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Abstract: Marine and freshwater algae and their products are in growing demand worldwide because
of their nutritional and functional properties. Microalgae (unicellular algae) will constitute one of the
major foods of the future for nutritional and environmental reasons. They are sources of high-quality
protein and bioactive molecules with potential application in the modern epidemics of obesity and
diabetes. They may also contribute decisively to sustainability through carbon dioxide fixation
and minimization of agricultural land use. This paper reviews current knowledge of the effects
of consuming edible microalgae on the metabolic alterations known as metabolic syndrome (MS).
These microalgae include Chlorella, Spirulina (Arthrospira) and Tetraselmis as well as Isochrysis and
Nannochloropsis as candidates for human consumption. Chlorella biomass has shown antioxidant,
antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic effects in humans and
other mammals. The components of microalgae reviewed suggest that they may be effective against
MS at two levels: in the early stages, to work against the development of insulin resistance (IR),
and later, when pancreatic -cell function is already compromised. The active components at both
stages are antioxidant scavengers and anti-inflammatory lipid mediators such as carotenoids and
-3 PUFAs (eicosapentaenoic acid/docosahexaenoic acid; EPA/DHA), prebiotic polysaccharides,
phenolics, antihypertensive peptides, several pigments such as phycobilins and phycocyanin, and
some vitamins, such as folate. As a source of high-quality protein, including an array of bioactive
molecules with potential activity against the modern epidemics of obesity and diabetes, microalgae
are proposed as excellent foods for the future. Moreover, their incorporation into the human diet
would decisively contribute to a more sustainable world because of their roles in carbon dioxide
fixation and reducing the use of land for agricultural purposes.

Keywords: Spirulina (Arthrospira); Chlorella; Isochrysis; Tetraselmis; Nannochloropsis; algae; omega 3;
obesity; diabetes

1. Introduction

The main risk factors for developing cardiovascular disease (CVD), which is the
leading cause of death worldwide, are type 2 diabetes mellitus (T2DM) and obesity, together
with hypertension and hypercholesterolemia. Diabetes is a pathology characterized by
hyperglycemia resulting from a total or partial lack of insulin. While type 1 diabetes
(T1DM), also called insulin-dependent diabetes mellitus, is due to autoimmune destruction
of insulin-producing pancreatic β-cells, T2DM, also called insulin-independent diabetes
mellitus, is caused by insulin resistance (IR) in tissues (mainly adipose tissue, liver and
muscle) followed by a failure of β-cells to compensate for this [1]. IR and T2DM are usually
associated with excessive ingestion of saturated fat and refined sugar [2,3]. Obesity, IR and
T2DM usually occur together with a state of low-grade systemic inflammation which may
be both the cause and a consequence of these metabolic alterations [4]. Hypertension is
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another crucial CVD risk factor that may be triggered by a poor diet (excess salt, fat, or
fructose) [5]. Hypercholesterolemia completes the list of CVD risk factors, as it promotes
atherosclerotic plaque formation [6]. The cluster of factors leading to T2DM and CVD is
called metabolic syndrome (MS), a diagnostic concept used in clinical practice [7]. Obesity,
T2DM, hypercholesterolemia, and, to some extent, hypertension are modifiable risk factors
for CVD as they may be controlled/delayed by adopting a healthy lifestyle that includes a
balanced diet and physical activity.

Some functional foods and bioactive components isolated from them can potentially
be used as tools to prevent CVD risk factors [8]. The consumption of several species of
microalgae produces health benefits in humans and other animals [9]. In this paper, we
review the current evidence that supports the benefits of consuming edible microalgae in
relation to diet-induced metabolic alterations. These edible microalgae include Arthrospira
(Spirulina), Chlorella, and Tetraselmis. We have also included Isochrysis galbana and Nan-
nochloropsis because of their potential to act as metabolic health-promoting functional foods
in view of both their capacity for storage of functional oils and their extensive history of
use in aquaculture, making them candidates for human consumption.

2. Microalgae

Algae are mostly photosynthetic organisms and include eukaryotic and prokaryotic
species that occur in fresh and salt water. Algae belong broadly to eleven major phyla:
Charophyta, Chlorarachniophyta, Chlorophyta, Cryptophyta, Cyanophyta, Dinophyta,
Euglenophyta, Glaucophyta, Haptophyta, Heterokontophyta, and Rhodophyta. Microal-
gae are unicellular algae that are between 1 and 50 µm in diameter and comprise a highly
diverse group of 200,000–800,000 species [10].

Microalgae are dense in protein; some species even contain similar amounts of protein
to those found in milk, eggs, and meat [9,11]. Microalgae also contain several bioactive
components with therapeutic potential, such as dietary fiber, polyphenols, carotenoids,
phycobiliproteins, polysaccharides, vitamins, sterols, and, particularly, polyunsaturated
fatty acids (PUFAs) such as the ω-3 PUFAs eicosapentaenoic acid (EPA, 20:5 n-3) and
docosahexaenoic acid (DHA, 22:6 n-3) (Table 1) [11–13]. The proportion of bioactive
compounds varies between species and also depends on growing conditions (mainly
temperature, illumination, pH, CO2 supply, salt, and nutrients) [14]. Arthrospira (also
known as Spirulina), Chlorella, and Tetraselmis are currently used for human nutrition.
The European Commission (EC) only includes Arthrospira and Chlorella in their novel
food catalogue. The currently preferred name for the genus Spirulina is Arthrospira. In
this paper we use the term Arthrospira when referring to the genus and spirulina when
referring generically to biomass preparations of the microalga. We will also use the terms
spirulina and chlorella when referring to studies in which the particular species used is
not specified. (https://ec.europa.eu/food/safety/novel_food/catalogue/search/public/
index.cfm, accessed on 15 August 2020).

Table 1. Macronutrients and bioactive compounds present in edible microalgae (by wet weight).

Bioactive Compounds Arthrospira Chlorella

Proteins 60–70% 55–60%
Lipids 5% (ALA) >10% (ω-3 PUFAs)

Dietary fiber 2% >30%
Minerals 10% (P, Mg, K, Ca, Fe, Zn) >10% (Fe, Ca, Mg, K, Zn)
Vitamins E, B1, B2, B3, B9 C, E, K1, B12, B1, B2, B6
Pigments Phycocyanine, carotenoids 1–4% chlorophylls, carotenoids

Arthrospira is actually a cyanobacteria considered to be a blue-green microalga that
has historically been consumed by North Africans and Mexicans because of its nutritional
value, containing 60–70% protein by dry weight (Table 1) and bioactive compounds [15].
Arthrospira species are abundant in tropical and subtropical areas with carbonate and
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bicarbonate-rich alkaline water bodies [10]. They contain high concentrations of antiox-
idants (β-carotene and phycocyanin), minerals (K, Na, Ca, Mg, Fe, Zn), vitamins (toco-
pherols), eight essential amino acids, PUFAs (especially γ-linolenic acid (ALA, 18:3 n-6)),
and phenolic compounds [15]. Nowadays, spirulina is used as a nutritional dietary sup-
plement, mainly due to its anti-inflammatory activity, and its intake is recommended for
individuals with pathologies and conditions such as arterial hypertension, IR and diabetes
among others.

