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Simple Summary: In this work, we studied the metabolic reprogramming of same-patient-derived
cell lines with increasing metastatic potential to develop new therapeutic approaches against
metastatic colorectal cancer. Using a novel systems biology approach to integrate multiple lay-
ers of omics data, we predicted and validated that cystine uptake and folate metabolism, two key
pathways related to redox metabolism, are potential targets against metastatic colorectal cancer. Our
findings indicate that metastatic cell lines are selectively dependent on redox homeostasis, paving
the way for new targeted therapies.

Abstract: With most cancer-related deaths resulting from metastasis, the development of new ther-
apeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient
survival. The metabolic adaptations that support mCRC remain undefined and their elucidation
is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational
identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic
characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480),
its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second,
using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific
to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable
to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis.
Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both
individually and combined, for combating mCRC.
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1. Introduction

Colorectal cancer is the second leading cause of cancer mortality with over 800,000 deaths
per year [1]. Surgery is usually the primary treatment and is successful in approximately
50% of patients [2]. Disease recurrence after surgery involving distant metastasis, fre-
quently in the liver, is a major problem and is often the ultimate cause of death [3]. At that
stage, only 25% of colorectal cancer patients with isolated liver metastasis benefit from
a multimodal treatment including surgery. Indeed, with current therapies, the 5-year-
survival rate of patients with metastatic colorectal cancer (mCRC) is less than 10% [4]. Thus,
it is of paramount importance to develop effective therapeutic strategies against colorectal
cancer metastasis.

Recently, metabolic reprogramming has emerged as an enabling feature of metastasis
and cancer stemness [5]. Briefly, metastatic spread requires the ability to cope with the
increased formation of reactive oxygen species (ROS) and the metabolic plasticity to
adapt to a variable supply of substrates in the secondary tumour site [6,7]. Indeed, there
is emerging evidence that exploring and targeting the specific metabolic rewiring that
supports metastatic activity could be exploited for therapy [8–10].

Here we have used a unique set of same-patient-derived cell lines with increasing
metastatic potential (SW480, SW620 and SW620-LiM2) to identify druggable metabolic
vulnerabilities against mCRC. SW480 and SW620 are KRASG12V-mutant cell lines derived
from the primary tumour and a lymph node metastasis, respectively, of a patient with a
Duke’s type B colorectal cancer [11], whereas SW620-LiM2 is a liver metastatic-enriched
cell line derivative from SW620 [12], hereafter referred to as LiM2. Using a newly devel-
oped workflow, we integrated experimental data (i.e., extracellular flux measurements,
metabolomics, 13C stable resolved metabolomics, transcriptomics, respiration parameters,
growth rate, and gene dependencies) to build cell line-specific Genome Scale Metabolic
Models (GSMMs).

This developed workflow enable us to study the metabolic phenotype that emerges
from the complex multilevel metabolic and genetic interactions and to identify metabolic
vulnerabilities that might not be apparent from a single type of data [13,14]. In this regard,
the analysis of cell line specific GSMMs pointed to cysteine and folate metabolism as
key players in the metabolic rewiring of the metastatic cell lines and identified the cys-
teine/glutamate transporter (system xCT) and methylenetetrahydrofolate dehydrogenase
1 (MTHFD1) as putative targets. We validated the predicted targets in vitro using specific
inhibitors for system xCT and MTHFD1. These inhibitors had a more significant effect
on metastasis-derived cell lines versus the primary tumour-derived cell line and only a
minor effect on non-tumour NCM460 cells. NCM460 is a cell line derived from colon
mucosal epithelium [15], which has been previously validated as a good cell model to
be used as a control in the development of new therapeutic strategies against colorectal
cancer [16]. Overall, our results highlight the importance of cysteine and folate metabolism
for metastatic cell growth and the therapeutic potential of inhibiting both pathways to
target mCRC.

2. Results
2.1. Characterisation of the Metastatic Phenotype

To gain better understanding of the metabolic phenotype associated with metastatic
potential in colon cancer, we used cell lines differing in malignancy potential and char-
acterised their growth, expression of metabolic modulators, invasion and tumorigenic
capacities. The primary tumour-derived SW480 was the slowest-growing cell line, fol-
lowed by the metastatic LiM2 and SW620 cell lines (Figure 1a and Figure S1a). Increased
proliferation in metastatic cell lines was correlated with increased MYC protein levels, while
P-AKT levels were similar in the three cell lines (Figure 1b, Figure S1b,c). Cell volume was
inversely correlated with cell proliferation (Figure 1c), and this was coupled to differences
in mTOR signalling and protein content (Figure 1b, Figure S1d,e). The metastatic potential
of SW620 and LiM2 had been previously established in vivo by Urosevic et al. [12], and
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both cell lines were capable of forming liver and lung metastases following splenic injection
in mice, but LiM2 was determined to be significantly more metastatic. As expected, the
metastatic cell lines also showed higher 3D growth capacity in vitro than the primary cell
line SW480, demonstrated by the increased spheroid area (Figure 1d), and LiM2 exhibited
the highest capacity to form secondary spheroids (Figure 1e).

Cancers 2021, 13, x FOR PEER REVIEW 3 of 24 
 

 

of SW620 and LiM2 had been previously established in vivo by Urosevic et al. [12], and 
both cell lines were capable of forming liver and lung metastases following splenic injec-
tion in mice, but LiM2 was determined to be significantly more metastatic. As expected, 
the metastatic cell lines also showed higher 3D growth capacity in vitro than the primary 
cell line SW480, demonstrated by the increased spheroid area (Figure 1d), and LiM2 ex-
hibited the highest capacity to form secondary spheroids (Figure 1e).  

 
Figure 1. Characterisation of the metastatic phenotype. (a) Growth curve from 0 to 96 h incubation with DMEM 12.5 mM 
Glc and 4 mM Gln, 5% FBS and 1% S/P. (b) Protein levels of the main oncogenic signalling pathways tested by western 
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levels of EMT markers and related transcription factors tested by western blotting. a,b,c A one-way ANOVA and Scheffe’s 
test for multiple comparisons was performed for the factor “cell line”. 

Remarkably, wound healing assays indicated that the primary cell line SW480 had a 
higher migratory capacity than the metastatic cell lines (Figure 1f and Figure S1g), con-
sistent with the fact that proliferation and migration gene expression programs have been 
reported to be different [17]. Examining markers of epithelial mesenchymal transition 
(EMT), we found that SW480 displayed reduced E-cadherin (Figure 1g and Figure S1h) 
and increased EMT transcription factor ZEB1/2 (Figure 1g and Figure S1i). However, the 

Figure 1. Characterisation of the metastatic phenotype. (a) Growth curve from 0 to 96 h incubation with DMEM 12.5 mM
Glc and 4 mM Gln, 5% FBS and 1% S/P. (b) Protein levels of the main oncogenic signalling pathways tested by western
blotting. TATA box was used as a loading control. (c) Cell volume measured by Scepter®. (d) Spheroid formation assay and
(e) secondary spheroid formation assay. Quantification of spheroid area in the left. Images of contrast-phase microscope
(40×) in the right and scan (1×). (f) Migration area quantification from a wound healing assay. (g) and (h) Protein levels of
EMT markers and related transcription factors tested by western blotting. a,b,c A one-way ANOVA and Scheffe’s test for
multiple comparisons was performed for the factor “cell line”.

Remarkably, wound healing assays indicated that the primary cell line SW480 had
a higher migratory capacity than the metastatic cell lines (Figure 1f and Figure S1g),
consistent with the fact that proliferation and migration gene expression programs have
been reported to be different [17]. Examining markers of epithelial mesenchymal transition
(EMT), we found that SW480 displayed reduced E-cadherin (Figure 1g and Figure S1h)
and increased EMT transcription factor ZEB1/2 (Figure 1g and Figure S1i). However, the
levels of other mesenchymal markers (e.g., N-cadherin and vimentin) and transcription
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factors associated with EMT (e.g., Twist 1/2, SNAI1 and NF-κB) were increased in SW620
and LiM2 cells, with remarkably high protein levels of SNAI1 in the latter.

2.2. The metastatic Cell Lines Display Increased Glucose, Glutamine and Mitochondrial
Metabolism

Analysing metabolic differences between the cell lines, we demonstrated that the
metastatic cell lines (SW620 and LiM2) had a stronger Warburg effect than SW480, as they
consumed more glucose and produced more lactate (Figure 2a,b). Subsequent analysis of
glucose entrance into the tricarboxylic acid (TCA) cycle, evaluated by [1,2-13C]-glucose
incubation, indicated a higher glucose contribution into the TCA in the metastatic cell lines
(Figure 2c,j). Consistent with this result the levels of phosphorylated pyruvate dehydro-
genase (PDH) were decreased in metastatic cells (Figure 2d and Figure S2a) indicating its
higher activity.

The second major substrate used by cancer cells is glutamine. The metastatic cells
consumed more glutamine and produced more glutamate (Figure 2e,f). Furthermore, we
observed an increased incorporation of [U-13C]-glutamine into the TCA cycle through both
oxidative and reductive pathways in the metastatic cell lines (Figure 2h,i,k). Increased
uptake of glutamine in these cell lines correlated with the increase in protein levels of
key glutamine catabolising enzymes glutaminase (GLS) and glutamate dehydrogenase
1 (GLUD1) (Figure 2g and Figure S2b).

In line with the metabolic changes observed above, mitochondrial function was also
enhanced in both SW620 and LiM2, which displayed an increased oxygen consumption
rate (OCR) compared to SW480 (Figure S2c). The titrations with glucose, glutamine and
palmitate corroborated an increased OCR in the metastatic cell lines (Figure S2d–f). Mito
Fuel assays, performed with specific inhibitors in order to block the utilisation of the three
major respiratory substrates, revealed that the metastatic cell lines had similar capacity but
lower dependency and higher flexibility for the three substrates, when compared to the
SW480 cell line (Figure S2g–i).

