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Predicting lithium response prior to treatment could both expedite therapy and avoid exposure 
to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic 
data is of interest. We thus evaluate the degree to which lithium response can be predicted with a 
machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in 
the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated 
the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide 
polymorphisms using a supervised ML approach. Under appropriate cross‑validation procedures, 
lithium response could be predicted to above‑chance levels in two constituent sites (Halifax, Cohen’s 
kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants 
with shared importance in these models showed over‑representation of postsynaptic membrane 
related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [− 0.01, 0.04]), 
although non‑trivial performance was achieved within a restricted dataset including only those 
patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response 
remains a promising but difficult task. Classification performance could potentially be improved by 
further harmonization of data collection procedures.

Bipolar disorder (BD) is a neuropsychiatric illness characterized by recurrent episodes of mania and depression. 
It is associated with a significant risk of  suicide1—highest in early course of the illness—with many patients 
receiving effective treatment only after as many as 10  years2. One contributing factor to this lag is the number of 
medication trials that are typically undertaken to find the optimal treatment for a given patient. Since medica-
tion trials are based on an empirical approach (i.e. by trial-and-error), it may be possible to reduce this delay 
by predicting the best treatment for a given individual a priori. However, we currently lack predictive markers 
for this purpose.

Genomic data may be useful for the prediction of lithium responsiveness, given the familial aggregation of BD 
(particularly the lithium responsive type) among lithium  responders3. At present, the best evidence of genomic 
correlates of lithium response is from the largest genome-wide association study (GWAS) of lithium response to 
 date4. This study yielded a single associated locus on chromosome 21. Although the authors demonstrated that 
the response-related alleles were associated with lower rates of relapse in an independent sample of 73 patients 
treated for 2 years of lithium monotherapy, the out of sample predictive power of the genomic data overall 
remains unknown. This is due to the fact that GWAS is (A) not designed to evaluate predictive capacity, and (B) 
cannot account for epistatic effects.

Thus, the primary objective of the present study was to evaluate the degree to which lithium response can 
be predicted with a machine learning (ML) approach—which explicitly tackles the question of out-of-sample 
predictive power—using only genetic data. To do this, we employ the largest-ever set of genomic data from BD 
patients treated with lithium for maintenance therapy over a duration of at least one year, from 14 international 
site members of the Consortium on Lithium Genetics (ConLiGen). We also had two secondary objectives. First, 
we sought to evaluate–through pathway analysis–whether any above-chance classification performance was 
informed by genetic variants in specific biological pathways. Second, we sought to explore factors that might 
limit classification performance in this large multi-site dataset, such as assessment method (prospective follow-
up vs. cross-sectional) and strength of lithium response.

Methods
Data collection. For this work we use the largest-ever set of genomic data from BD patients treated with 
lithium for maintenance therapy over a duration of at least one year, from 14 international site members of the 
Consortium on Lithium Genetics (ConLiGen). A detailed description of the data collection procedure was given 
by Hou et al.4. Briefly, a sample of 3013 patients were evaluated for long term response to lithium in one of 22 
collaborating centres. For these analyses, we limited the feature set to the genotyped (non-imputed) SNPs that 
overlapped between all platforms. The same quality control measures described in the supplementary materials 
of Hou et al.4 were employed. We also removed data from sites that had either fewer than ten responders or fewer 
than 50 subjects in total. Table 1 provides a list of contributing sites and their relative proportions of lithium 
responders and non-responders. After quality control, our data included 2,210 subjects and 47,465 SNPs all 
from a total of 14 different centres. Further details of the methods are provided in the supplementary materials.

Classification analyses. Analyses were performed in four stages: (A) analysis of pooled data (henceforth 
the aggregate analysis), (B) analysis of individual site-level data (henceforth the site-level analysis), (C) an analy-
sis in which we trained classifiers using data from all but one site, which was used as a validation set (henceforth 
the predict-one-site-out analysis), and (D) an analysis in which we repeated the aggregate analysis after leaving 
each site out, one at a time (henceforth the leave-one-site-out analysis).

As in the study by Hou et al.4, we define a lithium responder as a subject with Alda score ≥ 7 in our primary 
classification analyses. However, it is possible that subjects whose scores are on the scale’s extremes are better 
exemplars of lithium response and non-response, respectively. Subjects who are more representative of the 
underlying phenotype might be more easily separable. To test this hypothesis, we conducted a supplementary 
experiment in which we repeated the classification analyses in the following four conditions: removing subjects 
with scores of (A) 6, then (B) {6,7}, then (C) {5,6,7}, and finally (D) {4,5,6,7,8}.

It is possible that the mode of follow-up (prospective vs. not) could influence the labeling of patients as 
lithium responders or non-responders. Thus, we split the data into two sets: the first included data from sites 
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where patients were followed prospectively (Poznan, Cagliari, Halifax, Romania, Barcelona), and the second 
included only patients assessed retrospectively or cross-sectionally (Japan, Würzburg, Geneva, Paris, San Diego, 
Mayo, New South Wales, Karolinska, Taiwan). Within each of these datasets, we repeated the aggregate, leave-
one-site-out, and predict-one-site-out analyses under the same cross-validation scheme as our other analyses.