Algae belonging to the Chlorella genus live in both fresh and salt water and use
metabolic pathways similar to higher plants. Chlorella belongs to the phylum Chloro-
phyta [10]. These microalgae have a high protein content (Table 1) that includes the essential
amino acids isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan,
valine, and histidine [16], along with minerals, vitamins, and carotenoids. They also contain
dietary fiber and chlorophyll [17]. Chlorella can also synthesize large amounts (as much as
50% dry weight) of triacylglycerols (TAG) under stressful conditions (e.g., exacerbated light
or nitrogen deficiency) [18]. The overall composition of different Chlorella-derived products
is 59–70 g protein, 5–20 g fat, 20% carbohydrates, and 5–18 g fiber [16].

3. Spirulina (Arthrospira) and Metabolic Alterations

In vivo studies indicate that Arthrospira maxima and platensis, as well as other microal-
gae, exert their anti-obesity effects via the reduction of both adipogenesis in white adipose
tissue (WAT) and lipogenesis in WAT and brown adipose tissue (BAT). They increase
lipolysis in WAT, lipid oxidation in WAT and skeletal muscle, and also thermogenesis and
mitochondriogenesis in WAT, BAT, and skeletal muscle [19]. An ethanolic extract of A. max-
ima (150 or 450 mg/kg/day) reduced body weight, both subcutaneous and visceral adipose
tissue, blood fasting glucose and lipid concentrations in mice fed a high-fat (HF) diet [20].
These changes were associated with lower protein expression of factors related to adipoge-
nesis and higher expression of proteins related to adenosine 5′-monophosphate-activated
protein kinase-α (AMPKα)-induced adipose browning [20]. In rats, the administration of
dried A. maxima (62.5, 125, or 250 mg/kg) also reduced weight gain and the elevated WAT
index induced by an HF diet, and it attenuated the changes related to metabolic alterations,
including serum adiponectin, leptin, tumor necrosis factor α (TNF-α), glucose, insulin, and
the lipid profile. These effects of A. maxima appear to be associated with activation of the
AMPK pathway and sirtuin 1 (SIRT1) in mesenteric adipose tissue and skeletal muscle,
leading to the suppression of lipid synthesis [21].

Another species, A. platensis, modulates dysbiosis, intestinal inflammation, and gut
permeability in rats fed an HF diet. When administered as 3% of feed, it counteracted
the dysbiotic changes triggered by the HF diet, namely the increased populations of
Proteobacteria and Firmicutes. A. platensis also decreased inflammatory cytokines and the
expression of myeloid differentiation factor 88 (MyD88), toll-like receptor 4 (TLR4), and NF-
κB p65, as well as that of tight junction proteins in the intestinal mucosa (ZO-1, Occludin,
and Claudin-1) [22]. A recent meta-analysis of 12 clinical trials analyzed the effect of
spirulina supplementation on anthropometric indexes [23]. Spirulina was found to reduce
body weight and waist circumference as well as body mass index when supplementation
lasted for more than 12 weeks. The authors therefore suggest that spirulina may be used as
an adjuvant treatment for obesity [23].

Spirulina biomass as well as the different extracts obtained from it have shown poten-
tial as antidiabetic agents. While studies that focus on the prevention of diabetes are scarce,
a recent review summarized studies in which spirulina was tested in humans presenting
different MS factors [24]. In one study, ingestion of 2–6 g of spirulina per day resulted in
an improvement in insulin sensitivity and a reduction in glycated hemoglobin (HbA1c),
although other studies did not show any detectable effect [24]. Studies in animal models
have also shown an effect of spirulina on metabolic risk factors. A. platensis was found
to counteract hyperglycemia and hyperlipidemia induced by alloxan in mouse [25] and
rat [26,27] models of T1DM [28]. Moreover, A. platensis (5% in the diet) counteracted
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renal injury and oxidative stress in alloxan-induced diabetic rats [29]. A. platensis also
showed antidiabetic effects in streptozotocin (STZ)-injected rats [30–32]; animals injected
with STZ are also models of T1DM [28]. A. platensis (500 mg/kg body weight, 2 months)
significantly decreased serum glucose, HbA1c, and malondialdehyde (MDA) levels and
significantly increased the serum insulin concentration and the activity of antioxidant
enzymes, as well as normalizing their mRNA gene expression and inducing upregulation
of the gluconeogenic enzyme pyruvate carboxylase (PC), the pro-apoptotic factor Bax and
caspase-3 (CASP-3), and TNF-α gene expression [31]. The authors suggested that the
antioxidant, anti-inflammatory, and anti-apoptotic properties of spirulina might be due
to its polyphenolic components. In an HF diet/low-dose STZ (HFD/STZ) rat model of
diabetes, oral doses of A. platensis (250, 500 or 750 mg/kg body weight) for 30 days were
shown to ameliorate levels of fasting blood glucose, insulin, and hepatic enzymes [32].
A. platensis also influenced the serum lipid profile and exhibited an anti-inflammatory
effect via TNF-α and adiponectin modulation, in turn, probably mediated by the sterol
regulatory element-binding transcription factor-1c (SREBP-1c) [32].

Arthrospyra contains a variety of bioactive components that may contribute to its
beneficial effects on diabetes-associated alterations (hyperglycemia, hyperlipidemia, in-
flammation, and oxidative stress) acting through different mechanisms. The biomass of a
typical industrial preparation of spirulina contains 71.7 g protein, 8.5 g fat, 3.0 g fiber, 16.2 g
phycocyanin, and 477.0 mg carotenoids per 100 g dry weight [33]. It has been suggested
that the dietary fiber and bioactive peptides are primarily responsible for the protection
against IR it provides [34].

3.1. Dietary Fiber from Spirulina

Dietary fiber is believed to prevent IR through maintaining balanced gut microbiota
(prebiotic effect) and its direct action on epithelial and immune cells that regulate the
intestinal barrier and immune function [35]. Spirulina (A. platensis) biomass has been
shown to promote the growth of putatively beneficial microorganisms (e.g., Lactobacillus
casei, L. acidophilus, Saccharomyces thermophilus, and Bifidobacterium spp.) and to reduce the
populations of putatively harmful bacteria in vitro [36–38]. In healthy male mice, spirulina
(1.5–3.0 g of spray-dried A. platensis powder/kg body weight daily for 24 days) was found
to modify the cecal populations of microbiota at the genus level (Clostridium XIVa, Desul-
fovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor). These changes correlated
with markers of oxidative stress and with blood lipid levels [39,40]. A polysaccharide
isolated from spirulina was effective at lowering blood glucose and increasing superoxide
dismutase (SOD) in STZ-induced diabetic Sprague-Dawley rats (100–200 mg/kg body
weight by intragastric administration for 8 weeks) [41]. Whether the effects of spirulina
are partially mediated by its fiber components (e.g., oligo and polysaccharides) remains to
be clarified.