To complete the characterisation of metabolic traits associated with metastatic capacity,
we measured intracellular metabolite concentrations as well as metabolite exchange fluxes
between cells and cell culture media using targeted metabolomics and HPLC/MS/MS
(Figure S3). Intracellular glutamate and glutamine concentrations were significantly higher
in metastatic cell lines (SW620 and LiM2) than in SW480, consistent with their higher rate
of glutamine uptake and glutaminolysis (Figure 2e,i). Moreover, we observed increased
intracellular glycine concentration (Figure S3), and increased serine consumption and
reduced glycine secretion in the metastatic cell lines (Table S1). The latter results suggested
increased serine hydroxymethyltransferase (SHMT) activity and thus enhanced folate
metabolism. Interestingly, metastatic cells displayed decreased intracellular concentrations
and increased consumption of the essential amino acid (EAA) pools, an indicator of either
enhanced protein synthesis or increased catabolism of EAA to fuel the TCA and respiratory
chain (Table S1).

Additionally, acyl-carnitines and free carnitines were detected at significantly higher
concentrations in SW480 compared to metastatic cell lines (Figure S3), potentially indicative
of differences in the metabolism of branched-chain amino acids and lipids. Finally, the
metastatic cell lines produced more polyamines, which is consistent with an increased
arginine consumption (Table S1).
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Figure 2. The metastatic cell lines display higher metabolic flexibility with an increased glucose and glutamine metabolism.
(a) Glucose uptake and (b) lactate production rates after 48 h of cell culture. (c) Glucose contribution to TCA cycle after
24 h incubation with 10 mM [1,2-13C]-glucose. (d) P-PDH (phosphorylated Pyruvate Dehydrogenase) and total PDH
protein levels tested by western blotting. TATA box was used as a loading control. (e) Glutamine uptake and (f) glutamate
production rates after 48 h of cell culture. (g) GLS (glutaminase), GLUD1 (glutamate dehydrogenase 1) protein levels
tested by western blotting. (h) and (i) Glutamine contribution to TCA cycle measured after 24 h incubation with 4 mM
[U-13C]-glutamine, representing (h) reductive carboxylation and (i) oxidative metabolism of glutamine. (j) Graphical
representation of the 13C (in blue) and 12C (in white) incorporation to TCA intermediaries from [1,2-13C]-glucose. Only the
formation of m2 isotopologues in the first turn of the cycle is shown. (k) Graphical representation of the 13C (coloured) and
12C (in white) distribution to intracellular TCA intermediaries by oxidative carboxylation (purple) or reductive carboxylation
(orange) from [U-13C]-glutamine in the first turn of the cycle. a,b,c A one-way ANOVA and Scheffe’s test for multiple
comparisons was performed for the factor “cell line”.
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2.3. The Metabolic Adaptation of the Metastatic Cell Lines Observed In Vitro Is Maintained in an
In Vivo Scenario

A significant concern when working with in vitro models is that their metabolic phe-
notype can be significantly different from those encountered in vivo [18]. To determine if
key features of our cellular models were conserved in vivo we compared metabolism of the
three cell lines grown as xenografts in NOD/SCID mice. We observed that tumour growth
rate in mice correlated with the proliferation rate and metastatic phenotype observed
in vitro (Figure 1a,d and Figure 3a). No metastases were detected in any case (Figure S4a),
likely because mice had to be culled before they could develop them. Moreover, an excel-
lent agreement with in vitro cell data was also observed for EMT markers (e.g., E-cadherin,
vimentin), GLS and PDH phosphorylation status (Figure 3b,c, Figure S4b,c).

Although the contribution of both glucose and glutamine into the TCA cycle evaluated
after a bolus injection of either [U-13C]-glucose or [U-13C]-glutamine was higher in vivo in
comparison with in vitro (Figure 3d–f), the isotopologue labelling patterns were compa-
rable for both conditions. All together, these data suggest a similar metabolic behaviour
in in vitro and in vivo models. This indicates that any metabolic targets identified in the
in vitro cell models would be independent of the tumour microenvironment to which
tumour cells are exposed and would likely be recapitulated in vivo.

2.4. Computational Inference of Cell Line-Specific Metabolic Flux Maps and Metabolic Targets
through Multiomics Data Integration

In order to obtain predictive cell line-specific flux maps for SW480, SW620, and
LiM2, we integrated the measured growth rates, rates of metabolite uptake and secretion,
respiration parameters, 13C resolved metabolomics, and targeted metabolomics using a
newly developed workflow (Figure 4a). Transcriptomics [12,19] and gene dependencies of
the subset of metabolic genes analysed in the Project DRIVE (deep RNAi interrogation of
viability effects in cancer) database [20] were also integrated.

As expected, the resulting cell line-specific flux maps showed significantly higher
glycolytic flux in the metastatic cell lines compared to SW480, as exemplified by the flux
through hexokinase 1 and lactate dehydrogenase (Figure 4b). Furthermore, consistent with
the phosphorylation status of PDH, the flux maps presented a higher flux through PDH and
citrate synthase in SW620 and LiM2 than in SW480. It is worth noting that the computed
flux maps showed that in the metastatic cell lines, the PDH/lactate dehydrogenase flux
ratio was still quite low (roughly 15%), suggesting that despite higher PDH activity, the
metastatic cell lines still predominantly relied on aerobic glycolysis. Likewise, cell line-
specific flux maps predicted increased glutaminase activity in the metastatic cell lines,
and in LiM2 in particular, in concordance with the increased glutaminase levels and
glutamine consumption rates (Figure 4b). To elucidate whether these differences were
intrinsically linked to the enhanced proliferation of the metastatic cell lines, fluxes were also
expressed relative to the growth rate (Figure S5). Remarkably, while TCA-associated fluxes
(i.e., PDH, citrate synthase and glutaminase) appeared to be closely associated with the
proliferation rate, the relative glycolytic flux was still significantly higher in the metastatic
lines, suggesting that the latter may play a role in the metastatic phenotype that goes
beyond supporting cellular proliferation.

The cell line-specific flux maps were used to systematically simulate genes’ KO using
the Minimization of metabolic adjustment (MOMA) algorithm [21] and identify single
or target pairs that could selectively inhibit growth in the metastatic cell lines. Overall,
10 single target and 237 target combinations were predicted to impair the proliferation of
SW620 and LiM2 (Table S2). Of these targets, we focused on targets related to either folate
or cysteine metabolism as they were predicted to be the most selective against metastatic
cells (Table 1).
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(a) Tumour volume evolution measured by calliper. (b) Immunohistochemical staining of paraffin-embedded tumour slides
(40×). (c) P-PDH (phosphorylated pyruvate dehydrogenase at S293) and PDH (total pyruvate dehydrogenase) protein
levels tested by western blotting of tumour extracts. TATA box was used as a loading control. Samples 1–14 indicate extracts
from different mice that were injected with SW480 (1–4), SW620 (5–10) or LiM2 (11–14). (d) Glucose contribution to TCA
cycle measured from a tumour extract after a 15-min bolus of [U-13C]-glucose (20 mg/35 g) before the mice were culled.
(e) and (f) Glutamine contribution to TCA cycle measured from a tumour extract after two boluses of [U-13C]-glutamine
(6 mg/35 g, with 15 min interval) before the mice were culled, representing (e) oxidative metabolism of glutamine and
(f) reductive carboxylation. a,b,c A one-way ANOVA and Scheffe’s test for multiple comparisons was performed for the
factor “cell line”.



Cancers 2021, 13, 425 8 of 22Cancers 2021, 13, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 4. Computational inference of cell line-specific metabolic flux maps and metabolic targets through multiomics data 
integration. (a) Graphical representation of the multiomics integration workflow. First, a central carbon metabolism flux 
map is estimated using 13C MFA, next the flux map is used to constrain the generic human GSMM Recon2, then several 
layers of omics data are used to estimate the cell line specific flux maps which can be used to identify metabolic vulnera-
bilities to selectively target specific populations. (b) Predicted Fluxes through HEX1 (hexokinase), LDH-L (lactate dehy-
drogenase), PDH (pyruvate dehydrogenase), CS (citrate synthase) and GLS (glutaminase). a,b,c denote cell lines with an 
overlap of the sampled flux values for a given reaction. 

The cell line-specific flux maps were used to systematically simulate genes’ KO using 
the Minimization of metabolic adjustment (MOMA) algorithm [21] and identify single or 
target pairs that could selectively inhibit growth in the metastatic cell lines. Overall, 10 
single target and 237 target combinations were predicted to impair the proliferation of 
SW620 and LiM2 (Table S2). Of these targets, we focused on targets related to either folate 

Figure 4. Computational inference of cell line-specific metabolic flux maps and metabolic targets through multiomics
data integration. (a) Graphical representation of the multiomics integration workflow. First, a central carbon metabolism
flux map is estimated using 13C MFA, next the flux map is used to constrain the generic human GSMM Recon2, then
several layers of omics data are used to estimate the cell line specific flux maps which can be used to identify metabolic
vulnerabilities to selectively target specific populations. (b) Predicted Fluxes through HEX1 (hexokinase), LDH-L (lactate
dehydrogenase), PDH (pyruvate dehydrogenase), CS (citrate synthase) and GLS (glutaminase). a–c denote cell lines with an
overlap of the sampled flux values for a given reaction.
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Table 1. Most promising metabolic targets identified from the cell-specific GSMMs. List of the
individual paired target genes and their simulated effect on growth rate, expressed as percentage of
growth of the simulated KO vs. wild type of the same cell line.

Gene KO(s)
Predicted Fraction of Growth Compared to Wild Type

SW480 SW620 LiM2

Single
Targets

MTHFD1 100% 0% 0%

GSR 99% 0% 0%

Target
Pairs

SLC7A9, SLC3A2 86% 0% 0%

SLC3A1, SLC3A2 86% 0% 0%

SLC7A9, SLC7A11 85% 0% 0%

SLC7A11, SLC3A1 85% 0% 0%

2.5. Metastatic Cell Lines Are Dependent on Cysteine Uptake and Vulnerable to System xCT and
Glutathione Reductase Inhibition

The simultaneous inhibition of the two main cystine transport systems, the cys-
tine/glutamate transporter system xCT (coded by the genes SLC7A11 and SLC3A2) [22]
and the cystine/neutral amino acid antiport acid system b0,+ (coded by the genes SLC7A9
and SLC3A1) [23] was predicted as selective for the metastatic cell lines (Table 1). Likewise,
glutathione reductase (GSR), which catalyses the reduction of oxidised glutathione, was
also predicted as a selective target (Table 1). Cysteine is the limiting substrate of glu-
tathione synthesis [24] and can be derived from methionine through the transsulfuration
pathway [25]. Alternatively, cysteine can be produced from the reduction of cystine in the
cytoplasm, primarily by reacting with glutathione [26] but also by the thioredoxin reduc-
tase system [27], making all these putative targets interdependent (Figure 5a). Our GSMM
analysis revealed that the metastatic cell lines had both insufficient activity of the transsul-
furation pathway and of thioredoxin-dependent cystine reduction. Thus, the metastatic
cell lines were predicted to be largely cystine/cysteine auxotroph, and dependent on both
cystine carriers and GSR activity (Figure 5a).