Classifiers. To provide an indication of the degree to which classification performance was sensitive to clas-
sifier architecture, we implemented two classification models: L2-penalized logistic regression (LR) and extreme 
gradient boosted trees.

Logistic regression is a simple method that learns a linear decision boundary between classes. Given the high 
dimensionality of the feature space and the fact that we expect there to be relatively few features that carry pre-
dictive capacity, we add an L2 regularization penalty to the log-likelihood loss function according to the default 
parameterization in the SciKit-Learn v.0.20.1  package5.

The XGBoost (extreme gradient boosting, XGB)  algorithm6, similar to a random forest  classifier7, pools a 
number of weak classifiers (decision trees) in order to create a single strong classifier with a reduced variance in 
comparison to the weak classifiers. On top of this, the XGB algorithm trains subsequent trees including infor-
mation regarding mistakes that previous trees made (specifically, the residuals between predicted and ground 
truth values) which serves to reduce bias in the strong classifier. We use the python implementation of XGB from 
the distributed machine learning community (DMLC, https ://githu b.com/dmlc/xgboo st) and use the default 
parameters in all of our experiments.

Model criticism. All analyses employed five-fold cross-validation stratified by lithium response. We did this 
to ensure that model performance is measured out of sample, thus minimizing the possibility of over fitting. By 
definition, the predict-one-site-out analysis validation phase is conducted out of sample.

Performance measures included accuracy, area under the receiver operator characteristic curve (AUC), sen-
sitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F-1 score (F1), and Cohen’s 
kappa. Our primary outcome measure of interest was Cohen’s kappa, which is generally more conservative under 
class imbalance.

For the Cohen’s kappa metric, we simulated p values that represented the probability p that a “trivial” or “null” 
classifier applied to a data set with the same proportion of positive examples would achieve greater performance. 
For the experiments in which we perform a stratified k-fold cross-validation, we combine the results from each 
testing set before applying this technique. Mathematical details for this procedure are provided in the Appendix.

Feature importance and gene set analysis. For the best classified sites within the site-level analysis, 
we first compared the feature importance values (or LR coefficients) between classifiers trained on a given site. 
This was done to evaluate whether above-chance classification performance obtained with different models was 
attributable to the same features. For models in which multiple sites were classified with above-chance perfor-
mance, we compared the feature importance/coefficient values between those sites. In both cases, we computed 
the mean feature importances/coefficients (model specific) over the respective site’s cross-validation folds. The 
expected values were then compared using Kendall’s Tau (using the Scipy v. 1.3.0 implementation). Where we 
compared feature importances from the XGBoost algorithm (which are not directional) against LR coefficients, 
we did so using the absolute value of the LR coefficients. However, when comparing coefficients between LR 
models (i.e. one trained on site A, and the other on site B), no such transformation was made. We report the 
tau statistic and p value, with the statistical significance threshold set to α = 0.0125 (Bonferroni correction for 
4 comparisons).

Table 1.  Distributions of cases (lithium responders) and controls (non-responders) across sites.

Institution Responders Non-responders

University of Cagliari, Italy 55 (28%) 141 (72%)

Dalhousie University, Canada 159 (45%) 194 (55%)

University of NSW, Australia 13 (20%) 50 (80%)

Poznan University of Medical Sciences, Poland 47 (48%) 50 (52%)

UC San Diego, USA 23 (11%) 192 (89%)

RIKEN Brain Institute, Japan 31 (24%) 97 (76%)

Mayo Clinic, USA 22 (23%) 72 (77%)

University of Würzburg, Germany 30 (17%) 145 (83%)

Karolinska Institutet, Sweden 138 (45%) 166 (55%)

National Taiwan University, Taiwan 13 (14%) 79 (86%)

Obregia Hospital, Romania 32 (21%) 120 (79%)

University of Geneva, Switzerland 13 (23%) 44 (77%)

University of Barcelona, Spain 20 (27%) 54 (73%)

INSERM, France 38 (18%) 172 (82%)

ALL 634 (29%) 1576 (71%)

https://github.com/dmlc/xgboost
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To determine a within site feature importance ranking for the LR classifier for gene ontology  analysis8 on 
the Dalhousie sample, we first computed the median LR coefficient (across the cross-validation folds) for all 
SNPs whose LR coefficients had the same sign across folds. We then ranked SNPs by the absolute value of the 
median of their regression coefficients and selected the top quartile (hereafter referred to as the effect set) for 
gene ontology analyses. Next, we used the biopython  package9 to determine the gene(s) with which each SNP 
in the data set is associated (if any) and separated the effect set of genes from the total (reference) set. We then 
compare the reference and effect sets using the statistical overrepresentation test in  PANTHER8. To limit the 
penalty incurred by multiple comparisons, in both the effect and reference gene lists we omitted all duplicates 
and genes that were either uncharacterized or not catalogued by PANTHER.