3.2. Peptides and Enzymes from Spirulina

Hydrolysates from seaweeds and microalgae contain bioactive peptides with putative
applications in the food industry [42–44]. Peptides from spirulina biomass may make a
decisive contribution to its antidiabetic effects. Proteins in A. platensis mainly consist of two
phycobiliproteins (PBP): C-phycocyanin (C-PC) and allophycocyanin (APC) [45]. Tripsin
hydrolysates of PBP yield fragments with dipeptidyl peptidase-IV (DPP-IV) inhibitory
activity [46]. DPP-IV is a serine exopeptidase that is considered a promising target for the
management of T2DM, because it plays a key role in glucose metabolism via N-terminal
truncation and subsequent inactivation of the incretins glucagon-like peptide 1 (GLP-1) and
gastrointestinal insulinotropic peptide (GIP), which are responsible for most postprandial
insulin secretion [47]. The peptide Leu-Arg-Ser-Glu-Leu-Ala-Ala-Trp-Ser-Arg obtained
from A. platensis by ultrasound treatment and subcritical water extraction exhibited in-
hibition of DPP-IV (IC50 167.3 µg/mL). This peptide also showed further activity that
would contribute to the protective effects of A. platensis against hyperglycemia: inhibition
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of α-amylase (IC50 313.6 µg/mL) and α-glucosidase (IC50 134.2 µg/mL) [48]. These two
activities are important because they delay the digestion of starch and, consequently, lower
post-prandial glycaemia [49]. While the potency of this decapeptide against these three en-
zymes is modest, the combined effect of these and other activities (e.g., the prebiotic effects
of dietary fiber) may result in an efficient overall effect for the whole biomass. Enzymatic
hydrolysates of spirulina biomass also contain angiotensin I-converting enzyme (ACE-I)
inhibitors [50]. ACE-I is a dipeptidyl carboxypeptidase that catalyzes the conversion of
angiotensin I to angiotensin II, a process that increases blood pressure. ACE-I inhibitors
reduce the concentration of angiotensin II and consequently lower blood pressure [51]. This
antihypertensive effect of peptidic fractions (200 mg/kg body weight) in spontaneously
hypertensive rats has been attributed to the active peptides in A. platensis: Ile-Ala-Glu
(IC50 34.7 µM), Phe-Ala-Leu, Ala-Glu-Leu, Ile-Ala-Pro-Gly (11.4 µM), and Val-Ala-Phe
(35.8 µM) [52]. Furthermore, the decapeptide Gly-Ile-Val-Ala-Gly-Asp-Val-Thr-Pro-Ile
from A. platensis has been found to exert direct endothelium-dependent vasodilation ex
vivo via a PI3K (phosphoinositide-3-kinase)/AKT (serine/threonine kinase Akt) pathway,
resulting in NO release [53].

3.3. Unsaturated Fatty Acids from Spirulina

The ethanolic (95% ethanol) fraction of A. platensis biomass contains a mixture of
unsaturated fatty acids that have a hypolipidemic effect in Wistar rats fed an HF diet [54].
This effect is mediated via upregulation of the AMPK-α pathway and downregulation
of the SREBP-1c and the 3-hydroxy-3-methyl glutaryl coenzyme A reductase, acetyl CoA
(HMG-CoA) pathways in the liver. The extract was found to increase the populations of pu-
tatively beneficial bacteria, such as Prevotella, Alloprevotella, Porphyromonadaceae, Barnesiella,
and Paraprevotella, while reducing the populations of Turicibacter, Romboutsia, Phascolarcto-
bacterium, Olsenella, and Clostridium XVIII, which correlated positively with serum TAG,
total cholesterol (TC), and low-density lipoprotein cholesterol levels, but negatively with
serum high-density-lipoprotein TC levels [54]. The ethanolic (55% ethanol) fraction (SP55)
extracted from A. platensis showed antihyperglycemic activity in male rats fed an HF diet,
as assessed by the oral glucose tolerance test (OGTT) [55]. The extract contained both
saturated and unsaturated fatty acids. Other active components, such as polyphenols
and peptides, may also have been extracted under the conditions used. The SP55 fraction
appears to increase the gut populations of Oscillibacter, Parasutterella, and Alloprevotella and
to decrease the abundance of Turicibacter [55].

3.4. Polyphenols from Spirulina

Phlorotannins (phloroglucinol-based polyphenols) and bromophenols (brominated
phenolic derivatives) are both families of polyphenols that are abundant in algae [43].
Algal polyphenols have shown small-to-medium positive effects on fasting blood glucose,
TC, and low-density lipoprotein (LDL) cholesterol levels in humans [43]. Little is known
about the possible role of polyphenolic components in Arthrospyra in its antidiabetic effect.
A polyphenol-rich butanol extract was found to have quite potent α-glucosidase inhibitory
activity (IC50 23 µg/mL) [56]. Inhibitors of intestinal α-glucosidases are instrumental in the
management of diabetes, because they lower postprandial blood glucose levels. The total
phenolic and flavonoid contents were estimated to be 121 mg gallic acid equivalents/100 g
and 27 mg rutin equivalents/100 g A. platensis biomass, respectively, but no more informa-
tion was provided on the structure of the putative phenolics [56]. Another ethanolic extract
of spirulina biomass obtained after hydrolysis showed α-amylase inhibitory activity [57].
Although the possible structures of the active polyphenols were not revealed, the authors
showed evidence that chlorogenic acid is a major component in the extract.

3.5. Pigments from Spirulina

Phycobilins are secondary pigments in microalgae that capture light energy while
protecting microalgae from harmful radiation [58]. Phycocyanin, a blue pigment biosyn-
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thesized by Arthrospyra, was found to protect insulin-producing pancreatic islets from
alloxan injury in mice at doses of 100 and 200 mg/kg body weight [59]. It also reduced
fasting blood glucose and glycosylated serum protein (GSP) levels, maintained the total
antioxidative capacity, reduced TC levels and TAG levels in the serum and liver, increased
the level of hepatic glycogen, and maintained glucokinase (GK) expression in the liver.
The authors suggested that inhibition of the p53 pathway could be one of the mechanisms
responsible for the protection provided by phycocyanin, as it decreased p53 expression in
the pancreas at the mRNA level [59]. Phycocyanin may also exert its antidiabetic effect via
the inhibition of both α-amylase and α-glucosidase, as suggested by molecular docking
and in vitro testing [60]. Moreover, phycocyanin from A. platensis reduced plasma TC and
LDL cholesterol as well as oxidative stress and NADPH oxidase expression induced by an
atherogenic diet in hamsters, particularly when administered together with selenium [61].
The authors suggested that phycocyanin might prevent atherosclerosis.

β-Carotene extract obtained from A. platensis biomass presented antihyperglycemic
activity in STZ-induced diabetic mice when given at a dose of 100 mg/kg body weight
after 10 days of treatment [62].

4. Chlorella and Metabolic Alterations

Chlorella supplementation in humans and other mammals has been shown to have
antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyperlipidemic
effects [16,63]. Chlorella was found to improve fat metabolism in subjects with a high-risk
lifestyle, together with producing significant reductions in total blood serum TC, high-
density lipoprotein (HDL) cholesterol, and LDL cholesterol [64]. Studies with animal
models also revealed the role of Chlorella products in restoring normal lipid levels [64].
C. vulgaris reduced serum TC, low-density lipoprotein cholesterol, and TAG in dyslipidemic
subjects [65]. Chlorella (3 g/day for 4 weeks) decreased arterial stiffness in middle-aged
and older individuals, together with producing an increase in NO production by the
vascular endothelium [66]. The large amount of arginine in Chlorella proteins (3.2 g per
100 g dry weight) [16] could explain this effect.