To validate the predicted dependence on cystine uptake, we first incubated SW480,
SW620, and LiM2 without cystine. We observed that under cystine deprivation, prolif-
eration was more significantly reduced in the metastatic cell lines, confirming that they
were more dependent on cystine uptake from the media (Figure 5b). As expected, cell
proliferation was rescued through the addition of N-acetyl cysteine (NAC) which can
be deacylated to form cysteine [28]. Next, we evaluated the therapeutic potential of in-
hibiting cystine transporters and, because simulations showed significantly higher flux
through the system xCT (Figure 5c), we chose to focus on targeting it. With this aim, we
evaluated the effects of two system xCT inhibitors: sulfasalazine, a drug approved for
the treatment of rheumatoid arthritis [29], and erastin, a recently developed inhibitor of
the system xCT [30,31]. As expected, both drugs had lower IC50 values for the metastatic
cells than for SW480. Moreover, erastin exhibited IC50 values up to three orders of mag-
nitude lower than those of sulfasalazine (Figure 5d,e and Table S3). In addition, erastin
also induced significant apoptosis in the metastatic cell lines and decreased 3D growth
capacity (Figure S6b,c). To further confirm the selectivity of these compounds towards the
metastatic cells, we also evaluated their effect on a non-tumour colon NCM460 cell line,
which is a cell line derived from healthy mucosa that has no spheroid-formation capacity
(Figure S6a). NCM460 cells had much lower sensitivity towards both of the compounds
than the metastatic cells (Figure 5f,g and Table S3).



Cancers 2021, 13, 425 10 of 22
Cancers 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 5. Metastatic cells are dependent on cystine uptake and vulnerable to system xCT and glutathione reductase inhi-
bition. (a) Representation of cystine and glutathione metabolism. (b) Cell proliferation measured by DNA content using 
HO33342 under cystine deprivation (-CYS) and adding N-acetylcysteine (-CYS+NAC). *Student’s t test for –CYS or –
CYS+NAC vs. Control conditions, p < 0.05. a,b A one-way ANOVA and Scheffe’s test for multiple comparisons for the factor 
“cell line”. (c) Predicted fluxes through the system xCT and b0,+ system, a,b,c denote cell lines and reactions with an overlap 
of the sampled flux values for a given reaction. (d) and (e) Cell viability curve for (d) sulfasalazine (system xCT inhibitor), 
(e) erastin (system xCT inhibitor) and (f) 2-AAPA (GSR inhibitor) assessed by DNA content after 72 h incubation. Statistical 
analyses of the IC50 curves are shown in Table S3. 

Next, to evaluate GSR as putative target, we used 2-AAPA, an inhibitor of GSR that 
has shown anticancer activity in many cancer cell lines [32–34]. In our cell model, 2-AAPA 
had lower IC50 values for the metastatic cell lines for the range of concentrations described 
in the literature (Figure 5f and Table S3) with mildly or non-significant effects on apopto-
sis and 3D growth (Figure S6c,d). NAC was able to rescue proliferation of the cell lines 
treated with 20 μM of 2-AAPA (Figure S6e) but not at higher doses. Combining GSR and 

Figure 5. Metastatic cells are dependent on cystine uptake and vulnerable to system xCT and glutathione reductase
inhibition. (a) Representation of cystine and glutathione metabolism. (b) Cell proliferation measured by DNA content
using HO33342 under cystine deprivation (-CYS) and adding N-acetylcysteine (-CYS+NAC). *Student’s t test for –CYS or
–CYS+NAC vs. Control conditions, p < 0.05. a,b A one-way ANOVA and Scheffe’s test for multiple comparisons for the
factor “cell line”. (c) Predicted fluxes through the system xCT and b0,+ system, a–c denote cell lines and reactions with an
overlap of the sampled flux values for a given reaction. (d) and (e) Cell viability curve for (d) sulfasalazine (system xCT
inhibitor), (e) erastin (system xCT inhibitor) and (f) 2-AAPA (GSR inhibitor) assessed by DNA content after 72 h incubation.
Statistical analyses of the IC50 curves are shown in Table S3.

Next, to evaluate GSR as putative target, we used 2-AAPA, an inhibitor of GSR that
has shown anticancer activity in many cancer cell lines [32–34]. In our cell model, 2-AAPA
had lower IC50 values for the metastatic cell lines for the range of concentrations described
in the literature (Figure 5f and Table S3) with mildly or non-significant effects on apoptosis
and 3D growth (Figure S6c,d). NAC was able to rescue proliferation of the cell lines treated
with 20 µM of 2-AAPA (Figure S6e) but not at higher doses. Combining GSR and cystine



Cancers 2021, 13, 425 11 of 22

transport inhibition demonstrated synergetic antiproliferative effects for the metastatic
cell lines when first incubating with erastin for 72 h, and then adding 2-AAPA for a total
duration of 120 h (Figure S6f–i and Table S4).

2.6. The Metastatic Cell Lines Are Vulnerable to Inhibition of Folate Metabolism

Our model predicted that the SW620 and LiM2 cell lines displayed significantly higher
fluxes through the cytosolic folate pathway and were thus vulnerable to the inhibition of
the cytosolic enzyme MTHFD1 (Table 1), which catalyses several steps of the cytosolic
folate pathway (Figure 6a,b). The model specifically identified that, in the metastatic
cell lines, the inhibition of the cytosolic folate pathway could not be compensated by the
generally redundant folate mitochondrial pathway, because the CHO-THF generated by the
mitochondrial isoenzyme (MTHFD2) could not be transported to the cytosol to compensate
for MTHFD1 deficiency (Figure 6a). Therefore, in the metastatic cell lines, folate metabolism
was, to some extent, uncoupled between the cytosol and the mitochondrial matrix, which
would render them vulnerable to cytosolic folate pathway inhibitors.

To confirm the dependency on the cytosolic folate pathway, the cell lines were incu-
bated with LY345899, an inhibitor of both MTHFD1 and MTHFD2 that has a significantly
lower Ki for the former [35]. LY345899 was previously tested on the SW480/SW620 model
and was reported to be selective for SW620 cells [36]. Our validation confirmed the prior
reports and showed that the inhibitor was selective, not only for SW620, but also for the
highly metastatic derivative of SW620-LiM2, while having little effect on the proliferation of
NCM460 healthy colon epithelia cells (Figure 6c). Remarkably, the inhibitor did not induce
apoptosis, suggesting that it primarily acted on cell proliferation (Figure S7a). Additionally,
LY345899 also inhibited spheroid formation in the metastatic cell lines (Figure S7b,c).

Next, we evaluated the anti-proliferative effect of the antifolate-agent methotrexate
which targets the cytosolic activity of dihydrofolate reductase (DHFR) [37]. Methotrexate
displayed greater growth inhibitory effects in the metastatic cell lines compared to the
SW480 and NCM460 cell lines (Figure S7d, Table S3). Similar to our findings with inhibition
of MTHFD1, DHFR inhibition affected cell proliferation, and only a small fraction of cells
underwent apoptosis (Figure S7e). Furthermore, spheroids formation was strongly im-
paired in the metastatic cell lines under methotrexate treatment, reinforcing the importance
of folate metabolism for metastatic colonisation (Figure S7f,g). Next, we targeted both the
cytosolic and the mitochondrial folate pathways using SHIN2 [38], a chemical inhibitor
of both SHMT1 and SHMT2. We observed a similar growth inhibitory effect on both the
primary and metastatic tumour cell lines but a significantly lower growth inhibitory effect
on NCM460 at higher SHIN2 concentrations (Figure 6d, Figure S7b,c and Table S3).

Finally, as folate metabolism plays a key role in nucleotide synthesis, we evaluated
whether the enhanced activity of folate metabolism in the metastatic cell lines could
be attributed to their increased proliferation rate. We determined that, similarly to the
Warburg effect, the enhanced fluxes through folate metabolism, particularly through the
cytosolic branch, could not be solely attributed to the increased proliferative capacity of
the metastatic cell lines (Figure S7h).

2.7. Synergistic Effect of the Simultaneous Inhibition of Cysteine Uptake and Folate Metabolism

Having explored the inhibition of two major vulnerabilities of the metastatic cell lines
predicted by the computational model (i.e., cysteine and folate metabolism), we evaluated
whether the inhibition of these pathways could be synergetic. Indeed, both pathways have
been associated with antioxidant defence as cystine contributes to glutathione synthesis,
and MTHFD1 contributes to ROS detoxification by regenerating NADPH [39].

The results showed that the combination of erastin and LY345899 synergistically
affected the proliferation of the metastatic cell lines from concentrations of 0.5 µM of erastin
and 20 µM of LY345899 (Figure 7a–e and Table S4). In line with this, the 3D growth of
the SW620 cell line was significantly more impaired by the drugs in combination than
with individual treatments. However, no differences were observed on spheroid formation
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in LiM2 cells between the combination and erastin individually due to the pronounced
effect of the erastin treatment (Figure 7f,g). Additionally, the metastatic cell lines presented
higher fractions of late apoptosis and necrosis with the combined drug treatment, but lower
early apoptosis in comparison with erastin alone (Figure 7h).

Cancers 2021, 13, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 6. The metastatic cell lines are dependent on the cytosolic branch of folate metabolism. (a) Representation of folate 
metabolism. (b) Predicted flux values for different reactions of cytosolic and mitochondrial folate metabolism. a,b,c denote 
cell lines with an overlap of the sampled flux values for a given reaction. (c) and (d) Cell viability curve for the MTHFD1/2 
inhibitor LY345899 (c) or the SHMT1/2 inhibitor SHIN2 (d) determined by DNA content using HO33342 after 72 h incu-
bation. Statistical analyses of the IC50 curves are shown in Table S3. 