We investigated the overlap in feature importance for LR classifiers trained on the Dalhousie and Würzburg 
samples separately. In this scenario, we found the intersection of all SNPs whose LR coefficients matched in sign 
between both sites and took this to be the effect set. We then subjected the genes associated with these SNPs to 
the same gene set analysis outlined above.

Results
Demographic statistics. Demographic statistics are reported in Table 2. There were no statistically sig-
nificant differences in sex, diagnosis, or age at onset between lithium responders and non-responders. There 
was a small but statistically significant difference in the presence of psychosis (721/1576 = 0.45 among non-
responders, and 253/634 = 0.40 among responders; p = 0.001).

Aggregate analysis. Figure 1 and Tables 3 and S1 (in Appendix; for the XGBoost classifier) report clas-
sification performance for each classifier for the aggregate analysis. On the pooled data, neither the LR (kappa 
0.02 [− 0.01, 0.04], p = 0.2) nor XGBoost (kappa 0 [− 0.02, 0.03], p = 0.4) classifiers obtained classification per-
formance in exceedance of chance.

Site‑level analyses. Figure 1 and Tables 3 and S1 (in Appendix; for the XGBoost classifier) also report the 
classification performance of each classifier in the site-level analysis. The LR classifier with the Würzburg sample 
(17% responders and 83% non-responders) achieved an accuracy of 0.85 (95% CI [0.84, 0.86]), AUC-ROC 0.6 
(0.51–0.69), sensitivity 0.13 (0.07–0.2), specificity 1 (1–1), PPV of 0.8 (0.41–1), and NPV of 0.85 (0.84–0.86). 
Cohen’s kappa for agreement of predicted and ground truth classes in the Würzburg sample was 0.2 (95% CI 
[0.1–0.3], simulated p = 0.0006). The performance of the XGB classifier remained relatively similar for the Wür-
zburg sample (Cohen’s kappa 0.19 [0.09–0.28], p = 0.001).

The LR classifier trained on the Dalhousie University sample (45%/55% responders/non-responders) achieved 
a Cohen’s kappa of 0.15 (95% CI [0.07–0.24], simulated p = 0.0019), accuracy of 0.61 (95% CI [0.57–0.64]), AUC-
ROC 0.62 (0.58–0.65), sensitivity 0.23 (0.16–0.31), specificity 0.91 (0.87–0.95), PPV of 0.68 (0.58–0.78), and 
NPV of 0.59 (0.57–0.62). However, the Cohen’s kappa obtained by the XGB classifier on the Dalhousie University 
sample was 0.1 (0.02–0.17), with a simulated p value of 0.03, suggesting this was more likely due to chance than 
the performance obtained with the LR classifier.

Leave‑one‑site‑out and predict‑one‑site‑out analyses. Table 4 displays the results of the leave-one-
site-out analysis using the LR classifier, and Table S2 in the Appendix displays the results using the XGB classifier. 
Removal of the Dalhousie University sample did not affect the classification performance (kappa 0.02 [0–0.04]), 
whereas classification performance remained better than chance, although quite weak, with removal of the Wür-
zburg sample (kappa 0.05 [0.04–0.07], p = 0.003). Removal of data from San Diego and Barcelona result in 
Cohen’s kappa values of 0.06 (95% CI [0.04, 0.08], p = 0.002) and 0.05 ([0.04, 0.06], p = 0.005). Conversely, under 
the predict-one-site-out analysis, no combination of nsite − 1 sites showed the ability to meaningfully predict 
samples from the left out site (Table S3 in Appendix).

Table 2.  Demographic statistics. Categorical variables are presented as counts and percentages, whereas 
continuous variables are presented as means and standard deviations (SD). History of psychosis refers to the 
occurrence of psychotic symptoms at any point during the course of illness. Abbreviations: age at onset (AAO), 
not otherwise specified (NOS).

Variable Non-responders Responders p value

n 1576 634

Female (%) 899 (57) 377 (59.5) 0.32

DSM diagnosis (%) 0.56

Bipolar I 1230 (78) 490 (77.3)

Bipolar II 338 (21.4) 143 (22.6)

Schizoaffective 4 (0.3) 0 (0)

Bipolar NOS 4 (0.3) 1 (0.2)

Age of onset (years) 28.7 (11.3) 25.5 (10.7) 0.64

History of psychosis (%) 721 (45.7) 253 (40) 0.001
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Feature importance and gene set analysis. Rank correlations between the feature importance/coef-
ficients are shown in Table 5. There was a statistically significant correlation in feature rankings between the 
XGBoost algorithm and the LR model when trained on the Dalhousie University (tau = 0.156, p < 0.001 ) and 
Würzburg data (tau = 0.115, p < 0.001 ) respectively. However, there was no evidence of correlation in feature 
importance/coefficients obtained with the same architectures trained on the Dalhousie and Würzburg sites, 
respectively (Dalhousie vs. Würzburg LR tau = − 0.003, p = 0.28; Dalhousie vs. Würzburg XGB tau = 0.007, p = 
0.109).

