~ EiE i | }ﬁg : ﬂ §1 i i] : { I 2.95e-04 | NEG
CAG01028,1103,Ruminococcaceae bacterium LM158,unclassified Ruminococcaceae i1 - B E! i | B o !. ’ i [~ 2.95e-04 | NEG

Supplementary Figure 8. The MGS with highest correlation with MELD score. Metagenomic species are in rows; MGS
identification, genes number, and taxonomy (species name and genus) are indicated on the left. Abundance is indicated by
color gradient from white, not detected, to red, most abundant. Individuals ordered by increased severity (MELD) are in
columns. Significance of the correlation (q value, FDR adjusted) and direction of the correlation are given on the right.
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Supplementary Figure 9. Network representation of MGS in patients with liver cirrhosis. MGS are grouped in MGS com-
munities based on species abundance. The abundance of 1 community is the sum of the abundance of each MGS that
composed the community. The name of each MGS communities is obtained by the name of the most abundant species.
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Supplementary Figure 10. (Left) Taxonomy at the genus level of the gut microbiome for the healthy subjects and patients with
cirrhosis. Significance of Wilcoxon test is denoted: ***q < 0.001. (Right) Taxonomy at the genus level of the gut microbiome for
compensated, decompensated outpatient, decompensated inpatients without ACLF (AD), and ACLF. Significance of Kruskal-
Wallis test is denoted: *q < 0.05; **q < 0.01; **q < 0.001.
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Supplementary Figure 11. Accuracy for predicting 3-month survival based on 100 random forest models. MELD is repre-
sented in red, MELD and richness are represented in green, and richness is represented in blue. (Top) Proportion of true death
predictions. Results are divided according to model training with 80% of the data (A) and model testing with 20% of the data
(B). (Bottom) Proportion of true alive predictions. Results are divided according to model training with 80% of the data (C) and
model testing with 20% of the data (D).
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Supplementary Table 1.Characteristics of Bacterial
Infections and Microbiological Data
in Patients With Decompensated
Cirrhosis Without ACLF and in
Patients With ACLF

Decompensated
Inpatients Patients
Without ACLF  With ACLF P
(n=47) (n=238) value
Site of infection 461
Urinary tract infection 13 (28) 13 (34)
Spontaneous bacterial 5(11) 6 (16)
peritonitis
Pneumonia 6 (13) 9 (24)
Skin and soft tissue 7 (15) 4 (11)
Spontaneous bacteriemia 36) 1)
Other? 13 (28) 5 (13)
Systemic inflammatory 12 (25) 26 (70) <.001
response syndrome
Septic shock 0 (0) 17 (45) <.001
Positive cultures 25 (53) 24 (51) 273
Type of strain isolated 278
Gram positive 14 (56) 10 42)
Gram negative 10 (40) 11 (46)
Fungi 1(4) 3(8)
Blood leukocytes (x 10%/L) 5 (4-8) 8 (5-15) .001
C-reactive protein (mg/dL) 4 (1-6) 3 (1-6) .834
Antibiotic type” .02
Cephalosporin 26 6
Carbapenem 15 23
Antibiotics against gram 15 23
positive
Other 12 5
Infection resolution 42 (91) 21 (57) .001

NOTE. Values are n (%) or mean (interquartile range) for
quantitative variables.

20ther: Secondary bacterial peritonitis 1, spontaneous bac-
terial empyema 1, respiratory infection without pneumonia 7,
biliary infection 1, endocarditis 1, signs of bacterial infection
with negative cultures 11.

bAntibiotic treatment was categorized in 4 groups: only
cephalosporins, carbapenem, antibiotics against gram-
positive bacteria (including vancomycin, teicoplanin, tigeci-
clin, ampicilin), and others (levofloxacin, cirpofloxacin,
amikacin, piperacilin-tazobacatm, linezolid). Patients could
receive more than 1 antibiotic.
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