  

Figure 6. The metastatic cell lines are dependent on the cytosolic branch of folate metabolism. (a) Representation of
folate metabolism. (b) Predicted flux values for different reactions of cytosolic and mitochondrial folate metabolism.
a,b,c denote cell lines with an overlap of the sampled flux values for a given reaction. (c,d) Cell viability curve for the
MTHFD1/2 inhibitor LY345899 (c) or the SHMT1/2 inhibitor SHIN2 (d) determined by DNA content using HO33342 after
72 h incubation. Statistical analyses of the IC50 curves are shown in Table S3.



Cancers 2021, 13, 425 13 of 22Cancers 2021, 13, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 7. Synergistic effect of the simultaneous inhibition of cystine uptake and folate metabolism. (a–c) Cell viability 
curve for LY345899 (a), erastin (b) and the combination of both inhibitors (c) assessed by DNA content after 72 h incuba-
tion. (d,e) Same experiment in (a–c) comparing the three treatments (erastin or LY345899 individually and the combina-
tion) for the different cell lines. (f,g) Spheroid formation assay with erastin (0.5 μM), LY345899 (50 μM) or the combination. 
(f) Images of contrast-phase microscope (40×) and (g) quantification of spheroid area from scanner images. (h) Percentage 
of early apoptotic cells measured by flow cytometry using Annexin V-PI under erastin (0.5 μM), LY345899 (50 μM) or the 
combination after 72 h incubation. a–f A one-way ANOVA and Scheffe’s test for multiple comparisons was performed for 
the factor “drug treatment”. The statistical analyses for the drug combinations are shown in Table S4. 

  

Figure 7. Synergistic effect of the simultaneous inhibition of cystine uptake and folate metabolism. (a–c) Cell viability curve
for LY345899 (a), erastin (b) and the combination of both inhibitors (c) assessed by DNA content after 72 h incubation.
(d,e) Same experiment in (a–c) comparing the three treatments (erastin or LY345899 individually and the combination)
for the different cell lines. (f,g) Spheroid formation assay with erastin (0.5 µM), LY345899 (50 µM) or the combination.
(f) Images of contrast-phase microscope (40×) and (g) quantification of spheroid area from scanner images. (h) Percentage
of early apoptotic cells measured by flow cytometry using Annexin V-PI under erastin (0.5 µM), LY345899 (50 µM) or the
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3. Discussion

The cumulative evidence generated to date suggests that both the Warburg effect and
glutaminolysis are associated with metastatic potential in several cancer types [8,9,40,41].
Adding to these data our study provides evidence that, when compared to the parental
colon cancer cells (SW480), both lymph node- (SW620) and liver-derived (SW620-LiM2)
metastatic cell lines displayed a significantly more active Warburg effect and increased
incorporation of glucose and glutamine into the TCA cycle. In order to form macroscopic
metastasis from a small number of seeding cells, metastatic cell populations must be
endowed with a metabolic phenotype capable of supplying the building blocks and ATP to
support rapid cell proliferation and thus, the increase in Warburg effect and glutaminolysis
might enhance metastatic potential simply by enabling rapid cellular proliferation [7].
However, we determined that the glycolytic flux was enhanced in the metastatic cell lines
far beyond their proliferation rate. This indicates that, in addition to cell proliferation, the
Warburg effect could play a key role in other facets of the metastatic phenotype, such as
endowing metastatic cells with the capacity to adapt to perturbations in the supply of both
oxygen and glucose [42]. In this regard, the results generated from mitochondrial fuel
tests also support that metastatic cells have an enhanced capacity to maintain a constant
production of ATP under variable substrate availability.

Interestingly, the metabolic reprogramming we observed correlates with high levels of
both MYC and E-cadherin in the metastatic cell lines compared to the primary tumour cell
line. These results concur with the extensive existing literature on the metabolic changes
driven by MYC in cancer cells [43,44] and with recent results demonstrating a role for
E-cadherin as a promoter of metastasis and mitochondrial metabolism [45,46]. Recent
findings on the differences between primary and metastatic colorectal cancer based on
transcriptomic data indicate that metastasis is characterised by reduced EMT but increased
MYC pathway activity [47]. Nevertheless, our metastatic cells also showed enhanced levels
of mesenchymal markers (i.e., N-cadherin and vimentin) in comparison with the tumour
primary cell line. Overall, our results suggests that the SW620 and LiM2 models underwent
a mesenchymal-epithelial transition (MET) program from the primary tumour-derived cell
line which had already lost E-cadherin and acquired some migratory capacity [48]. Indeed,
it has been established that, in some cases, metastatic cells present epithelial features and
that a transient EMT supports metastatic spread [49]. Additionally, the plasticity of EMT
phenotype observed in the metastatic cell lines, especially in LiM2, could be related to the
observed higher expression of SNAI1, a mesenchymal transcription factor associated with
stemness [50,51].

GSMMs have long been used to identify putative metabolic targets against cancer [52–54].
Here, beyond the state of the art, we expanded the array of data incorporated into the
model, which enhances reliability, by developing an approach integrating up to 7 layers of
data (i.e., growth rates, rates of metabolite uptake and secretion, targeted metabolomics,
13C resolved metabolomics, transcriptomics and gene dependencies). This allowed the
construction of highly accurate cell line specific GSMMs, which facilitated the identification
of potential metabolic vulnerabilities associated with metastatic progression. Our cell
line specific GSMMs predicted that the metastatic cell lines were dependent on cystine
uptake from the extracellular media. Indeed, we determined that inhibition of the cystine
transporter system xCT with sulfasalazine or erastin was highly specific for the metastatic
cell lines, which could make it a potentially effective therapeutic strategy against metastasis
in colorectal cancer. Indeed, the system xCT is overexpressed in several cancer types
including colorectal tumours with mutant KRAS [55,56] and has been found to be strongly
correlated with recurrence in colorectal cancer patients [57]. The system xCT plays a key
role in supplying the cysteine, in the form of cystine, for glutathione synthesis [58] and,
in this regard, GSR was also predicted to be a putative target since it is the enzyme that
recovers reduced glutathione, which is necessary for the reduction of cystine to cysteine.
The fact that GSR inhibition with 2-AAPA was selective for the metastatic cells validated
this model prediction. In addition, we found a synergetic response when both de novo
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synthesis and recycling of glutathione were impaired by combining 2-AAPA and erastin
treatments. Remarkably, in other cancer types, both system xCT and 2-AAPA inhibitors
individually have already been proven to be successful in combination with cisplatin [59,60]
or radiotherapy [61–63]. Thus, we posit that the combination of 2-AAPA and erastin could
be used in conjunction with chemotherapy with electrophilic compounds (e.g., cisplatin) or
radiotherapy to effectively tackle metastatic colon cancer.

Additionally, from genome-scale simulations, we also identified cytosolic folate
metabolism as a pathway upregulated in the metastatic cell lines compared to the pri-
mary colorectal cell line SW480 and such an increase could not be solely attributed to
increased cellular proliferation. Notably, while the inhibition of both the cytosolic and
mitochondrial SHMT isoforms was effective for both primary and metastatic cancer cell
lines, targeting only cytosolic activities by inhibition of DHFR or MTHFD1, inhibited pro-
liferation selectively in the metastatic cell lines. This suggests that the metastatic cell lines
could be selectively dependent on the cytosolic folate metabolism. Indeed, both DHFR
and MTHFD1 have been found to be overexpressed in colorectal cancer tumours com-
pared to healthy tumour epithelia [64]. Remarkably, folate metabolism is also intrinsically
connected to cysteine and glutathione metabolism. For instance, it has been postulated
that MTHFD1 supports metastatic spread in melanoma by acting as a source of NADPH,
which can contribute to glutathione recycling and antioxidant capacity [65]. Indeed, the
compartmentalisation predicted by our GSMMs could reflect the demand of NADPH in the
cytosol, which cannot be compensated by the mitochondrial branch of folate metabolism.
Additionally, folate metabolism also acts as one-carbon donor in the methionine cycle
which contributes to the epigenetic modulation that is likely required to maintain the
phenotype of metastatic cells [66]. Thus, we hypothesised that the combination of cystine
uptake and folate metabolism inhibition could be effective against metastatic cells. Indeed,
we found erastin and LY345899 to be a good combination that synergistically impaired cell
proliferation as well as 3D growth in the metastatic cell lines.

Overall, our findings provide an insight into the metabolic reprogramming that sup-
ports the metastatic phenotype in a match patient primary tumour (SW480), lymph node
(SW620) and liver-metastasis derived (LiM2) cellular model and unveil metabolic vulnera-
bilities that emerge during the transition from primary to metastatic states. Interestingly,
there are only subtle differences between the metabolic phenotype of SW620 and LiM2 even
though the latter are derived through in vivo selection of the most metastatic SW620 clones.
This suggests that the cancer stem cell metabolic phenotype of lymph node metastatic cells
allows them to adapt to any environment and metastasise. Indeed, this similarity can be
therapeutically exploited as both populations were shown to share the same metabolic
dependencies on cystine uptake and folate metabolism. Even more, we unveiled that the
combination of existing drugs targeting both vulnerabilities is highly effective against such
metastatic populations.

