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Abstract: The nanoscale magnetic configuration of self-assembled groups of magnetite 40 nm cubic
nanoparticles has been investigated by means of electron holography in the transmission electron
microscope (TEM). The arrangement of the cubes in the form of chains driven by the alignment of
their dipoles of single nanocubes is assessed by the measured in-plane magnetic induction maps, in
good agreement with theoretical calculations.
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1. Introduction

Magnetic hyperthermia has been the subject of intense research in recent years. Among
the potential applications, it allows for a complementary approach to standard therapies for
cancer treatment (for review, see e.g., [1]). This technique offers the advantage of delivering
a highly localized damage via the targeting of tumor cells with magnetic nanoparticles. By
exciting these nanoparticles with a radio-frequency signal, local heating of the surrounding
area is achieved, with lower full-system toxicity than chemotherapy and without ionizing
radiation affecting healthy tissue, as in the case of radiotherapy. However, in spite of
having shown some promising results on palliative care, the high particle concentration
required rises concerns about the toxicity and side effects of the treatment. Thus, improving
efficiency by optimizing the magnetic response of nanoparticles is crucial in order to obtain
therapeutic effects while keeping the number of nanoparticles as low as possible.

In this regard, performance is governed mainly by size distribution, saturation mag-
netization (MS), and magnetic anisotropy (K) [2,3]. For a given excitation AC amplitude
and frequency, these three are the parameters to tune in order to optimize the inductive
specific absorption rate (SAR) of the system, usually reported in watts per gram [4]. To date,
the highest reported SAR values correspond to metallic Fe nanocubes [5]. However, the
low chemical stability of metallic nanoparticles under physiological conditions make the
magnetically softer magnetite (Fe3O4) a much more promising candidate for applications
in magnetic hyperthermia [6]. On the one hand, selecting Fe3O4 as the material of choice
fixes a value for MS. On the other hand, the particular application limits the range of
particle sizes between the superparamagnetic limit (≥15 nm) and the optimal size for
internalization into mammalian cells (≤50 nm) [7,8]. Thus, the remaining free parameters
in order to optimize the heating response of the nanoparticles are the magnetic anisotropy
(K) [9] and the volume fraction [4].
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A way to increase magnetic anisotropy is by properly tuning the shape of the particles.
Taking into account that a sphere has the minimum surface to volume ratio, cubic nanopar-
ticles are already an improvement when compared to spherical ones because of their higher
surface magnetic anisotropy. Another contribution to a larger surface anisotropy is the
presence of well-defined atomic planes at the surfaces [10]: this is also in favor of the
cubic shape, considering the most irregular crystal facets corresponding to a spherical
nanoparticle.

An additional consequence of the cubic shape is an increased tendency of the magnetic
nanoparticles to arrange in chains by sharing flat surfaces. The formation of ensembles of
nanoparticles is also a way of engineering the magnetic response via the modification of
the strength of the dipolar interaction between nanoparticles. Theoretical calculations for
the hysteresis loops considering chains of Fe3O4 for different numbers of dipole-aligned
nanocubes are reported in Boubeta et al. [11]. The simulations show an increasing area of the
loop when increasing the number of aligned particles, therefore resulting in a potentiation
of the heating efficiency. Furthermore, the thermal stability gained by creating arrays,
also shown by simulations of magnetic response versus temperature, is an advantage
when exploiting hysteresis losses. These results indicate a promising way to increase the
hyperthermia performance by assembling cubic particles in elongated chains. On the heels
of our previous article, here we use electron holography experiments to access and map
the magnetic configuration of Fe3O4 cubic nanoparticles whose average diameter of 40 nm
is expected to be close to the 180◦ domain wall width [12], thus may be promoting the
presence of vortex pseudo-single-domain configurations [13,14].