Tables 6 and S4 show the results of the gene ontology analyses using the 2,279 genes that overlapped between 
the Dalhousie and Würzburg site-level analyses with the LR classifier after quality control. The most overrepre-
sented cellular component in our gene set was the postsynaptic membrane (88 genes, enrichment factor 1.71, p 
= 2.4e−05, and FDR 8.14e−03). A summary of the postsynaptic membrane genes is shown in Table S4. Results 
for the gene ontology analyses on the Dalhousie and Würzburg sites individually can be found in tables S5–S9 
in the Appendix.

Figure 1.  Performance of the logistic regression (LR), and XGBoost (XGB) classifiers on the aggregate and site-
level analyses. Faceting of plots along columns corresponds to different classification statistics. Faceting along 
rows corresponds to the aforementioned classification algorithms. Within each plot, the x-axis represents the 
statistic value, and the y-axis corresponds to the dataset under which the classification analysis was performed. 
Plot markers denote the mean performance over the respective number of cross-validation folds, with error bars 
denoting the empirical 95% confidence intervals. In the column for Kappa, where the p value from the criticism 
analysis fell below 0.01 in comparison to the null classifier we coloured the point yellow to represent exceedance 
of chance; all other points are coloured dark blue. Abbreviations: all sites (ALL; i.e. aggregate analysis), area 
under the receiver operating characteristic curve (AUC), positive predictive value (PPV), negative predictive 
value (NPV), F-1 score (F1).
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Effects of follow‑up method and narrowing definition thresholds. Table  S10 in the Appendix 
shows that classification performance did not notably improve in any circumstance with narrowing of the classes 
to those subjects with more extreme Alda scores. Under the conditions of the most extreme narrowing (removal 
of Alda scores 4–8), we observed a complete decay to random chance in the classification performance in the 
Dalhousie and Würzburg samples with the LR classifier (kappa of 0.0 [0.0,0.0]).

Table S11 in the Appendix suggests that mode of patient follow-up (prospective or not) may have a small but 
above-chance effect on classification performance in these data. On the data pooled across sites employing pro-
spective follow-up, the aggregate analysis achieved a kappa of 0.09 (0.04, 0.14), whereas in the non-prospective 
follow-up set, classification performance was effectively at the level of chance (kappa 0 [− 0.01, 0.01]).

In the LR model trained on the prospectively collected data, the most informative variants were associated 
with genes that showed statistically significant overrepresentation in synaptic membranes (both presynaptic 
[1.99-fold enrichment, FDR = 2.23e−02] and postsynaptic [1.75-fold enrichment, FDR = 9.37e−03] compart-
ments; Table S12 in Appendix), with additional overrepresentation in several biological processes (most sub-
stantially neurogenesis [1.35-fold enrichment; FDR = 3.5e−02]). Further gene set analysis results are reported 
tables S12 - S14 in the Appendix.

Discussion
To our knowledge, the present study is the first attempt to classify lithium response in an out-of sample fashion 
using genomic data alone: a task which our results suggest is an ongoing challenge. However, our results also 
suggest that this may be related to heterogeneity that arises from multi-site data pooling. In two subsamples of 
our genomic dataset, we found non-trivial classification performance informed by variants associated with a 
cellular component particularly relevant for the pathophysiology of BD. Furthermore, we observed non-trivial 
classification performance on data pooled across sites whose data were collected prospectively. These results 
suggest particular future directions that may be followed for the purpose of improving lithium response predic-
tion models.

When trained on data pooled across all 14 sites, classification performance with the LR and XGBoost clas-
sifiers was effectively trivial, with Cohen’s kappa values of 0.02 (95% CI [− 0.01, 0.04]) and 0.0 (− 0.02, 0.03), 
respectively. However, the inability to classify lithium response was relatively consistent across analyses at the 
site-level, with the exception of data from Dalhousie University in the Canadian Maritimes (LR kappa 0.15 [0.07, 
0.24], p = 0.002) and Würzburg, Germany (LR kappa 0.2 [0.1, 0.3], p = 0.0006). In both cases, the classifiers 
showed better specificity (LR Halifax 0.91 [0.87, 0.95]; LR Würzburg 1.0 [1.0, 1.0]) than sensitivity (LR Halifax 
0.23 [0.16, 0.31]; LR Würzburg 0.13 [0.07, 0.02]), suggesting that improvements are needed for reducing the false 
negative rate. Classification performance remained trivial when data from the Halifax site was excluded (Cohen’s 
kappa 0.02 [0.0, 0.04]), likely due to poor sensitivity (0.01 [0, 0.03]). Interestingly, when the Würzburg dataset 
was left out of the aggregate analysis, the LR classifier’s performance increased to a small but above chance level 
(0.05 [0.04, 0.07], p = 0.003), which was largely driven by an improvement in PPV (from 0.36 [0.27, 0.46] to 
0.55 [0.48–0.63]), without loss of NPV. The low performance in the aggregate analysis combined with variability 
in the class imbalance and site-level classification performance indicate that there may be a non-trivial level of 

Table 3.  Performance of the logistic regression (LR) classifier on the aggregate and site-level analyses. Table 
columns represent different classification statistics and values represent the mean of each statistic over five 
folds along with an empirical 95% confidence interval. In the column listing respective centres, we have 
included the percentage of lithium responders (LR+) and non-responders (LR−) in the format %LR+/%LR− to 
provide context for the classification results. Abbreviations: all sites (ALL; i.e. aggregate analysis), area under 
the receiver operating characteristic curve (AUC), positive predictive value (PPV), negative predictive value 
(NPV), F-1 score (F1). a Kappa value was found to have a p value less than 0.01 in comparison to the null 
classifier.