While the SW480-SW620-LiM2 same-patient-derived model is uniquely suited to
characterise the metabolic reprogramming underlying mCRC, colorectal cancer is a hetero-
geneous disease and the findings and vulnerabilities here reported might only apply to a
subset of colorectal cancer tumours. Future works should explore the genetic histopatho-
logical and metabolic markers that can identify the CRC patients that could benefit the most
by the putative drug or drug combinations here identified, thus paving the way for person-
alized therapies against mCRC [67]. Remarkably, methotrexate [37] and sulfasalazine [29]
are already approved for clinical use and could be easily repositioned against susceptible
subtypes of mCRC. Furthermore, the omics integration workflow here developed can easily
be applied to the metabolic characterisation of other cancer cell models, potentially leading
to the identification of targets against metastatic spread in other subtypes of mCRC or other
cancer types.
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4. Materials and Methods
4.1. Cell Lines and Culture

SW480 cell line was obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). SW620 and its metastatic derivative SW620-LiM2 were obtained from
Dr. Roger Gomis at IRB Barcelona [12], both lines were authenticated and KRAS mutation
confirmed. NCM460 cell line [15] was a kind gift from Dr. Mary Pat Moyer (INCELL,
San Antonio, TX, USA). All cells were grown in DMEM with 12.5 mM glucose, 4 mM
glutamine, 5% Fetal Bovine Serum (10270, Gibco, ThermoFisher Scientific, Waltham, MA,
USA) and 1% Streptomycin/penicillin at 37 ◦C in a 5% CO2 atmosphere. Cell volume
was determined using a ScepterTM Handheld Automated Cell Counter (Merk Millipore,
Burlington, MA, USA).

4.2. Chemicals

LY345899, was purchased from Med Chem Express (Monmouth Junction, NJ, USA),
SHIN2 was purchased from Glixx Laboratories (Hopkinton, MA, USA), methotrexate, sul-
fasalazine, 2-AAPA and erastin were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Xenograft Experiments

SW480, SW620 and SW620-LiM2 cell lines (1 million cells/mouse) were injected sub-
cutaneously into immunosuppressed NOD/SCID male mice, after a test for mycoplasma
contamination. Before injections, the cells were trypsinised and resuspended in 50% Ex-
tracellular Matrix gel (E6909, Sigma-Aldrich, USA): 50% DMEM 12.5 mM Glc and 4 mM
Gln, 5% FBS and 1% S/P. A total of 29 mice were injected, 10 mice per cell lines (except
for LiM2, for which we injected 9 mice). Tumour volume was measured two times per
week until the tumours reached 8–10 mm in diameter. All procedures were carried out at
the Francis Crick Institute under pathogen-free conditions, in accordance with the Local
Ethics Committee.

4.4. Cell Proliferation Assay Using Fluorospheres

Cell proliferation was determined by flow cytometry using flow-count fluorospheres
(7547053, Beckman Coulter, Chaska, MN, USA). At the end of the incubation, cells were
resuspended with media containing 100,000 fluorospheres/mL and immediately analysed
by GalliosTM Flow Cytometer (Beckman Coulter, Chaska, MN, USA).

4.5. IC50 Curve Determination Using Hoechst

When determining IC50 using various concentrations of a specific drug or a combi-
nation on p96 well plates, cell proliferation was assessed by HO33342 staining; cells were
washed with PBS, lysed with 0.01% SDS and frozen at −20 ◦C O/N, thawed at 37 ◦C and
incubated with 4 µg/mL of HO33342 in 1 M NaCl, 1 mM EDTA, 10 mM Tris-HCl pH
7.4 for 1 h at 37 ◦C in the darkness. Fluorescence was measured at 460 nm after excita-
tion with 337 nm in a FLUOstar OPTIMA Microplate Reader (BMG LABTECH GmbH,
Ortenberg, Germany).

4.6. Apoptosis Assay

Apoptotic cells were determined by flow cytometry using Annexin V coupled with
fluorescent isothiocyanate (FICT). At the end of incubation, cells were resuspended in
10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl2 buffer. Annexin V-FICT was added
according to the kit’s instructions (Bender System MedSystem, Vienna, Austria) and an
incubation was performed in the darkness during 30 min at room temperature. Propidium
iodide was added at 20 µg/mL, 1 min before analysing at the GalliosTM Flow Cytometer
(Beckman Coulter, USA).
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4.7. Spheroids Assays

Cell lines were seeded on 24-well (104 cells/well) low attachment plates in medium
containing EGF, BFGF, heparin, B27, insulin and hydrocortisone and incubating for one
week. Spheroids were analysed by phase-contrast microscopy and stained incubating
them with 0.5 mg/mL MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)
for 4 h. Quantification was made by ImageJ software scanned images with the Analyse
Particles tool, applying particle sizes from 0.0000785 to infinite cm2, and “total area” was
taken as the value to estimate and compare spheroid formation capacity between samples.

4.8. Wound Healing Assay

Cell lines were seeded on 24-well (6 × 105 cells/well) in 24-plates. The media was
replaced after 24 h by another media containing 0.5% of mitomycin and no Fetal Bovine
Serum. After 1 h incubation, an artificial wound was performed by scratching the mono-
layer using a pipette tip. The wound’s width was measured at 0, 3, 7, 24 and 48 h using
phase-contrast microscope images and ImageJ software.

4.9. Western Blotting

Protein extracts were obtained from the cultured cells or dry tissue incubating for
20 min at 4 ◦C with RIPA buffer (50 mM Tris pH 8.0, 150 mM sodium chloride, 1% Triton
X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulphate, 1% protease inhibitor
cocktail and 1% phosphatase inhibitor cocktail from Thermo Fisher Scientific Inc., Waltham,
MA, USA) and scrapping, sonicating and centrifuging at 12,000× g for 15 min. Western
blotting from equal amounts of protein extracts was performed as explained in Supple-
mentary Methods. The primary antibodies used are specified in Supplementary Methods.
Quantification of the bands was performed using ImageJ software.

4.10. Immunohistochemistry

Tumour tissue, liver, lung and spleen were obtained from mice wearing a tumour of
8–10 mm in diameter (see Xenograft experiments section). Deparaffinated tissues in slides
where processed for immunohistochemistry according to the Dako kit EnVision K4065
instructions, specified in Supplementary Methods. Images of the stained slides were taken
in an optical microscope (40×) and analysed with ImageJ software.

4.11. Spectrophotometric Measurements

Glucose, lactate, glutamine and glutamate concentrations in the cell culture media
at initial and final incubation time were measured using a COBAS Mira Plus spectropho-
tometer (Horiba ABX, Kyoto, Japan). Such determinations are specified in Supplementary
Methods.

4.12. OCR Measurements, Mito Stress and Mito Fuel Assays

Oxygen consumption rates were measured using a Seahorse XF24 Flux Analyzer
(Seahorse Bioscience, USA). Cells were seeded at 7.5 × 104 cells/well density for SW480
and 105 cell/well density for SW620 and LiM2 in 24-well plate pre-coated with colla-
gen (Advanced Biomatrix). The assays were conducted according to the manufacturer’s
instructions, see Supplementary Methods.

4.13. Targeted Metabolomics

Intracellular and extracellular metabolite profiling was performed using the Absolute
IDQTM p180 kit (Biocrates Life Sciences AG, Tyrol, Austria) according to the manufac-
turer’s instructions, see Supplementary Methods.

4.14. Stable Isotope-Resolved Metabolomics In Vitro

Quantities of 2.5 × 106, SW480, SW620 and LiM2 cells were seeded in 100 mm plates
and after 24 h the media was changed to either glucose 50% enriched in [1,2-13C]-glucose,
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glutamine 50% enriched in [U-13C]-glutamine, or unlabelled substrates. Cells and media were
obtained for metabolite extractions at 6 and 24 h after the labelled substrates were added. The
metabolites analysed and the procedures are specified in Supplementary Methods.

4.15. Stable Isotope-Resolved Metabolomics In Vivo

After cell line injections into immunocompromised NOD/SCID mice (see Xenograft
experiments section) and once tumours reached 8–10 mm in diameter mice were given a
bolus of either [U-13C]-glucose (1 bolus of 20 mg/35 g) or [U-13C]-glutamine (2 boluses of
6 mg/35 g each, with 15 min interval). Fifteen minutes after the last bolus, the mice were
terminally anaesthetised, and blood was taken by cardiac puncture. Tumour tissue was
snap frozen in liquid nitrogen. Then, tumour samples were ground in liquid nitrogen to
form a powder, which was lyophilised. Polar intracellular metabolites were analysed as
specified in Supplementary Methods.

4.16. Statistical Analyses

All experiments were performed at least in triplicates and repeated two or more times.
Statistical analyses of experimental measures were performed using the Agricolae package
for R. More specifically, for comparisons that are between the cell lines (SW480–SW620–
LiM2) we used a one-way ANOVA for the factor “cell line”, and Scheffe’s test for multiple
comparisons. Groups that are indicated with the same letter are not significantly different
(p > 0.05). For comparisons between two conditions (e.g., before and after drug administra-
tion), we used Student’s t test with p < 0.05, and we used asterisk to indicate significant
differences. Further statistical analyses are explained in Supplementary Methods.

4.17. Multiomics Data Integration

Multiple layers of data were integrated to compute cell line specific flux maps using
a novel workflow (Figure 4). The workflow involved the following series of steps, first
a central carbon metabolism flux map was computed using 13C MFA [68], and then in-
tegrated into the human GSMM model Recon2 [69]. Next, targeted metabolomics were
integrated in order to constrain GSMMs to produce intracellular metabolites at a rate
proportional to their concentrations and the proliferation rate of each cell line [70]. Then,
Minimal Cut Set Analysis (MCS) was used to integrate reported essential metabolic genes
from project DRIVE [20] (Figure S8). Afterwards, within the above-defined constraints,
the GIMME algorithm [71,72] was used to restrict the maximum flux through reactions
based on transcript expression evidence. Finally, flux sampling was used to compute flux
combinations consistent with the above-integrated data. For each of the flux samples, gene
KOs were simulated, and flux samples were ranked based on their consistency with gene
dependency data. The latter step served both to (i) minimise the false positives of gene
essentiality, and (ii) integrate partial dependencies on non-essential genes. The average of
the top 100 ranked flux samples were selected as the cell line-specific flux maps. A detailed
description of each step is provided in Supplementary Methods.