2. Materials and Methods

Magnetite nanocube synthesis was performed following the one-pot and two-step
procedure described previously [11]. Shortly, this requires the thermal decomposition of
Fe(acac)3 in boiling dibenzylether under argon atmosphere in the presence of decanoic acid.
After cooling down, acetone was added to yield a precipitate, which was then separated
by centrifugation. The supernatant was discarded and the particles were redispersed
in chloroform. Samples for transmission electron microscopy (TEM) observation were
prepared by dispersing a drop of the nanoparticle solution on a carbon-coated copper grid.

High resolution HRTEM experiments were carried out in a JEOL J2100 (Tokyo, Japan)
located at CCiTUB. Electron holography experiments were carried out in the Hitachi I2TEM
microscope (Tokyo, Japan) at CEMES-CNRS in Toulouse. The I2TEM is a modified Hitachi
HF3300C TEM equipped with a 300 kV cold FEG, with an aberration corrector in the
objective system and a 4k× 4k CCD camera. The I2TEM has an additional specimen holder
port placed above the objective lens so that its magnetic field does not affect the specimen
during the whole experiment. In this configuration, the aberration-corrected objective lens
can be used as a Lorenz lens.

Micromagnetic simulations were performed with the OOMMF software package
(version 1.0) [15], under the assumption that the nanocubes are perfectly cubic and identical.
Each particle was discretized in 3D cells of 2 nm side, with a nonmagnetic intercube
separation of 2 nm. We used bulk magnetic parameters for magnetite: MS = 477 kA/m,
cubic magnetocrystalline anisotropy K = −11 kJ/m3, and exchange coupling constant of
1.0 × 10−11 J/m. The simulation procedure was to saturate the chains and let them relax to
equilibrium at T = 0.

3. Results and Discussion

Our earlier studies [11] revealed a generalized self-assembly of Fe3O4 nanocubes in
chain-like structures. Nanocubes are rather homogeneous in size, with ∼40 nm lateral
dimension. There was no apparent contrast variation within each nanoparticle, thus sug-
gesting that particles were completely oxidized during synthesis. The magnetic properties
of the particles are compatible with Fe3O4, with an incontrovertible evidence of Verwey
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transition around 120 K. HRTEM images confirmed monocrystalline Fe3O4 nanocubes
indexed according to the inverse spinel structure of iron oxide.

Electron tomography [11] was used to reconstruct the 3D volume of a Fe3O4 nanopar-
ticle chain. Results allowed accessing the shape of the chain in 3D and, at the same time,
segmentation of the information down to single particle level. The cubic shape was con-
firmed by the 3D reconstruction, as well as cube alignment by sharing {100}-type flat faces.
A separation in the order of ∼2 nm was found between adjacent cubes, corresponding to
the organic ligand chains. At this surfactant layer thickness, van der Waals interaction
between adjacent cubes is expected to be low [16], so the self-assembly could be ascribed
to the magnetic dipole-dipole interaction.

Structural and morphological TEM characterization at the nanoscale, as well as macro-
scopic magnetic measurements, are in good agreement with the proposed model and the
corresponding simulation reported previously [11]. However, this constitutes an indirect
evidence of the magnetic coupling of the nanostructures. Direct evidence, namely real
space imaging of the magnetic ordering down to single particle level, can be provided by
electron holography [17–19].

In order to assess the magnetic state of the Fe3O4 ensembles, “up and down” electron
holography experiments were carried out using two electrostatic biprisms. Which consists
in acquiring two sets of holograms (sample and vacuum reference) corresponding to the
two possible orientations of the TEM specimen. This requires taking the sample out of the
microscope and flipping it between the two acquisitions. A hologram is formed by the
superposition of two electron beams on the detector: one beam has travelled through the
specimen and the other one has travelled through vacuum. The superposition of the two
beams is obtained using an electrostatic biprism (in our setup, the lower one), as depicted
in Figure 1. The resulting hologram contains interference fringes due to the phase shift
caused by the specimen on the electron beam that travelled through it.
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Figure 1. Off axis electron holography basic diagram. The electron wave resulting from the interaction
of the electron beam with the sample, and a reference electron wave from the electron beam travelling
along the vacuum, are made to interfere using an electrostatic biprism. The resulting interference
fringe pattern is studied.