In patients suffering from NAFLD, C. vulgaris was found to lower body weight and
increase the serum insulin concentration and the HOMA-IR (homeostatic model assessment
for IR) score, while the levels of serum glucose and TNF-α after treatment were significantly
different between groups [67]. This suggests that C. vulgaris supplies anti-inflammatory
agents capable of reverting damage to pancreatic β-cells. Chlorella also reduced body fat,
serum TC, and fasting blood glucose levels in subjects with high-risk lifestyles (borderline
fasting blood glucose, glucose tolerance, TC and TAG) [64]. The authors showed that
a chlorella preparation obtained by crushing and spray-drying modifies the expression
of genes involved in the activation of insulin signaling pathways in peripheral blood
cells [64]. Chlorella intake (8.0 g/day) was found to reduce the expression of resistin (an
IR inducer) in peripheral blood cells of borderline diabetics; resistin mRNA expression
significantly correlated with changes in levels of HbA1c and the inflammation markers
TNF-α and IL-6 [68]. In some other clinical studies, glucose metabolism appeared not to be
affected by preparations of C. vulgaris, such as in those involving dyslipidemic subjects
(dose: 600 mg/day) [65].

The mechanisms by which chlorella might exert protection against diabetes and its risk
factors in humans are largely unknown, but studies using animal models have provided
some information on this. An early study on alloxan-induced T1DM in Wistar rats showed
that intraperitoneally-injected C. pyrenoidosa swiftly counteracted hyperglycemia without
affecting insulin secretion [69]. In agreement with a previous paper [70], the authors con-
cluded that the action of the injected chlorella consisted of consuming circulating glucose.
In agreement with those results, orally administered chlorella (C. pyrenoidosa, 100 mg/kg
body weight) was not shown to affect the basal blood glucose level in STZ-induced diabetic
mice [71]. As supplementation prolonged the hypoglycemic effect of injected insulin,
the authors suggested that chlorella may foster insulin sensitivity [71]. In another study
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using the STZ-model of T1DM, the authors suggested that the hypoglycemic effect of an
unspecified dose of suspended chlorella powder is due to enhanced glucose uptake in
the liver and soleus muscles, as ascertained by an increased uptake of 2-deoxyglucose in
both normal and STZ mice [72]. The authors also suggested that the improved insulin
sensitivity might be connected with reduced levels of non-esterified fatty acids, as this
particular type of lipid has been linked to impaired insulin signaling [72]. In another study,
glucose-stimulated insulin secretion was not affected by the intake of chlorella (C. vulgaris),
while it improved insulin sensitivity in type 2 diabetic Goto-Kakizaki (insulin resistant with
impaired β-cell function [73]) and normal Wistar rats [74]. Chlorella powder (25, 50, and
100 mg/kg body weight) also showed the capacity to improve insulin sensitivity in male
Wistar rats with fructose-induced IR [75]. There seems to be a consensus in the literature
that chlorella biomass improves insulin sensitivity.

Several patent applications claim that Chlorella-derived products, including polysac-
charides, have antidiabetic actions [76–79]. Bioactive components may contribute to the
effects of Chlorella in preventing metabolic alterations (hyperglycemia, hyperlipidemia,
inflammation and oxidative stress) through different mechanisms (Table 1).

4.1. Unsaturated Fatty Acids from Chlorella

The ethanolic (55% ethanol) fraction (CP55) extracted from C. pyrenoidosa showed
antihyperglycemic activity in male rats fed an HF diet, as assessed by the OGTT. CP55 was
found to be more effective than the 55% ethanol fraction extracted from S. platensis [55].
The former extract contained both saturated and unsaturated fatty acids. Other active com-
ponents, such as polyphenols and peptides, may have been extracted under the conditions
used. CP55 increased the abundance of Ruminococcus, Parasutterella, and Erysipelotrichacea
and decreased the abundance of Lactobacillus, Turicibacter, and Blautia [55].

4.2. Polysaccharides from Chlorella

Polysaccharides may be partially responsible for the antihyperlipidemic and anti-
hyperglycemic activity of chlorella biomass via the promotion of gut eubiosis (balanced
microbiota populations). Chlorella spp. contain β-glucans (polymers of β-D-glucose linked
through 1–3 β-glycosidic bonds, 6–9% of dry weight) [80], which may very well contribute
to the overall effects of Chlorella products. Microbial exopolysaccharides (e.g., curdlan,
dextran, gellan, glucans, hyaluronic acid, levan, and pullulan) can reduce inflammatory
responses by promoting gut microbiota balance, strengthening intestinal barrier function,
enhancing antioxidant activities, promoting short-chain fatty acid (SCFA) production, and
reducing the concentrations of pro-inflammatory mediators [81]. β-Glucans promote the
growth of probiotic Lactobacillus and Bifidobacterium as well as the SCFAs propionic and
butyric acid, which has been related to protection against IR and other risk factors [82].
Phosphoric acid hydrolysates of chlorella and spirulina generate oligosaccharides with
potential prebiotic activity, as they promote the growth of Bifidobacterium animalis and
Lactobacillus casei in vitro [83,84]. Arabinomannans (oligomers of arabinose and mannose)
are components of the cell wall of C. vulgaris that may show potential as prebiotics [85].
A polysaccharide from C. pyrenoidosa increased the populations of Coprococcus, Lactobacil-
lus, and Turicibacter, whereas it reduced those of the Ruminococcus gauvreauii group in
HF-fed Wistar rats at doses of 150 and 300 mg/kg body weight. The monomer con-
stituents are mannose, rhamnose, glucose, fucose, xylose, and arabinose in the molar ratio
14.95:13.75:11.42:10.35:4.95:3.63. This polysaccharide also contains glucuronic acid (5.5%)
and has a hypolipidemic effect [86].

4.3. Peptides from Chlorella

Some peptides released from the microalgae by hydrolytic treatments are free radical
scavengers with antioxidant properties. These peptides include Val-Glu-Cys-Tyr-Gly-Pro-
Asn-Arg-Pro-Gln-Phe (chlorella-11) from C. vulgaris [87] and Leu-Asn-Gly-Asp-Val-Trp
from C. ellpsiodea [88]. Chlorella-11 may be partially responsible for this anti-inflammatory
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activity as it has been found to reduce serum TNF-α levels and prostaglandin E2 (PGE2)
production after lipopolysaccharide (LPS) activation in rats [89]. As IR is associated with
low-grade inflammation, the anti-inflammatory activity of peptides and other components
in Chlorella products may contribute to their antidiabetic effects. Meanwhile, the anti-
hypertensive effects of peptidic fractions from C. vulgaris (200 mg/kg body weight) in
spontaneously hypertensive rats has been attributed to oligopeptides such as the ACE
inhibitors Ile-Val-Val-Glu (IC50 315.3 µM), Ala-Phe-Leu (63.8 µM), Phe-Ala-Leu (26.3 µM),
Ala-Glu-Leu (57.1 µM), and Val-Val-Pro-Pro-Ala (79.5 µM) [52].

4.4. Polyphenols from Chlorella

It has been suggested that phenolics in Chlorella preparations are partly responsi-
ble for their antidiabetic effects. It has been shown that C. vulgaris contains 5 mg rutin
equivalents/g. The extracted phenolic fraction was shown to have α-amylase inhibitory
activity (63.1% at 20 mg/L) [90]. A hydrophilic fraction obtained from fermented C. vul-
garis biomass presented free radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl free
radical (DPPH) assay), antibacterial activity (against Escherichia coli, Lactobacillus plantarum,
Staphylococcus aureus, and Staphylococcus epidermidis), and antifungal activity (against As-
pergillus niger, Candida albicans, and Saccharomyces cerevisiae). The extract was shown to
putatively contain polyphenols, as it was reactive in the Folin–Ciocalteu assay [91].