4.18. Identifying Putative Metabolic Targets

To identify metabolic targets against colon cancer, gene KOs were systematically simu-
lated for metabolic genes, individually or in pairs. The reactions to be blocked by each gene
KO(s) were determined by combining gene expression data with the GPR rules of Recon 2.
A reaction was considered to be inactive if when a gene was inactivated (i.e., its expression
set to 0), the mapped gene expression value decreased at least 16-fold. Then, the effect
of reaction KOs was simulated using the reference flux distribution computed for each
cell line as input for running MOMA [21] in the framework of cell line specific models.
Single gene KOs were systematically performed for all cell lines under study. Conversely,
for gene pairs, due to the larger number of combinations to test (~175,000), all potential
gene pairs were only evaluated in SW620. Next, the gene combinations that resulted in
a biomass production below 15% of wild type in SW620 and displayed synergy were
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evaluated on the remaining cell lines. A gene pair was considered to have synergy if the
fraction of biomass production under the double KO was less than the product of the
fraction of biomass production under the single KOs. A gene or gene pair was considered a
potential target if it reduced the biomass production to 10% or less of the wild type in both
SW620 and LiM2. Some of the identified targets were potentially inherent vulnerabilities
to all human metabolic networks (as opposed to only cancer specific metabolic networks).
With this in mind, all single and gene pair combinations were simulated on a Recon2
network unconstrained by condition specific data (e.g., transcriptomics, metabolomics and
gene dependency) and the targets that prevented synthesis of biomass components in this
generic network were filtered out.

5. Conclusions

Using a novel systems biology strategy to integrate metabolic and transcriptomic
data, we unveiled the metabolic reprogramming related to cystine transport and folate
metabolism as druggable metabolic vulnerabilities of mCRC in the SW480-SW620-LiM2
same-patient-derived model. We demonstrated that the combined inhibition of xCT and
MTHFD1 is synergetic and is specific for metastatic colon cancer cell lines.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/3/425/s1, Figure S1: Characterisation of the metastatic phenotype (Related to Figure 1),
Figure S2: Metabolic changes under metastatic progression (Related to Figure 2), Figure S3: Metabolic
changes under metastatic progression, intracellular metabolites measurement (Related to Figure 2),
Figure S4: The metabolic adaptation of the metastatic cell lines observed in vitro is maintained in an
in vivo scenario (Related to Figure 3), Figure S5: Fluxes relative to biomass production (Related to
Figure 4), Figure S6: Metastatic cells are dependent on cystine uptake and vulnerable to system xCT
and glutathione reductase inhibition (Related to Figure 5), Figure S7: The metastatic cell lines are
dependent on the cytosolic branch of folate metabolism (Related to Figure 6), Figure S8: Integrating
known gene dependencies using MCS analysis. Table S1: Amino acids uptake and production upon
metastatic progression, Table S2: Putative metabolic targets, Table S3: IC50 values for the tested
inhibitors, Table S4: Combination index values for the tested combinations, Table S5: Levels of the
most abundant phosphatidylcholines (PC AA) and the most probable acyl chain for each of the most
abundant phosphatidylcholines, Table S6: Predicted relative abundance of each acyl chain in each
cell line. Supplementary Methods. Western Blot original images.

Author Contributions: Conceptualization, J.T.-C., C.F. and M.C.; Data curation, J.T.-C. and C.F.;
Funding acquisition M.T.-C., S.M., F.M., D.H., M.Y., P.d.A. and M.C.; Investigation, J.T.-C., C.F., J.P.,
X.H.-A., and M.Y.; Project Administration, J.T.-C., C.F., M.Y., P.d.A. and M.C.; Resources, R.R.G., M.Y.,
D.H., and M.C.; Software, C.F., E.R. and P.d.A.; Supervision, M.T.-C., S.M., F.M., E.R., M.Y., P.d.A.
and M.C.; Writing—original draft, J.T.-C., C.F. and M.C.; Writing—reviewing and editing, J.T.-C., C.F.,
J.P., X.H.-A., M.T.-C., R.R.G., S.M., E.R., M.Y., P.d.A., F.M., D.H., and M.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by grants to M.C. from Agència de Gestió d’Ajuts Universitaris i
de Recerca (2017SGR1033) from the Catalan Government, ICREA Academia, MCIU/AEI/FEDER,
UE (SAF2017-89673-R), MINECO/FEDER, UE (SAF2015-70270-REDT) and Instituto de Salud Carlos
III (CIBEREHD, CB17/04/00023). We thank the MCIU/AEI/FEDER, UE (SAF2017-89673-R) for
sponsoring this publication. C.F. has received support from “Becas de la Caixa para estudios de
doctorado en universidades españolas” funded by the “La Caixa” foundation. C.F. also received
the support from the Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR). X.H.-A.
has received support from the Asociación Española contra el Cáncer (AECC). M.Y. has received
support from The Francis Crick Institute which receives its core funding from Cancer Research UK
(FC001223), the UK Medical Research Council (FC001223) and the Wellcome Trust (FC001223). F.M.
and D.H. have received support from the National Institute of Health/National Cancer Institute
(5R01 CA158921-04).

https://www.mdpi.com/2072-6694/13/3/425/s1
https://www.mdpi.com/2072-6694/13/3/425/s1


Cancers 2021, 13, 425 20 of 22

Institutional Review Board Statement: In vivo experiments were conducted at The Francis Crick
Institute according to the guidelines of the Declaration of Helsinki and in accordance with the UK
Home Office, under the Animals (Scientific Procedures) Act 1986, and the Local Ethics Committee
under the Project license number P609116C5, granted 26th November 2018, last amendment granted
31st March 2020.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets created and analysed in the present study are available
from the corresponding author on reasonable request.

Acknowledgments: We thank Mary Pat Moyer for the kind gift of NCM460 cell line.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Rentsch, M.; Schiergens, T.; Khandoga, A.; Werner, J. Surgery for colorectal cancer-trends, developments, and future perspectives.

Visc. Med. 2016, 32, 184–191. [CrossRef] [PubMed]
3. Zarour, L.R.; Anand, S.; Billingsley, K.G.; Bisson, W.H.; Cercek, A.; Clarke, M.F.; Coussens, L.M.; Gast, C.E.; Geltzeiler, C.B.;

Hansen, L.; et al. Colorectal cancer liver metastasis: Evolving paradigms and future directions. Cell. Mol. Gastroenterol. Hepatol.
2017, 3, 163–173. [CrossRef] [PubMed]

4. Yamamoto, H.; Murata, K.; Fukunaga, M.; Ohnishi, T.; Noura, S.; Miyake, Y.; Kato, T.; Ohtsuka, M.; Nakamura, Y.; Takemasa, I.;
et al. Micrometastasis volume in lymph nodes determines disease recurrence rate of stage ii colorectal cancer: A prospective
multicenter trial. Clin. Cancer Res. 2016, 22, 3201–3208. [CrossRef] [PubMed]

5. Chae, Y.C.; Kim, J.H. Cancer stem cell metabolism: Target for cancer therapy. BMB Rep. 2018, 51, 319–326. [CrossRef]
6. Pascual, G.; Domínguez, D.; Benitah, S.A. The contributions of cancer cell metabolism to metastasis. Dis. Model. Mech. 2018, 11.

[CrossRef]
7. Tarrado-Castellarnau, M.; De Atauri, P.; Cascante, M. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget

2016, 7. [CrossRef]
8. Lu, J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019, 38, 157–164. [CrossRef]
9. Bu, P.; Chen, K.-Y.; Xiang, K.; Johnson, C.; Crown, S.B.; Rakhilin, N.; Ai, Y.; Wang, L.; Xi, R.; Astapova, I.; et al. Aldolase b-mediated

fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 2018, 27, 1249–1262.e4. [CrossRef]
10. Marín de Mas, I.; Aguilar, E.; Zodda, E.; Balcells, C.; Marin, S.; Dallmann, G.; Thomson, T.M.; Papp, B.; Cascante, M. Model-driven

discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells. PLoS Comput. Biol. 2018,
14, e1005914. [CrossRef]

11. Hewitt, R.E.; McMarlin, A.; Kleiner, D.; Wersto, R.; Martin, P.; Tsokos, M.; Stamp, G.W.; Stetler-Stevenson, W.G.; Tsoskas, M.
Validation of a model of colon cancer progression. J. Pathol. 2000, 192, 446–454. [CrossRef]

12. Urosevic, J.; Garcia-Albéniz, X.; Planet, E.; Real, S.; Céspedes, M.V.; Guiu, M.; Fernandez, E.; Bellmunt, A.; Gawrzak, S.;
Pavlovic, M.; et al. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and
PTHLH. Nat. Cell Biol. 2014, 16, 685–694. [CrossRef] [PubMed]

13. Yizhak, K.; Chaneton, B.; Gottlieb, E.; Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 2015, 11, 817.
[CrossRef] [PubMed]

14. Nilsson, A.; Nielsen, J. Genome scale metabolic modeling of cancer. Metab. Eng. 2017, 43, 103–112. [CrossRef] [PubMed]
15. Moyer, M.P.; Manzano, L.A.; Merriman, R.L.; Stauffer, J.S.; Tanzer, L.R. NCM460, A normal human colon mucosal epithelial cell

line. In Vitro Cell. Dev. Biol. Anim. 1996, 32, 315–317. [CrossRef]
16. Alcarraz-Vizán, G.; Sánchez-Tena, S.; Moyer, M.P.; Cascante, M. Validation of NCM460 cell model as control in antitumor

strategies targeting colon adenocarcinoma metabolic reprogramming: Trichostatin A as a case study. Biochim. Biophys. Acta (BBA)
Gen. Subj. 2014, 1840, 1634–1639. [CrossRef]

17. Nair, N.U.; Das, A.; Rogkoti, V.-M.; Fokkelman, M.; Marcotte, R.; de Jong, C.G.; Koedoot, E.; Lee, J.S.; Meilijson, I.; Hannenhalli, S.;
et al. Migration rather than proliferation transcriptomic signatures are strongly associated with breast cancer patient survival.
Sci. Rep. 2019, 9, 10989. [CrossRef]

18. Kreuzaler, P.; Panina, Y.; Segal, J.; Yuneva, M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion.
Mol. Metab. 2019, 1–19. [CrossRef]