Centre (LR+/LR−; %) AUC Accuracy F1 NPV PPV Sensitivity Specificity Kappa

ALL (29/71) 0.57 (0.55, 0.6) 0.7 (0.7, 0.71) 0.08 (0.05, 0.1) 0.72 (0.71, 0.72) 0.36 (0.27, 0.46) 0.04 (0.03, 0.06) 0.97 (0.97, 0.98) 0.02 (− 0.01, 0.04)

Halifax (45/55) 0.62 (0.58, 0.65) 0.61 (0.57, 0.64) 0.34 (0.24, 0.44) 0.59 (0.57, 0.62) 0.68 (0.58, 0.78) 0.23 (0.16, 0.31) 0.91 (0.87, 0.95) 0.15 (0.07, 0.24)a

Würzburg (17/83) 0.6 (0.51, 0.69) 0.85 (0.84, 0.86) 0.23 (0.12, 0.34) 0.85 (0.84, 0.86) 0.8 (0.41, 1.0) 0.13 (0.07, 0.2) 1.0 (1.0, 1.0) 0.2 (0.1, 0.3)a

Barcelona (27/73) 0.4 (0.26, 0.53) 0.73 (0.72, 0.74) 0.0 (0.0, 0.0) 0.73 (0.72, 0.74) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Cagliari (28/72) 0.49 (0.46, 0.52) 0.72 (0.72, 0.72) 0.0 (0.0, 0.0) 0.72 (0.72, 0.72) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Geneva (23/77) 0.49 (0.28, 0.7) 0.77 (0.74, 0.8) 0.0 (0.0, 0.0) 0.77 (0.74, 0.8) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Japan (24/76) 0.6 (0.45, 0.75) 0.76 (0.75, 0.77) 0.0 (0.0, 0.0) 0.76 (0.75, 0.77) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Mayo (23/77) 0.32 (0.21, 0.44) 0.77 (0.75, 0.78) 0.0 (0.0, 0.0) 0.77 (0.75, 0.78) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Paris (18/82) 0.4 (0.29, 0.51) 0.82 (0.81, 0.83) 0.0 (0.0, 0.0) 0.82 (0.81, 0.83) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Poznan (48/52) 0.62 (0.44, 0.8) 0.51 (0.39, 0.62) 0.28 (0.05, 0.51) 0.52 (0.44, 0.61) 0.36 (0.08, 0.64) 0.24 (0.03, 0.45) 0.76 (0.6, 0.92) 0.0 (− 0.23, 0.23)

Romania (21/79) 0.57 (0.51, 0.64) 0.79 (0.78, 0.8) 0.0 (0.0, 0.0) 0.79 (0.78, 0.8) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

San Diego (11/89) 0.54 (0.5, 0.58) 0.89 (0.88, 0.9) 0.0 (0.0, 0.0) 0.89 (0.88, 0.9) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)

Sweden (25/55) 0.52 (0.46, 0.58) 0.55 (0.54, 0.56) 0.22 (0.11, 0.33) 0.56 (0.54, 0.57) 0.49 (0.41, 0.58) 0.15 (0.06, 0.25) 0.88 (0.81, 0.94) 0.03 (− 0.0, 0.07)

Sydney (20/80) 0.32 (0.18, 0.47) 0.78 (0.75, 0.81) 0.0 (0.0, 0.0) 0.79 (0.76, 0.82) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.98 (0.94, 1.0) − 0.03 (− 0.07, 0.02)

Taiwan (14/86) 0.49 (0.29, 0.69) 0.86 (0.84, 0.88) 0.0 (0.0, 0.0) 0.86 (0.84, 0.88) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0)
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between-site heterogeneity in our data, and this may be negatively impacting classification performance. It is also 
possible that there exists significant between-site heterogeneity in clinical phenotype—as recently demonstrated 
by Nunes et al.10—which could also negatively impact classification performance. Future research must investigate 
the relationship between heterogeneity in clinical phenotype and classification performance in multi-site studies.

Although there was no statistically significant rank correlation between the most important individual fea-
tures from the LR classifiers trained on the Halifax and Würzburg samples, respectively, there were interesting 

Table 4.  The results of the logistic regression (LR) classifier in the leave-one-site-out analyses. Table columns 
represent different classification statistics and values represent the mean of each statistic over five folds along 
with an empirical 95% confidence interval. The center column shows the center that was left out for each row. 
We have included the results of the aggregate analysis in the top row for ease of comparison. In the column 
listing respective centres, we have included the percentage of lithium responders (LR+) and non-responders 
(LR−) in the format %LR+/%LR− to provide context for the classification results. Asterisks signify that the 
given metric was found to have a p value less than 0.01 compared to the simulated null classifier. Abbreviations: 
area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), negative 
predictive value (NPV), F-1 score (F1). a Kappa value was found to have a p value less than 0.01 in comparison 
to the null classifier.