Figure 2a,c show the two flip-related holograms for an ensemble of nanocubes. The
use of two electrostatic biprisms allows decoupling two important parameters: the width
of the superposition region and the interference fringes spacing [20]. When working in a
single biprism configuration, the applied voltage defines both parameters, so that a balance
needs to be found. The use of two biprisms allows controlling them separately by defining
different voltages for each one of them. An additional advantage of this configuration is
the elimination of Fresnel interference fringes in the holograms when the lower biprism
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is in the region shaded by the upper one. This can be seen in Figure 2b, where only the
centerband and the sidebands are present in the Fourier transform. This results in a higher
fringe contrast, which is a key parameter limiting the magnetic signal resolution. The
obtained small fringe spacing and high contrast in the recorded holograms is illustrated in
Figure 2d.
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Figure 2. (a) Hologram covering a nanoparticle ensemble formed by two crossing chains. (b) FFT of
the hologram showing the center band and sidebands. No spots corresponding to Fresnel fringes
are visible due to the use of a two biprism configuration. (c) Hologram of the same ensemble
obtained after mechanical flipping of the sample. (d) Detail of the interference fringes from the region
highlighted in (c).

After subtracting the constant phase term corresponding to the vacuum reference
holograms for both the up and down configurations (not shown here), and correcting
the images for the mechanical flip process, a mask is set on one of the sidebands, and
the corresponding amplitude and phase are calculated. The obtained phase shift maps
for the up and down holograms of the ensemble under study are shown in Figure 3a,c,
respectively. Considering the experimental setup, the only actual contributions to the phase
shift (ϕ) are the electrostatic and the magnetic phases. Each one of the phase maps will
have contributions from both electrostatic (ϕE) and magnetic (ϕM) components

ϕup = ϕE,up + ϕM,up (1)

ϕdown = ϕE,down + ϕM,down (2)

Given the flipping process between the two acquisitions and the nature of the electro-
static and magnetic fields, the phase shifts resulting from the two holograms will satisfy
the following relationship

ϕE,up = ϕE,down (3)

ϕM,up = −ϕM,down (4)
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Figure 3. (a,c) Phase shift maps corresponding to the “up” and “down” holograms, respectively. The
“down” image needs to be flipped so that it can be aligned with the “top” image. (b) Phase sum
image, corresponding to the mean inner potential (MIP). (d) Phase difference image, corresponding
to the magnetic phase shift. The magnetic phase difference across the object, in the direction of the
black arrow and shown in the inset, indicates its magnetic nature.

So, after careful alignment of the phase shift maps, simple phase operations allow
separating the magnetic phase

ϕM =
ϕup − ϕdown

2
(5)

from the electrostatic phase corresponding to the mean inner potential (MIP) of the sample.

ϕE =
ϕup + ϕdown

2
(6)

The resulting phase sum and difference maps are shown in Figure 3b,d, respectively.
The dependence of the MIP is on the electric charge distribution and sample thickness so,
considering a homogeneous material, an intensity profile across the sample can provide
information on the third dimension. The MIP intensity profiles show sharper edges for the
cube presenting a stronger diffraction contrast, as could be expected from a cube lying flat
on one face and therefore closer to the zone axis. The phase difference map corresponding
to the magnetic signal shows a phase shift with a frontier laying along the direction of the
nanocube chain. This magnetic phase difference, clearly shown in the intensity profile in
the inset, is a clear signature of the magnetic behavior of the nanocubes.