4.5. Vitamins and Minerals from Chlorella

Chlorella products contain vitamins B1, B2, B6, B12, niacin, folate (B9), biotin, pan-
tothenic acid, C, D2, E, and K [16]. Of these, vitamins D2 and B12 are not found in plants.

Chlorella (C. vulgaris) contains high concentrations of folate (approximately 1.69–2.45 mg/100 g
dry weight) [92]. Folate (vitamin B9) is a crucial nutrient involved in the synthesis of amino
acids and nucleotides. There is some evidence that folate reduces the blood insulin levels
in subjects with IR who are at risk of suffering from T2DM [93]. The capacity of folate to
reduce the levels of T2DM-related homocysteine would explain this protection [94,95]. The
main folate compounds in Chlorella products are 5-CHO-H4 folate (60–62%) and 5-CH3-H4
folate (24–26%), while the minor ones are 10-CHO-folate (5–7%), H4 folate (4%), and fully
oxidized folate (3–6%) [92].

C. stigmatophora is particularly rich in the antioxidant vitamin E (669 mg/kg dry
weight), whose antioxidant potential may contribute to protection against T2DM [96].

The high contents of minerals such as selenium in Chlorella in collaboration with
its anti-inflammatory and antioxidative capacity may reduce fasting blood glucose and
improve glycemia in view of the association between serum selenium and diabetes [97].

4.6. Carotenoids from Chlorella

C. zofingiensis is a source of astaxanthin, a xanthophyll carotenoid with health-promoting
properties including, among others, the amelioration of chronic inflammatory diseases, MS,
diabetes, diabetic nephropathy, and CVD [98,99]. In clinical studies, oral administration of
astaxanthin (8 mg/day for 8 weeks) to patients with T2DM significantly reduced plasma
glucose concentrations [100]. It is believed that the antidiabetic effect of astaxanthin is
mainly mediated by its antioxidant activity, as reactive oxygen species (ROS) are key
factors in the inducement of pancreatic β-cell damage by hyperglycemia [101]. The radical
scavenging capacity of astaxanthin is common among unsaturated lipids and comes from
its conjugated double bonds.

Compared with other carotenoids, astaxanthin is particularly well incorporated into
the lipid bilayer of cellular membranes, where it prevents lipid oxidation without altering
the lipid bilayer [102]. Astaxanthin has also been found to regulate intracellular oxidative
stress by activating the MAPK, PI3K/Akt, and nuclear factor erythroid 2-related factor
2 (Nrf2)/antioxidant response element (ARE) signaling pathways in STZ-induced dia-
betic rats [103]. Astaxanthin also modulates the inflammatory response by inhibiting
the release of pro-inflammatory cytokines such as interleukin-1B (IL-1B), interleukin-6
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(IL-6), intercellular adhesion molecule-1 (ICAM-1), TNF-α, and monocyte chemoattractant
protein-1 (MCP-1) [104]. Furthermore, astaxanthin appears to protect pancreatic β-cells
from deterioration and death in both types of diabetes through a combination of interre-
lated antioxidant and anti-inflammatory effects [101]. The major source of astaxanthin
is Haematococcus pluvialis (4–5% of cell dry weight) [105]. C. zofingiensis is an alternative
source of carotenoids including astaxanthin (0.1–1% of cell dry weight) [99].

5. Other Emerging Microalgae
5.1. Tetraselmis

Tetraselmis contains flagellated species that form motile colonies found around the
globe in both marine and water ecosystems [10]. An initial assessment report by Agencia
Española de Seguridad Alimentaria y Nutrición (AESAN) for marketing dried Tetraselmis chuii
was acknowledged by the EC in 2014 (https://ec.europa.eu/food/sites/food/files/safety/
docs/novel-food_authorisation_2014_auth-letter_tetraselmis_chuii_en.pdf, accessed on
1 September 2020). This is an important step towards diversifying the list of approved
microalgae for human nutrition. Tetraselmis species are sources of PUFAs, vitamin E,
carotenoids, chlorophyll, tocopherols, and polyphenols [106] and can be used as probiotics
in aquaculture [107]. T. suecica contains 74 g PUFAs, 70 g α-tocopherol, 3 g β-carotenoid,
and 4 g polyphenols per kg biomass [106]. The possible application of Tetraselmis species in
the prevention of diabetes has not been documented in the scientific literature; however,
a patent application describes the activity of T. suecica in the prevention of obesity and
diabetes via promoting the absorption of glucose into cells [108].

5.2. Isochrysis Galbana

Isochrysis galbana is a marine-based microalga pertaining to the family Isochrysidaceae
within the phylum Haptophyta, which typically uses oil droplets for energy storage [10].
Isochrysis galbana is composed of 27% protein, 34% carbohydrates, and 11% fat [109].
It is a rich source of chlorophyll, carotenoids (fucoxanthin, β-carotene, diadinoxantin
and diatoxantin), and chrysolaminarin (a polysaccharide made from glucose moieties
linked by type β-1,3 and type β-1,6 glycosidic bonds) [109]. A total of 1.35% of the fat is
alpha-linolenic acid and 37.1% is oleic acid (18:1 n-9), which is more than that present in
soybean oil [109]. According to other reports, the oleic acid content is lower (15%) and
the DHA content is 9–13% of the total fatty acid content [110,111]. Other studies have
reported higher concentrations of EPA than DHA [11]. The proportions of EPA and DHA
in Isochrysis preparations may vary considerably between species or strains, depending
on the growing conditions [112]. The general consensus in the literature is that Isochrysis
spp. and strains contain particularly large amounts ofω-3 PUFAs. One gram of I. galbana
biomass may contain as much as 40 mg EPA + DHA [111].

I. galbana, as with Tetraselmis suecica and C. stigmatophora, is particularly rich in lipid-
soluble (A and E) and B-group vitamins (including vitamins B1, B2 (riboflavin), B6 (pyri-
doxal), and B12) [96]. I. galbana also contains mono and digalactosyldiacylglycerols with
highly unsaturated acyl chains that exhibit anti-inflammatory activity in vitro [113]. The
differences in fatty acid composition between reports may be due to differences in the
preparation of the I. galbana biomass analyzed, which is not always detailed in the litera-
ture. Apart from chrysolaminaran-like polymers [114], I. galbana contains other complex
unspecified polysaccharides. The total phenolic content of I. galbana T-ISO was found to be
3 mg gallic acid equivalents per gram microalgae biomass [111].