Centre (LR+/
LR−; %) AUC Accuracy F1 NPV PPV Sensitivity Specificity Kappa

ALL (29/71) 0.57 (0.55, 
0.6) 0.7 (0.7, 0.71) 0.08 (0.05, 

0.1)
0.72 (0.71, 
0.72)

0.36 (0.27, 
0.46)

0.04 (0.03, 
0.06)

0.97 (0.97, 
0.98)

0.02 (− 0.01, 
0.04)

Barcelona 
(27/73)

0.59 (0.58, 
0.6)

0.72 (0.71, 
0.72)

0.09 (0.07, 
0.12)

0.72 (0.72, 
0.72)

0.58 (0.53, 
0.63)

0.05 (0.04, 
0.07)

0.98 (0.98, 
0.99)

0.05 (0.04, 
0.06)a

Cagliari 
(28/72)

0.59 (0.57, 
0.61)

0.72 (0.71, 
0.73)

0.08 (0.03, 
0.14)

0.72 (0.71, 
0.73)

0.51 (0.22, 
0.8)

0.04 (0.01, 
0.08)

0.99 (0.98, 
0.99)

0.05 (0.01, 
0.09)

Geneva 
(23/77)

0.59 (0.57, 
0.6)

0.71 (0.71, 
0.72)

0.08 (0.07, 
0.1)

0.72 (0.72, 
0.72)

0.55 (0.47, 
0.63)

0.05 (0.04, 
0.05)

0.98 (0.98, 
0.99)

0.04 (0.03, 
0.05)

Halifax 
(45/55)

0.59 (0.56, 
0.62)

0.75 (0.74, 
0.75)

0.03 (0.01, 
0.05)

0.75 (0.74, 
0.75) 0.7 (0.31, 1) 0.01 (0, 0.03) 1 (1, 1) 0.02 (0, 0.04)

Japan (24/76) 0.59 (0.56, 
0.62)

0.71 (0.71, 
0.72)

0.09 (0.06, 
0.12)

0.72 (0.71, 
0.72)

0.54 (0.44, 
0.63)

0.05 (0.03, 
0.07)

0.98 (0.98, 
0.99)

0.04 (0.02, 
0.07)

Mayo (23/77) 0.58 (0.57, 
0.6)

0.71 (0.71, 
0.72)

0.1 (0.08, 
0.11)

0.72 (0.72, 
0.72)

0.51 (0.44, 
0.59)

0.05 (0.04, 
0.06)

0.98 (0.97, 
0.99)

0.04 (0.03, 
0.05)

Paris (18/82) 0.59 (0.57, 
0.61) 0.7 (0.7, 0.71) 0.08 (0.06, 

0.1)
0.71 (0.71, 
0.71)

0.52 (0.43, 
0.61)

0.04 (0.03, 
0.05)

0.98 (0.98, 
0.99)

0.03 (0.02, 
0.05)

Poznan 
(48/52)

0.58 (0.57, 
0.59)

0.73 (0.72, 
0.73)

0.07 (0.04, 
0.1)

0.73 (0.73, 
0.73)

0.61 (0.51, 
0.71)

0.04 (0.02, 
0.05) 0.99 (0.99, 1) 0.04 (0.02, 

0.06)

Romania 
(21/79)

0.6 (0.58, 
0.62)

0.71 (0.7, 
0.72)

0.1 (0.06, 
0.14)

0.72 (0.71, 
0.72)

0.59 (0.39, 
0.8)

0.05 (0.03, 
0.08)

0.99 (0.98, 
0.99)

0.05 (0.02, 
0.09)a

San Diego 
(11/89)

0.6 (0.59, 
0.61) 0.7 (0.69, 0.7) 0.13 (0.1, 

0.16) 0.7 (0.7, 0.71) 0.54 (0.46, 
0.62)

0.07 (0.06, 
0.09)

0.97 (0.96, 
0.98)

0.06 (0.04, 
0.08)a

Sweden 
(25/55)

0.54 (0.51, 
0.57)

0.74 (0.74, 
0.75)

0.05 (0.02, 
0.08)

0.74 (0.74, 
0.75)

0.55 (0.27, 
0.82)

0.03 (0.01, 
0.04) 1 (0.99, 1) 0.03 (0.01, 

0.05)

Sydney 
(20/80)

0.59 (0.57, 
0.61)

0.71 (0.71, 
0.72)

0.08 (0.07, 
0.09)

0.72 (0.71, 
0.72)

0.52 (0.41, 
0.63)

0.04 (0.04, 
0.05)

0.98 (0.98, 
0.99)

0.04 (0.02, 
0.05)

Taiwan 
(14/86)

0.59 (0.58, 
0.59)

0.71 (0.7, 
0.71)

0.08 (0.06, 
0.11)

0.71 (0.71, 
0.72)

0.48 (0.39, 
0.57)

0.05 (0.03, 
0.06)

0.98 (0.97, 
0.98)