19. Provenzani, A.; Fronza, R.; Loreni, F.; Pascale, A.; Amadio, M.; Quattrone, A. Global alterations in mRNA polysomal recruitment
in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 2006, 27, 1323–1333. [CrossRef]

http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1159/000446490
http://www.ncbi.nlm.nih.gov/pubmed/27493946
http://doi.org/10.1016/j.jcmgh.2017.01.006
http://www.ncbi.nlm.nih.gov/pubmed/28275683
http://doi.org/10.1158/1078-0432.CCR-15-2199
http://www.ncbi.nlm.nih.gov/pubmed/26831719
http://doi.org/10.5483/BMBRep.2018.51.7.112
http://doi.org/10.1242/dmm.032920
http://doi.org/10.18632/oncotarget.10911
http://doi.org/10.1007/s10555-019-09794-5
http://doi.org/10.1016/j.cmet.2018.04.003
http://doi.org/10.1371/journal.pcbi.1005914
http://doi.org/10.1002/1096-9896(2000)9999:9999&lt;::AID-PATH775&gt;3.0.CO;2-K
http://doi.org/10.1038/ncb2977
http://www.ncbi.nlm.nih.gov/pubmed/24880666
http://doi.org/10.15252/msb.20145307
http://www.ncbi.nlm.nih.gov/pubmed/26130389
http://doi.org/10.1016/j.ymben.2016.10.022
http://www.ncbi.nlm.nih.gov/pubmed/27825806
http://doi.org/10.1007/BF02722955
http://doi.org/10.1016/j.bbagen.2013.12.024
http://doi.org/10.1038/s41598-019-47440-w
http://doi.org/10.1016/j.molmet.2019.08.021
http://doi.org/10.1093/carcin/bgi377


Cancers 2021, 13, 425 21 of 22

20. McDonald, E.R.; de Weck, A.; Schlabach, M.R.; Billy, E.; Mavrakis, K.J.; Hoffman, G.R.; Belur, D.; Castelletti, D.; Frias, E.;
Gampa, K.; et al. Project drive: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-
scale, deep RNAi screening. Cell 2017, 170, 577–592.e10. [CrossRef]

21. Segrè, D.; Vitkup, D.; Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad.
Sci. USA 2002, 99, 15112–15117. [CrossRef] [PubMed]

22. Bridges, R.J.; Natale, N.R.; Patel, S.A. System xc− cystine/glutamate antiporter: An update on molecular pharmacology and roles
within the CNS. Br. J. Pharmacol. 2012, 165, 20–34. [CrossRef] [PubMed]

23. Chillarón, J.; Font-Llitjós, M.; Fort, J.; Zorzano, A.; Goldfarb, D.S.; Nunes, V.; Palacín, M. Pathophysiology and treatment of
cystinuria. Nat. Rev. Nephrol. 2010, 6, 424–434. [CrossRef]

24. Estrela, J.M.; Ortega, A.; Mena, S.; Sirerol, J.A.; Obrador, E. Glutathione in metastases: From mechanisms to clinical applications.
Crit. Rev. Clin. Lab. Sci. 2016, 53, 253–267. [CrossRef] [PubMed]

25. Sbodio, J.I.; Snyder, S.H.; Paul, B.D. Regulators of the transsulfuration pathway. Br. J. Pharmacol. 2019, 176, 583–593. [CrossRef]
26. Tietze, F.; Bradley, K.H.; Schulman, J.D. Enzymic reduction of cystine by subcellular fractions of cultured and peripheral

leukocytes from normal and cystinotic individuals. Pediatr. Res. 1972, 6, 649–658. [CrossRef]
27. Holmgren, A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its

function in disulfide reduction. J. Biol. Chem. 1977, 252, 4600–4606.
28. Whillier, S.; Raftos, J.E.; Chapman, B.; Kuchel, P.W. Role of N-acetylcysteine and cystine in glutathione synthesis in human

erythrocytes. Redox Rep. 2009, 14, 115–124. [CrossRef]
29. Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward

rheumatoid arthritis therapy; the old and the new. J. Cell. Physiol. 2019, 234, 10018–10031. [CrossRef]
30. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.;

Yang, W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 106010–106072. [CrossRef]
31. Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.;

et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 2014,
3, e02523. [CrossRef] [PubMed]

32. Seefeldt, T.; Zhao, Y.; Chen, W.; Raza, A.S.; Carlson, L.; Herman, J.; Stoebner, A.; Hanson, S.; Foll, R.; Guan, X. Characterization of
a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. J. Biol. Chem.
2009, 284, 2729–2737. [CrossRef] [PubMed]

33. Chen, W.; Seefeldt, T.; Young, A.; Zhang, X.; Zhao, Y.; Ruffolo, J.; Kaushik, R.S.; Guan, X. Microtubule S-glutathionylation as a
potential approach for antimitotic agents. BMC Cancer 2012, 12, 245. [CrossRef]

34. Li, X.; Jiang, Z.; Feng, J.; Zhang, X.; Wu, J.; Chen, W. 2-Acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylcarbonylamino)
phenyl carbamoylsulfanyl] propionic acid, a glutathione reductase inhibitor, induces G2/M cell cycle arrest through generation
of thiol oxidative stress in human esophageal cancer cell. Oncotarget 2017, 8, 61846–61860. [CrossRef] [PubMed]

35. Gustafsson, R.; Jemth, A.-S.; Gustafsson, N.M.S.; Färnegårdh, K.; Loseva, O.; Wiita, E.; Bonagas, N.; Dahllund, L.; Llona-Minguez,
S.; Häggblad, M.; et al. Crystal Structure of the Emerging Cancer Target MTHFD2 in Complex with a Substrate-Based Inhibitor.
Cancer Res. 2017, 77, 937–948. [CrossRef] [PubMed]

36. Ju, H.-Q.; Lu, Y.-X.; Chen, D.-L.; Zuo, Z.-X.; Liu, Z.-X.; Wu, Q.-N.; Mo, H.-Y.; Wang, Z.-X.; Wang, D.-S.; Pu, H.-Y.; et al. Modulation
of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl. Cancer Inst.
2018, 111, 1–13. [CrossRef]

37. Visentin, M.; Zhao, R.; Goldman, I.D. The Antifolates. Hematol. Oncol. Clin. N. Am. 2012, 26, 629–648. [CrossRef]
38. Ducker, G.S.; Ghergurovich, J.M.; Mainolfi, N.; Suri, V.; Jeong, S.K.; Hsin-Jung Li, S.; Friedman, A.; Manfredi, M.G.; Gitai, Z.;

Kim, H.; et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large
B-cell lymphoma. Proc. Natl. Acad. Sci. USA 2017, 114, 11404–11409. [CrossRef]

39. Yang, M.; Vousden, K.H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 2016, 16, 650–662. [CrossRef]
40. Rohani, N.; Hao, L.; Alexis, M.S.; Joughin, B.A.; Krismer, K.; Moufarrej, M.N.; Soltis, A.R.; Lauffenburger, D.A.; Yaffe, M.B.;

Burge, C.B.; et al. Acidification of Tumor at Stromal Boundaries Drives Transcriptome Alterations Associated with Aggressive
Phenotypes. Cancer Res. 2019, 79, 1952–1966. [CrossRef]

41. Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 expression in colorectal cancer
cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019, 10, 40.
[CrossRef] [PubMed]

42. Epstein, T.; Gatenby, R.A.; Brown, J.S. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand.
PLoS ONE 2017, 12, e0185085. [CrossRef] [PubMed]

43. Méndez-Lucas, A.; Lin, W.; Driscoll, P.C.; Legrave, N.; Novellasdemunt, L.; Xie, C.; Charles, M.; Wilson, Z.; Jones, N.P.; Rayport, S.; et al.
Identifying strategies to target the metabolic flexibility of tumours. Nat. Metab. 2020, 2, 335–350. [CrossRef] [PubMed]

44. Koufaris, C.; Valbuena, G.N.; Pomyen, Y.; Tredwell, G.D.; Nevedomskaya, E.; Lau, C.-H.; Yang, T.; Benito, A.; Ellis, J.K.; Keun, H.C.
Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells.
Oncogene 2016, 35, 2766–2776. [CrossRef]

45. Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in
multiple models of breast cancer. Nature 2019, 324, 297–314. [CrossRef]

http://doi.org/10.1016/j.cell.2017.07.005
http://doi.org/10.1073/pnas.232349399
http://www.ncbi.nlm.nih.gov/pubmed/12415116
http://doi.org/10.1111/j.1476-5381.2011.01480.x
http://www.ncbi.nlm.nih.gov/pubmed/21564084
http://doi.org/10.1038/nrneph.2010.69
http://doi.org/10.3109/10408363.2015.1136259
http://www.ncbi.nlm.nih.gov/pubmed/26754151
http://doi.org/10.1111/bph.14446
http://doi.org/10.1203/00006450-197208000-00002
http://doi.org/10.1179/135100009X392539
http://doi.org/10.1002/jcp.27860
http://doi.org/10.1016/j.cell.2012.03.042
http://doi.org/10.7554/eLife.02523
http://www.ncbi.nlm.nih.gov/pubmed/24844246
http://doi.org/10.1074/jbc.M802683200
http://www.ncbi.nlm.nih.gov/pubmed/19049979
http://doi.org/10.1186/1471-2407-12-245
http://doi.org/10.18632/oncotarget.18705
http://www.ncbi.nlm.nih.gov/pubmed/28977909
http://doi.org/10.1158/0008-5472.CAN-16-1476
http://www.ncbi.nlm.nih.gov/pubmed/27899380
http://doi.org/10.1093/jnci/djy160
http://doi.org/10.1016/j.hoc.2012.02.002
http://doi.org/10.1073/pnas.1706617114
http://doi.org/10.1038/nrc.2016.81
http://doi.org/10.1158/0008-5472.CAN-18-1604
http://doi.org/10.1038/s41419-018-1291-5
http://www.ncbi.nlm.nih.gov/pubmed/30674873
http://doi.org/10.1371/journal.pone.0185085
http://www.ncbi.nlm.nih.gov/pubmed/28922380
http://doi.org/10.1038/s42255-020-0195-8
http://www.ncbi.nlm.nih.gov/pubmed/32694609
http://doi.org/10.1038/onc.2015.333
http://doi.org/10.1038/s41586-019-1526-3


Cancers 2021, 13, 425 22 of 22

46. Park, S.Y.; Shin, J.-H.; Kee, S.-H. E-cadherin expression increases cell proliferation by regulating energy metabolism through
nuclear factor-κB in AGS cells. Cancer Sci. 2017, 108, 1769–1777. [CrossRef]