A concentrated preparation of I. galbana biomass (50 mg/day) had an effect on alloxan
monohydrate-treated male Sprague-Dawley rats. It decreased glucose, TAG, and TC
levels and increased lactic acid bacteria (LAB) populations, resulting in minor signs of
intestinal inflammation [115]. The effects on body mass were attributed to polysaccharides,
which affect satiety and, consequently, energy intake and body composition. Cell wall
polysaccharides are also believed to be involved in the blood glucose lowering effect.
Again, the overall trend of lower TC and TAG and TC levels in the I. galbana diabetic

https://ec.europa.eu/food/sites/food/files/safety/docs/novel-food_authorisation_2014_auth-letter_tetraselmis_chuii_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/novel-food_authorisation_2014_auth-letter_tetraselmis_chuii_en.pdf
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group may be due to reductions in intestinal absorption caused by the polysaccharides
acting as dietary fiber and lowering energy intake [116]. A histology exam showed that
I. galbana had no negative effects on the gastrointestinal tract, in contrast to the alterations
triggered by other microalgal species. The effects on microbiota were attributed to the
constituent polysaccharides, as laminaran increased cecal weight, cecal SCFAs (acetic acid
and propionic acid), and the ratio of bifidobacteria to total viable cells [117]. I. galbana has
shown no adverse effects in rats [115,118].

5.3. Nannochloropsis

Nanochloropsis spp. are mostly marine microalgae pertaining to the phylum Ochro-
phyta. Like Isochrysis, they have the capacity to store energy in the form of lipid droplets [10].
Nannochloropsis spp are also rich sources of high-quality protein (30%), carbohydrates (10%),
and fat (22%) [119]. The level of fat in Nannochloropsis biomass may be as high as 39% [57].
Nannochloropsis contains EPA as the major PUFA [120,121].

N. gaditana was shown to reduce blood insulin and HbA1c and attenuate oxidative
stress and inflammation in STZ-induced diabetic male Wistar rats (10% in feed) [122]. In
the same animal model of T1DM, N. oculata reduced blood glucose and concentrations of
glucose, TC, TAG, and LDL cholesterol while increasing the concentrations of insulin and
HDL cholesterol [123]. These results are in contrast with a previous study cited above that
examined the effects of I. galbana and N. oculata on alloxan-induced diabetic male Sprague-
Dawley rats [115]. In that study, N. oculata did not modify the altered concentrations of
blood glucose, TC, or TAG [115]. The differences between I. galbana and N. oculata in
that model may be related to differences in the polysaccharide content of the biomasses,
as the effects of the former have been attributed to the prebiotic function of its cell wall
components [115]. The hypoglycemic effect of Nannochloropsis in the STZ model might be
related to its insulin increasing action. N. oculata was not found to have any adverse effects
in rats [115]. A lipid extract from Nannochloropsis biomass was found to reduce plasma and
liver cholesterol in rats fed a high-cholesterol diet [124].

Protein hydrolysates of N. oculata contain ACE inhibitory peptides (Leu-Glu-Gln and
Gly-Met-Asn-Asn-Leu-Thr-Pro) with antihypertensive activity. The chemical composition of
the crude hydrolysate is 31.0% protein, 1.3% lipids, 17.8% carbohydrates, and 4.4% fiber [125].

N. gaditana also contains a large amount of folate (2080 µg/100 g dry biomass), com-
parable to that of Chlorella and much higher than that of Arthrospyra [92]. As commented
on before, folate offers protection against T2DM [93].

Nannochloropsis spp. contain phenolic acids (chlorogenic, caffeic, gallic, protocatechuic,
hydroxybenzoic, syringic, vanillic, and ferulic acids) with free radical scavenging capacity,
antifungal activity, and other in vitro activities [57,126]. These phenolics may contribute to
the putative protective effects of the whole biomass against diabetes risk factors.

Polysaccharides of the -glucan type have been quantified (4.2% dry weight) in N. salina [80].
Thus, Nannochloropsis may be a good source of saccharides with prebiotic potential against IR.

Other emerging microalgae species may prove to be introduced as foodstuffs with
functional properties. Euglena gracilis is also a rich source of protein, vitamins, lipids and
paramylon, which is a β-1,3-glucan with immunostimulant activity that is only found
in euglenoids [127]. A powdered preparation of Euglena gracilis was shown to reduce
hyperglycemia and decrease food intake, body weight gain, and abdominal fat in Otsuka
Long–Evans Tokushima fatty (OLETF) rats, which are another model of T2DM. Paramylon
did not show any effect in this model [128].

6. Conclusions and Final Remarks

Microalgae are a low-fat, rich source of high-quality protein and bioactive functional
components, such as polysaccharide fibers, polyphenols, carotenoids, phycobiliproteins,
vitamins, sterols, and, particularly, PUFAs. Spirulina (Arthrospira), Chlorella, and Tetraselmis
have been authorized for human consumption by the European Food Safety Authority
(EFSA) and other regulatory agencies. Other microalgae, such as Isochrysis galbana and
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Nannochloropsis spp., have a long history of use in aquaculture and are candidates for use
in human nutrition. Purified functional components such as -3 PUFAs (EPA/DHA) and
astaxanthin are also used as food ingredients and supplements.

Supplementation of humans and other mammals with chlorella has been associ-
ated with antioxidant, antidiabetic, immunomodulatory, antihypertensive, and antihyper-
lipidemic effects, while supplementation of diabetic patients with spirulina has yielded
contradictory results. The biomasses of Chlorella, Arthrospyra, Tetraselmis, Isochrysis, and
Nannochloropsis contain components that may be effective against the different MS factors.

Chlorella spp. contain prebiotic polysaccharides such as β-glucans and arabinoman-
nans (oligomers of arabinose and mannose) as well as other less known structures that
exhibit hypolipidemic activity. Spirulina biomass has been shown to have some prebiotic
effects (promotion of Lactobacillus and Bifidobacterium), but the putative active components
have not been characterized as well as those in Chlorella. Chrysolaminarin is the major
polysaccharide in Isochrysis.

Meanwhile, both Chlorella and Arthrospyra contain phenolic compounds with radical
scavenging capacity and α-amylase/glycosidase inhibitory activity, two activities that may
be behind the antioxidant, anti-inflammatory, and antihyperglycemic actions of the whole
biomass. Little is known about the structure/activity relationship of microalgal polyphe-
nols. The active components might be small phenolics rather than polymers. Peptides
released by enzymatic hydrolysis of chlorella and spirulina biomass present hypoglycemic,
anti-inflammatory, and antihypertensive activity. ACE inhibitors appear to be ubiqui-
tous and effective at lowering diet-induced hypertension. Other components that may
contribute antioxidant and anti-inflammatory activities to the protective effects against
MS include vitamins (e.g., vitamin B9 or folate from Chlorella), carotenoids (e.g., astax-
anthin from Chlorella and fucoxanthin from Isochrysis), and pigments/pigment proteins
(e.g., phycobilins and phycocyanin from Arthrospyra). Isochrysis and Nannochloropsis are
particularly rich in -3 PUFAs (EPA/DHA) with anti-inflammatory activity. The proportions
of EPA and DHA may vary considerably among species or strains and depend on the
growing conditions.

The mechanisms by which chlorella and spirulina might exert protective effects against
diabetes and its risk factors in humans are largely unknown. Studies involving animal
models have been limited to T1DM models such as alloxan- and STZ-induced T1DM in
rodents. In such models, the microalgae are tested after the pancreatic function has already
been severely affected. The results suggest that microalgae improve insulin sensitivity or
protect β-cell function from oxidative stress and inflammatory damage. We have not found
any mechanistic studies involving murine models of diet-induced MS or T2DM, that is to
say, in a situation starting with IR which later progresses to pancreatic damage.