0.04 (0.01, 
0.06)

Würzburg 
(17/83)

0.6 (0.57, 
0.62)

0.71 (0.7, 
0.71)

0.11 (0.08, 
0.14)

0.71 (0.71, 
0.72)

0.55 (0.48, 
0.63)

0.06 (0.04, 
0.08)

0.98 (0.97, 
0.99)

0.05 (0.04, 
0.07)a

Table 5.  Feature importance comparisons. Logistic regression (LR) coefficients and XGBoost (XGB) feature 
importance were saved at each fold of cross-validation within the site-level analyses. We computed the mean 
values of these coefficients (feature importances) over the cross-validation folds for each feature in the dataset 
(i.e. each locus of variation). We then compared the feature importance/coefficient values between models 
within a site (i.e. Dalhousie (LR) vs. Dalhousie (XGB)) and between sites within a model (i.e. Würzburg (LR) 
vs. Dalhousie (LR)). Where the comparison was made between the LR and XGB classifiers, LR coefficients 
were first transformed by taking their absolute value.

Comparison Tau p value

Dalhousie (LR) vs. Dalhousie (XGB) 0.156 < 0.001

Würzburg (LR) vs. Würzburg (XGB) 0.115 < 0.001

Dalhousie (LR) vs. Würzburg (LR) − 0.003 0.280

Dalhousie (XGB) vs. Würzburg (XGB) 0.007 0.109
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patterns of gene enrichment among the specific variants whose direction of effect was consistent between these 
sites. Specifically, we noted the greatest enrichment among genes associated with the postsynaptic membrane 
(1.71-Fold enrichment; FDR = 8.14e−03). The overrepresented gene set included genes such as ANK3, DISC1, 
various glutamate receptor genes, scaffolding-related genes such as HOMER1, and adhesion-molecule related 
genes such as the cadherin (CDH) family. Postsynaptic membrane function, and several of the enriched genes 
above, have previously been associated with BD. For example, ankyrin 3 (ANK3), which is involved in the 
aggregation of voltage-gated sodium channels, has been associated with BD in multiple  studies11–13 and may be 
downregulated by  lithium14. Pickard et al.15,16 demonstrated association between BD and kainate receptor subunit 
genes (namely KA1 [GRIK4]) which have a significant role in regulation of cellular  excitability17. The DISC1 
gene, which encodes an integral postsynaptic regulator of  plasticity18, was notably associated with schizophrenia 
and affective disorders in a Scottish family  study19,20. However, lithium response more specifically may have nar-
rower associations with postsynaptic elements involved in G-protein coupled receptor signaling  pathways21–23. 
This pathway was not statistically overrepresented in gene set overlapping between the Würzburg and Halifax 
datasets. Since genetic variants’ LR coefficient ranks were uncorrelated between these sites— suggesting a degree 
of between-site heterogeneity in feature importance—it may consequently be easier to find enrichment of genes 
in more general biological processes/components. Indeed, when we repeated the aggregate analysis by restricting 
data to only those collected in a prospective fashion (thereby removing some heterogeneity due to methodologi-
cal differences), we found further overrepresentation of genes involved in some biological processes (especially 
neurogenesis [1.35-fold; FDR = 3.50e−02]). A plausible hypothesis is that (A) informative variants from mod-
els trained on substantially heterogeneous data will associate with relatively broad and non-specific biological 
pathways, and that (B) the associated biological pathways may increase in specificity for models trained on more 
homogeneous datasets. Testing this hypothesis will require further work toward identifying potentially more 
homogeneous subgroups within each of the lithium responder and non-responder classes.

Schnack and  Khan24 opined that between-site heterogeneity could reduce classification performance in multi-
site ML studies, supporting their argument with results aggregated from ML studies in schizophrenia neuroim-
aging. They suggested that small studies are more likely to consist of homogeneous and biased samples, but that 
increasing sample size entails a commensurate increase in heterogeneity. If sampling biases are related to the 
site from which data are sourced, then increasing sample size by way of pooling data in multi-site studies should 
consequently result in a more heterogeneous dataset for which classification performance degrades. However, we 
have previously found contradictory evidence in both BD neuroimaging and in prediction of lithium response, 
where pooling data across sites improved classification  performance10,25. In both of those studies, however, there 
was a relatively strict set of harmonization procedures; the former study employed the harmonized data-handling 
procedures of the ENIGMA consortium (see the appendix of Nunes et al.25 for details), while the latter included 
only subjects that were followed prospectively for at least one year before assessment of lithium responsiveness 
using the Alda scale. It is possible that this standardization may have reduced the degree of between-site heteroge-
neity in those data, thereby allowing phenotypic heterogeneity to be the primary source of variation in their data.