47. Kamal, Y.; Schmit, S.L.; Hoehn, H.J.; Amos, C.I.; Frost, H.R. Transcriptomic differences between primary colorectal adenocarcino-
mas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res. 2019, 79, 4227–4241. [CrossRef]

48. Teeuwssen, M.; Fodde, R. Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers
2019, 11, 1368. [CrossRef]

49. Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019, 29, 212–226.
[CrossRef]

50. Jia, D.; Li, X.; Bocci, F.; Tripathi, S.; Deng, Y.; Jolly, M.K.; Onuchic, J.N.; Levine, H. Quantifying cancer epithelial-mesenchymal
plasticity and its association with stemness and immune response. J. Clin. Med. 2019, 8, 725. [CrossRef]

51. Wilson, M.M.; Weinberg, R.A.; Lees, J.A.; Guen, V.J. Emerging mechanisms by which EMT programs control stemness.
Trends Cancer 2020, 6, 775–780. [CrossRef] [PubMed]

52. Auslander, N.; Cunningham, C.E.; Toosi, B.M.; McEwen, E.J.; Yizhak, K.; Vizeacoumar, F.S.; Parameswaran, S.; Gonen, N.;
Freywald, T.; Bhanumathy, K.K.; et al. An integrated computational and experimental study uncovers FUT 9 as a metabolic
driver of colorectal cancer. Mol. Syst. Biol. 2017, 13, 956. [CrossRef] [PubMed]

53. Agren, R.; Mardinoglu, A.; Asplund, A.; Kampf, C.; Uhlen, M.; Nielsen, J. Identification of anticancer drugs for hepatocellular
carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 2014, 10, 721. [CrossRef] [PubMed]

54. Lagziel, S.; Lee, W.D.; Shlomi, T. Studying metabolic flux adaptations in cancer through integrated experimental-computational
approaches. BMC Biol. 2019, 17, 51. [CrossRef] [PubMed]

55. Shin, S.-S.; Jeong, B.-S.; Wall, B.A.; Li, J.; Shan, N.L.; Wen, Y.; Goydos, J.S.; Chen, S. Participation of xCT in melanoma cell
proliferation in vitro and tumorigenesis in vivo. Oncogenesis 2018, 7, 86. [CrossRef]

56. Lim, J.K.M.; Delaidelli, A.; Minaker, S.W.; Zhang, H.-F.; Colovic, M.; Yang, H.; Negri, G.L.; von Karstedt, S.; Lockwood, W.W.;
Schaffer, P.; et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellu-
lar redox balance. Proc. Natl. Acad. Sci. USA 2019, 116, 9433–9442. [CrossRef]

57. Sugano, K.; Maeda, K.; Ohtani, H.; Nagahara, H.; Shibutani, M.; Hirakawa, K. Expression of xCT as a predictor of disease
recurrence in patients with colorectal cancer. Anticancer Res. 2015, 35, 677–682.

58. Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.;
et al. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic
opportunities. Antioxid. Redox Signal. 2013, 18, 522–555. [CrossRef]

59. Ma, M.-Z.; Chen, G.; Wang, P.; Lu, W.; Zhu, C.; Song, M.; Yang, J.; Wen, S.; Xu, R.-H.; Hu, Y.; et al. Xc- inhibitor sulfasalazine
sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett. 2015, 368, 88–96. [CrossRef]

60. Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The
ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin’s cytotoxicity in
cancer cells. Sci. Rep. 2018, 8, 968. [CrossRef]

61. Cobler, L.; Zhang, H.; Suri, P.; Park, C.; Timmerman, L.A. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction.
Oncotarget 2018, 9, 32280–32297. [CrossRef] [PubMed]

62. Pan, X.; Lin, Z.; Jiang, D.; Yu, Y.; Yang, D.; Zhou, H.; Zhan, D.; Liu, S.; Peng, G.; Chen, Z.; et al. Erastin decreases radioresistance
of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol. Lett. 2019, 17, 3001–3008. [CrossRef] [PubMed]

63. Zhao, Y.; Seefeldt, T.; Chen, W.; Carlson, L.; Stoebner, A.; Hanson, S.; Foll, R.; Matthees, D.P.; Palakurthi, S.; Guan, X. Increase in
thiol oxidative stress via glutathione reductase inhibition as a novel approach to enhance cancer sensitivity to X-ray irradiation.
Free Radic. Biol. Med. 2009, 47, 176–183. [CrossRef] [PubMed]

64. Sanz-Pamplona, R.; Berenguer, A.; Cordero, D.; Molleví, D.G.; Crous-Bou, M.; Sole, X.; Paré-Brunet, L.; Guino, E.; Salazar, R.;
Santos, C.; et al. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol. Cancer
2014, 13, 46. [CrossRef] [PubMed]

65. Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.; Johnson, T.M.; DeBerardinis, R.J.;
Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015, 527, 186–191. [CrossRef] [PubMed]

66. Wong, C.C.; Qian, Y.; Yu, J. Interplay between epigenetics and metabolism in oncogenesis: Mechanisms and therapeutic
approaches. Oncogene 2017, 36, 3359–3374. [CrossRef] [PubMed]

67. Buikhuisen, J.Y.; Torang, A.; Medema, J.P. Exploring and modelling colon cancer inter-tumour heterogeneity: Opportunities and
challenges. Oncogenesis 2020, 9, 66. [CrossRef]

68. Antoniewicz, M.R. A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. Med. 2018, 50, 19. [CrossRef]
69. Swainston, N.; Smallbone, K.; Hefzi, H.; Dobson, P.D.; Brewer, J.; Hanscho, M.; Zielinski, D.C.; Ang, K.S.; Gardiner, N.J.;

Gutierrez, J.M.; et al. Recon 2.2: From reconstruction to model of human metabolism. Metabolomics 2016, 12. [CrossRef]
70. Reimers, A.M.; Reimers, A.C. The steady-state assumption in oscillating and growing systems. J. Theor. Biol. 2016, 406, 176–186.

[CrossRef]
71. Becker, S.A.; Palsson, B.O. Context-Specific Metabolic Networks Are Consistent with Experiments. PLoS Comput. Biol. 2008,

4, e1000082. [CrossRef]
72. Schmidt, B.J.; Ebrahim, A.; Metz, T.O.; Adkins, J.N.; Palsson, B.Ø.; Hyduke, D.R. GIM3E: Condition-specific models of cellular

metabolism developed from metabolomics and expression data. Bioinformatics 2013, 29, 2900–2908. [CrossRef] [PubMed]

http://doi.org/10.1111/cas.13321
http://doi.org/10.1158/0008-5472.CAN-18-3945
http://doi.org/10.3390/cancers11091368
http://doi.org/10.1016/j.tcb.2018.12.001
http://doi.org/10.3390/jcm8050725
http://doi.org/10.1016/j.trecan.2020.03.011
http://www.ncbi.nlm.nih.gov/pubmed/32312682
http://doi.org/10.15252/msb.20177739
http://www.ncbi.nlm.nih.gov/pubmed/29196508
http://doi.org/10.1002/msb.145122
http://www.ncbi.nlm.nih.gov/pubmed/24646661
http://doi.org/10.1186/s12915-019-0669-x
http://www.ncbi.nlm.nih.gov/pubmed/31272436
http://doi.org/10.1038/s41389-018-0098-7
http://doi.org/10.1073/pnas.1821323116
http://doi.org/10.1089/ars.2011.4391
http://doi.org/10.1016/j.canlet.2015.07.031
http://doi.org/10.1038/s41598-018-19213-4
http://doi.org/10.18632/oncotarget.25794
http://www.ncbi.nlm.nih.gov/pubmed/30190786
http://doi.org/10.3892/ol.2019.9888
http://www.ncbi.nlm.nih.gov/pubmed/30854078
http://doi.org/10.1016/j.freeradbiomed.2009.04.022
http://www.ncbi.nlm.nih.gov/pubmed/19397999
http://doi.org/10.1186/1476-4598-13-46
http://www.ncbi.nlm.nih.gov/pubmed/24597571
http://doi.org/10.1038/nature15726
http://www.ncbi.nlm.nih.gov/pubmed/26466563
http://doi.org/10.1038/onc.2016.485
http://www.ncbi.nlm.nih.gov/pubmed/28092669
http://doi.org/10.1038/s41389-020-00250-6
http://doi.org/10.1038/s12276-018-0060-y
http://doi.org/10.1007/s11306-016-1051-4
http://doi.org/10.1016/j.jtbi.2016.06.031
http://doi.org/10.1371/journal.pcbi.1000082
http://doi.org/10.1093/bioinformatics/btt493
http://www.ncbi.nlm.nih.gov/pubmed/23975765

	Introduction 
	Results 
	Characterisation of the Metastatic Phenotype 
	The metastatic Cell Lines Display Increased Glucose, Glutamine and Mitochondrial Metabolism 
	The Metabolic Adaptation of the Metastatic Cell Lines Observed In Vitro Is Maintained in an In Vivo Scenario 
	Computational Inference of Cell Line-Specific Metabolic Flux Maps and Metabolic Targets through Multiomics Data Integration 
	Metastatic Cell Lines Are Dependent on Cysteine Uptake and Vulnerable to System xCT and Glutathione Reductase Inhibition 
	The Metastatic Cell Lines Are Vulnerable to Inhibition of Folate Metabolism 
	Synergistic Effect of the Simultaneous Inhibition of Cysteine Uptake and Folate Metabolism 

	Discussion 
	Materials and Methods 
	Cell Lines and Culture 
	Chemicals 
	Xenograft Experiments 
	Cell Proliferation Assay Using Fluorospheres 
	IC50 Curve Determination Using Hoechst 
	Apoptosis Assay 
	Spheroids Assays 
	Wound Healing Assay 
	Western Blotting 
	Immunohistochemistry 
	Spectrophotometric Measurements 
	OCR Measurements, Mito Stress and Mito Fuel Assays 
	Targeted Metabolomics 
	Stable Isotope-Resolved Metabolomics In Vitro 
	Stable Isotope-Resolved Metabolomics In Vivo 
	Statistical Analyses 
	Multiomics Data Integration 
	Identifying Putative Metabolic Targets 

	Conclusions 
	References