The composition of edible microalgae suggests they may be effective at two levels: in
the early stages of IR development and in the later stages when pancreatic -cell function is
already compromised. The early active components might be prebiotic polysaccharides,
probably via the preservation of eubiosis and gut integrity. Then, antioxidant scavengers
and anti-inflammatory lipid mediators such as carotenoids and -3 PUFAs (EPA/DHA)
may counteract systemic inflammation and pancreatic damage. Phenolics may also act
at different levels and stages—directly, by acting on gut microbiota, or indirectly, by
stimulating the endogenous antioxidant defense system. ACE inhibitors and other peptides
may contribute to antihypertensive and anti-inflammatory activity at the late stages of
MS development.

These hypotheses need to be confirmed by new mechanistic studies in animal models.
Microalgae are one of the foods of the future, as they are a source of high-quality protein
and include an array of bioactive molecules with potential to act against the modern
epidemics of obesity and diabetes while decisively contributing to a sustainable world
through carbon dioxide fixation and the minimization of agricultural land use.
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91. Zielinski, D.; Fraczyk, J.; Dębowski, M.; Zieliński, M.; Kaminski, Z.J.; Kregiel, D.; Jacob, C.; Kolesinska, B. Biological activity of
hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize
silage. Molecules 2020, 25, 1790. [CrossRef]

92. Woortman, D.V.; Fuchs, T.; Striegel, L.; Fuchs, M.; Weber, N.; Brück, T.B.; Rychlik, M. Microalgae a superior source of folates:
Quantification of folates in halophile microalgae by stable isotope dilution assay. Front. Bioeng. Biotechnol. 2020, 7, 481. [CrossRef]

93. Lind, M.V.; Lauritzen, L.; Kristensen, M.; Ross, A.B.; Eriksen, J.N. Effect of folate supplementation on insulin sensitivity and type
2 diabetes: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 29–42. [CrossRef]

94. Meigs, J.B.; Jacques, P.F.; Selhub, J.; Singer, D.E.; Nathan, D.M.; Rifai, N.; D’Agostino, R.B.; Wilson, P.W. Fasting Plasma
homocysteine levels in the insulin resistance syndrome: The Framingham offspring study. Diabetes Care 2001, 24, 1403–1410.
[CrossRef]

95. Homocysteine Lowering Trialists’ Collaboration Dose-dependent effects of folic acid on blood concentrations of homocysteine:
A meta-analysis of the randomized trials. Am. J. Clin. Nutr. 2005, 82, 806–812. [CrossRef] [PubMed]

96. Fabregas, J.; Herrero, C. Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J. Ind.
Microbiol. Biotechnol. 1990, 5, 259–263. [CrossRef]

97. Askari, G.; Iraj, B.; Salehi-Abargouei, A.; Fallah, A.A.; Jafari, T. The association between serum selenium and gestational diabetes
mellitus: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2015, 29, 195–201. [CrossRef] [PubMed]

98. Yuan, J.-P.; Peng, J.; Yin, K.; Wang, J.-H. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from
microalgae. Mol. Nutr. Food Res. 2010, 55, 150–165. [CrossRef]

99. Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin:
Biology and Industrial potential. Mar. Drugs 2014, 12, 3487–3515. [CrossRef]

100. Mashhadi, N.S.; Zakerkish, M.; Mohammadiasl, J.; Zarei, M.; Mohammadshahi, M.; Haghighizadeh, M.H. Astaxanthin improves
glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 2018, 27, 341–346.

101. Landon, R.; Gueguen, V.; Petite, H.; Letourneur, D.; Pavon-Djavid, G.; Anagnostou, F. Impact of astaxanthin on diabetes
pathogenesis and chronic complications. Mar. Drugs 2020, 18, 357. [CrossRef] [PubMed]

102. Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food
Sci. Nutr. 2006, 46, 185–196. [CrossRef]

http://doi.org/10.1007/s10811-016-0812-9
http://doi.org/10.1039/C8FO01946K
http://www.ncbi.nlm.nih.gov/pubmed/31032827
http://doi.org/10.1016/j.jnutbio.2018.06.010
http://doi.org/10.3390/md14020027
http://doi.org/10.1016/j.carres.2012.02.007
http://doi.org/10.1021/acs.jafc.9b06282
http://doi.org/10.1016/j.biortech.2009.02.014
http://doi.org/10.1016/j.fct.2012.04.022
http://www.ncbi.nlm.nih.gov/pubmed/22542554
http://doi.org/10.1177/039463201002300316
http://www.ncbi.nlm.nih.gov/pubmed/20943052
http://doi.org/10.5829/idosi.abr.2019.76.88
http://doi.org/10.3390/molecules25081790
http://doi.org/10.3389/fbioe.2019.00481
http://doi.org/10.1093/ajcn/nqy234
http://doi.org/10.2337/diacare.24.8.1403
http://doi.org/10.1093/ajcn/82.4.806
http://www.ncbi.nlm.nih.gov/pubmed/16210710
http://doi.org/10.1007/BF01569683
http://doi.org/10.1016/j.jtemb.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25271187
http://doi.org/10.1002/mnfr.201000414
http://doi.org/10.3390/md12063487
http://doi.org/10.3390/md18070357
http://www.ncbi.nlm.nih.gov/pubmed/32660119
http://doi.org/10.1080/10408690590957188


Nutrients 2021, 13, 563 16 of 16

103. Zhu, X.; Chen, Y.; Chen, Q.; Yang, H.; Xie, X. Astaxanthin promotes Nrf2/ARE Signaling to alleviate renal fibronectin and collagen
IV accumulation in diabetic rats. J. Diabetes Res. 2018, 2018, 6730315. [CrossRef]

104. Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health
benefits. Pharmacol. Res. 2018, 136, 1–20. [CrossRef]

105. Boussiba, S.; Bing, W.; Yuan, J.-P.; Zarka, A.; Chen, F. Changes in pigments profile in the green alga Haeamtococcus pluvialis
exposed to environmental stresses. Biotechnol. Lett. 1999, 21, 601–604. [CrossRef]

106. Pérez-López, P.; González-García, S.; Ulloa, R.G.; Sineiro, J.; Feijoo, G.; Feijoo, G. Life cycle assessment of the production of
bioactive compounds from Tetraselmis suecica at pilot scale. J. Clean. Prod. 2014, 64, 323–331. [CrossRef]

107. Irianto, A.; Austin, B. Probiotics in aquaculture. J. Fish Dis. 2002, 25, 633–642. [CrossRef]
108. Lee, M.G.; Nam, S.J.; Baek, M.J. Tetraselmis Suecica Extract Fractions for the Prevention and Treatment of Obesity and Diabetes.