Data collection practices between sites in our study may have influenced classification performance. A LR 
classifier applied to the aggregated dataset from only those sites employing prospective follow up achieved 
superior performance (kappa 0.09 [0.04, 0.14]) in comparison to classification on aggregated data from the non-
prospective sites (kappa 0.0 [− 0.01, 0.01]; Table S10, Appendix), although classification performance remains 
weak overall. This may have been due to the reduced sample size in each aggregate analysis. Importantly, however, 
between-site heterogeneity due to data collection practices was likely more influential on classification perfor-
mance than heterogeneity in lithium responsiveness proper, since repetition of the classification analyses with 
progressively narrowed Alda score thresholds did not change classification performance (Table S9 in Appendix). 
In other words, we failed to demonstrate stronger genetic separability among subjects with the most extreme 
(high or low) Alda scores. Hypothetically, these should be the most “clear” responders and non-responders. 
Together, these results suggest that subjects who are prospectively followed are likely better “exemplars” of 
lithium responsiveness, but that this representativeness is not well captured by the degree of extremeness in the 
Alda score. This leaves open the possibility of other dimensions along which exemplars of lithium responsive-
ness/non-responsiveness could be identified. For instance, lithium non-responders in the present study showed 
a greater propensity for psychosis at baseline (721/1576 [45.7%]) compared to lithium responders (253/634 

Table 6.  Results from the GO cellular component analysis using genes selected by taking the same sign 
logistic regression coefficients for all SNPs in the Dalhousie and Würzburg samples that overlapped.

Functional class N Ref N Obs N Exp Factor p (Raw) FDR

Postsynaptic membrane (GO:0045211) 190 97 56.79 1.71 2.40E−05 8.14E−03

Synaptic membrane (GO:0097060) 252 124 75.32 1.65 6.28E−06 3.55E−03

Synapse (GO:0045202) 618 253 184.72 1.37 1.61E−05 6.83E−03

Synapse part (GO:0044456) 494 201 147.66 1.36 1.78E−04 3.78E−02

Cell junction (GO:0030054) 634 254 189.5 1.34 4.84E−05 1.17E−02

Neuron part (GO:0097458) 871 335 260.34 1.29 3.56E−05 1.01E−02

Cell projection (GO:0042995) 1055 387 315.34 1.23 2.47E−04 4.65E−02

Cell periphery (GO:0071944) 2461 866 735.59 1.18 4.15E−07 7.04E−04

Plasma membrane (GO:0005886) 2407 843 719.45 1.17 1.34E−06 1.14E−03
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[40%], p = 0.001). Clinical features such as history of psychosis, clinical course, and history of rapid cycling may 
indeed represent feature dimensions along which we may identify clinical exemplars of lithium responsiveness 
and non-responsiveness,  respectively10,26–28. Future studies should therefore (A) maximize inclusion of subjects 
who are prospectively followed, and (B) investigate alternative methods for identifying exemplars of lithium 
responsiveness.

One limitation of the present study is the use of only SNPs that overlapped across all genotyping platforms 
in the dataset. This may have biased the available feature set, and had lower overall genome coverage. However, 
there were no large gaps in genome coverage when using only this restricted set of SNPs. Furthermore, use of the 
fully imputed data would have been infeasible without some degree of feature pre-selection, for which optimal 
performance in high-dimensional feature spaces can be intractable. Moreover, imputation will introduce addi-
tional assumptions and nevertheless also depends in some way on the observable data. For this reason, we opted 
to not replace directly genotyped features with imputed ones. Given that nearly 50,000 features were directly 
genotyped in all subjects, of which there were only 2210, we opted to not increase the feature space dimensional-
ity by adding imputed variants to our model. Our analysis was based on SNPs and thus it does not account for 
changes in gene expression. This could be another possible explanation of differences between responders and 
non-responders as shown by Hunsberger et al.29 who found a differential pattern of mi-RNA × mRNA interac-
tions between the two groups of patients in an in vitro study.

Another limitation of our study is that hyperparameter tuning was not performed on the models imple-
mented. This was avoided since appropriately guarding against overfitting would necessitate a nesting of cross-
validation procedures. Nested cross-validation requires larger sample sizes, and some of the sites in our data 
had relatively few subjects. As a result, significant inequality between sites would exist in terms of the benefits 
of hyperparameter optimization. Comparability of performance in the site-level analyses, and the inference of 
more general conclusions, would therefore have been more challenging if hyperparameter optimization was used. 
Furthermore, for the logistic regression analysis, the L2 regularization was set with a constant strength of C = 1 , 
which corresponds to a standard normal prior on the regression weights. This consistent prior on the regression 
weights was necessary in order for them to be comparable across cross-validation folds, and thus to be used for 
the pathway analysis. Hyperparameter optimization would have yielded weights that came from different priors 
and complicated such a comparison.

In conclusion, the present study suggests promise for the out-of-sample genomic classification of lithium 
response, but highlights the ongoing challenges of this task. Future modeling decisions should include not only 
the goal of achieving above-chance omnibus classification performance, but also a robust sensitivity. Several con-
crete steps in this direction include increasing sample sizes and further harmonizing data collection procedures.

Data availability
This paper is based on data obtained by the ConLiGen consortium and previously published (Hou et al. Lancet 
2016). Interested investigators are able to request the data from the Consortium (http://www.conli gen.org/) 
upon submitting a proposal for secondary analysis. Dr. M. Alda, the corresponding author on this paper, can be 
contacted for further instructions.
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