KR2016007979A, 6 January 2017.
109. da Silvia Gorgônio, C.M.; Gómez Aranda, D.; Couri, S. Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella

tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Nat. Sci. 2013, 5, 783–791. [CrossRef]
110. Bonfanti, C.; Cardoso, C.; Afonso, C.; Matos, J.; García, T.; Tanni, S.; Bandarra, N.M. Potential of microalga Isochrysis galbana:

Bioactivity and bioaccessibility. Algal Res. 2018, 29, 242–248. [CrossRef]
111. Custódio, L.; Soares, F.; Pereira, H.; Barreira, L.; Vizetto-Duarte, C.; Rodrigues, M.J.; Rauter, A.P.; Alberício, F.; Varela, J. Fatty acid

composition and biological activities of Isochrysis galbana T.-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the
pharmaceutical and functional food industries. J. App. Psyhol. 2014, 26, 151–161. [CrossRef]

112. Liu, J.; Sommerfeld, M.; Hu, Q. Screening and characterization of Isochrysis strains and optimization of culture conditions for
docosahexaenoic acid production. Appl. Microbiol. Biotechnol. 2013, 97, 4785–4798. [CrossRef]

113. De los Reyes, C.; Ortega, M.J.; Rodríguez-Luna, A.; Talero, E.; Motilva, V.; Zubía, E. Molecular characterization and anti-
inflammatory Activity of galactosylglycerides and galactosylceramides from the microalga Isochrysis galbana. J. Agric. Food Chem.
2016, 64, 8783–8794. [CrossRef]

114. Sadovskaya, I.; Souissi, A.; Souissi, S.; Grard, T.; Lencel, P.; Greene, C.M.; Duin, S.; Dmitrenok, P.S.; Chizhov, A.O.; Shashkov, A.S.;
et al. Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohydr.
Polym. 2014, 111, 139–148. [CrossRef]

115. Nuño, K.; Villarruel-López, A.; Pueblaperez, A.M.; Romerovelarde, E.; Puebla-Mora, A.; Ascencio, F. Effects of the marine
microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J. Funct. Foods 2013, 5, 106–115. [CrossRef]

116. Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary fiber and weight regulation. Nutr. Rev. 2001, 59, 129–139. [CrossRef]
117. Kuda, T.; Enomoto, T.; Yano, T. Effects of two storage β-1,3-glucans, laminaran from Eicenia bicyclis and paramylon from Euglena

gracili, on cecal environment and plasma lipid levels in rats. J. Funct. Foods 2009, 1, 399–404. [CrossRef]
118. Herrero, C.; Abalde, J.; Fábregas, J. Nutritional properties of four marine microalgae for albino rats. Environ. Boil. Fishes 1993, 5, 573–580.

[CrossRef]
119. Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health

supplements. PLoS ONE 2015, 10, e0118985. [CrossRef]
120. Sukenik, A.; Takahashi, H.; Mokady, S. Dietary lipids from marine unicellular algae enhance the amount of liver and blood

omega-3 Fatty acids in rats. Ann. Nutr. Metab. 1994, 38, 85–96. [CrossRef] [PubMed]
121. Santos-Sánchez, N.F.; Valadez-Blanco, R.; Hernández-Carlos, B.; Torres-Ariño, A.; Guadarrama-Mendoza, P.C.; Salas-Coronado,

R. Lipids rich inω-3 polyunsaturated fatty acids from microalgae. Appl. Microbiol. Biotechnol. 2016, 100, 8667–8684. [CrossRef]
[PubMed]

122. Nacer, W.; Baba Ahmed, F.Z.; Merzouk, H.; Benyagoub, O.; Bouanane, S. Evaluation of the anti-inflammatory and anti-oxidant
effects of the microalgae Nannochloropsis gaditana in streptozotocin-induced diabetic rats. J. Diabetes Metab. Disord. 2020. [CrossRef]

123. Nasirian, F.; Sarir, H.; Moradi-Kor, N. Antihyperglycemic and antihyperlipidemic activities of Nannochloropsis oculata microalgae
in Streptozotocin-induced diabetic rats. Biomol. Concepts 2019, 10, 37–43. [CrossRef] [PubMed]

124. Werman, M.J.; Sukenik, A.; Mokady, S. Effects of the marine unicellular Alga Nannochloropsis. sp. to reduce the plasma and Liver
cholesterol levels in male rats fed on diets with cholesterol. Biosci. Biotechnol. Biochem. 2003, 67, 2266–2268. [CrossRef] [PubMed]

125. Samarakoon, K.W.; O-Nam, K.; Ko, J.-Y.; Lee, J.-H.; Kang, M.-C.; Kim, D.; Lee, J.B.; Lee, J.-S.; Jeon, Y.-J. Purification and identifi-
cation of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis
oculata) protein hydrolysate. Environ. Boil. Fishes 2013, 25, 1595–1606. [CrossRef]

126. Mateos, R.; Pérez-Correa, J.R.; Domínguez, H. Bioactive properties of marine phenolics. Mar. Drugs 2020, 18, 501. [CrossRef]
127. Gissibl, A.; Sun, A.; Care, A.; Nevalainen, H.; Sunna, A. Bioproducts from Euglena gracilis: Synthesis and applications. Front.

Bioeng. Biotechnol. 2019, 7, 108. [CrossRef]
128. Shimada, R.; Fujita, M.; Yuasa, M.; Sawamura, H.; Watanabe, T.; Nakashima, A.; Suzuki, K. Oral administration of green algae,

Euglena gracilis, inhibits hyperglycemia in OLETF rats, a model of spontaneous type 2 diabetes. Food Funct. 2016, 7, 4655–4659.
[CrossRef]

http://doi.org/10.1155/2018/6730315
http://doi.org/10.1016/j.phrs.2018.08.012
http://doi.org/10.1023/A:1005507514694
http://doi.org/10.1016/j.jclepro.2013.07.028
http://doi.org/10.1046/j.1365-2761.2002.00422.x
http://doi.org/10.4236/ns.2013.57094
http://doi.org/10.1016/j.algal.2017.11.035
http://doi.org/10.1007/s10811-013-0098-0
http://doi.org/10.1007/s00253-013-4749-5
http://doi.org/10.1021/acs.jafc.6b03931
http://doi.org/10.1016/j.carbpol.2014.04.077
http://doi.org/10.1016/j.jff.2012.08.011
http://doi.org/10.1111/j.1753-4887.2001.tb07001.x
http://doi.org/10.1016/j.jff.2009.08.003
http://doi.org/10.1007/BF02184636
http://doi.org/10.1371/journal.pone.0118985
http://doi.org/10.1159/000177797
http://www.ncbi.nlm.nih.gov/pubmed/8067689
http://doi.org/10.1007/s00253-016-7818-8
http://www.ncbi.nlm.nih.gov/pubmed/27649964
http://doi.org/10.1007/s40200-020-00681-3
http://doi.org/10.1515/bmc-2019-0004
http://www.ncbi.nlm.nih.gov/pubmed/30888961
http://doi.org/10.1271/bbb.67.2266
http://www.ncbi.nlm.nih.gov/pubmed/14586118
http://doi.org/10.1007/s10811-013-9994-6
http://doi.org/10.3390/md18100501
http://doi.org/10.3389/fbioe.2019.00108
http://doi.org/10.1039/C6FO00606J

	Introduction 
	Microalgae 
	Spirulina (Arthrospira) and Metabolic Alterations 
	Dietary Fiber from Spirulina 
	Peptides and Enzymes from Spirulina 
	Unsaturated Fatty Acids from Spirulina 
	Polyphenols from Spirulina 
	Pigments from Spirulina 

	Chlorella and Metabolic Alterations 
	Unsaturated Fatty Acids from Chlorella 
	Polysaccharides from Chlorella 
	Peptides from Chlorella 
	Polyphenols from Chlorella 
	Vitamins and Minerals from Chlorella 
	Carotenoids from Chlorella 

	Other Emerging Microalgae 
	Tetraselmis 
	Isochrysis Galbana 
	Nannochloropsis 

	Conclusions and Final Remarks 
	References