From the obtained magnetic phase ϕM, the magnetic induction map in the specimen
plane (perpendicular to the beam direction, Bp(x, y)) can be calculated as its gradient

→
∇ϕM(x, y) =

e
}

[
Bp

y (x, y)− Bp
x (x, y)

]
(7)
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A different way to visualize the magnetic coupling along the chain is by representing
the magnetic phase shift as contour maps according to the expression cos(nϕM) for n = 1, 2,
. . . . The resulting contours represent the change in magnetic phase and, thus, constitute a
map of the in-plane magnetic flux lines. The induction vector map and contour map for the
ensemble under study are shown in Figure 4b,c, next to the inverse fast Fourier transform
(IFFT) of the hologram centerband as a geometrical reference (Figure 4a). The magnetic
signal is somewhat distorted in the central nanocube showing a stronger diffraction contrast
due to its crystal orientation, as mentioned before for the MIP map. Diffraction contrast
decreases the interference fringes contrast, thus making the detection of the magnetic signal
difficult. In this example, the ensemble is formed by two crossing chains: a long chain with
N = 6 along the vertical direction and a shorter horizontal one with N = 3. Magnetic flux
lines follow the alignment of the chains and rotate ∼55◦ in the “node” nanocube where the
two chains intersect at a right angle.

Materials 2021, 14, 774 6 of 10 
 

 

transform (IFFT) of the hologram centerband as a geometrical reference (Figure 4a). The 
magnetic signal is somewhat distorted in the central nanocube showing a stronger diffrac-
tion contrast due to its crystal orientation, as mentioned before for the MIP map. Diffrac-
tion contrast decreases the interference fringes contrast, thus making the detection of the 
magnetic signal difficult. In this example, the ensemble is formed by two crossing chains: 
a long chain with N = 6 along the vertical direction and a shorter horizontal one with N = 
3. Magnetic flux lines follow the alignment of the chains and rotate ∼55° in the “node” 
nanocube where the two chains intersect at a right angle. 

 
Figure 4. (a) Reference images. (b) In-plane induction map. (c) Magnetic phase signal visualized as 
a cos(nφM) contour map superimposed to the amplitude image. Arrows and contours correspond 
to magnetic flux lines showing the magnetic coupling of the cubes. Stray field lines are visible at 
the tip of the chain. 

One wonders whether such a peculiar magnetic configuration could be reproduced 
by micromagnetic calculations. In a naive picture, we can see the two chains depicted in 
Figure 4 as a T-shaped structure. As the sample has never been exposed to any magnetic 
field, the measured configurations should correspond to virgin remnant states. The results 
are shown in Figure 5 and correspond rather nicely to the experimental ones. On the one 
hand, the elongated structure introduces a uniaxial anisotropy of magnetostatic origin 
and defines the easy axis for the magnetization. On the other hand, the surfaces of the 
nanocubes correspond to [100] planes and as the magnetization attempts to flip between 
<111> easy crystallographic directions, the spins curling in the junction must have oppo-
site helicities [17], and form an angle of θ = cos−1 (1/√3) ∼55°. 

 

Figure 4. (a) Reference images. (b) In-plane induction map. (c) Magnetic phase signal visualized as a
cos(nϕM) contour map superimposed to the amplitude image. Arrows and contours correspond to
magnetic flux lines showing the magnetic coupling of the cubes. Stray field lines are visible at the tip
of the chain.

One wonders whether such a peculiar magnetic configuration could be reproduced
by micromagnetic calculations. In a naive picture, we can see the two chains depicted in
Figure 4 as a T-shaped structure. As the sample has never been exposed to any magnetic
field, the measured configurations should correspond to virgin remnant states. The results
are shown in Figure 5 and correspond rather nicely to the experimental ones. On the one
hand, the elongated structure introduces a uniaxial anisotropy of magnetostatic origin
and defines the easy axis for the magnetization. On the other hand, the surfaces of the
nanocubes correspond to [100] planes and as the magnetization attempts to flip between
<111> easy crystallographic directions, the spins curling in the junction must have opposite
helicities [17], and form an angle of θ = cos−1 (1/

√
3) ∼55◦.
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Figure 5. (a) Micromagnetic configuration at remanence of the magnetization of two crossing chains
as those depicted in Figure 4. To ease the observation, each arrows stand for average magnetization
over 7 × 7 × 7 unit cells. (b) Augmented view of the crossing-chains area, superimposed with the
stray field configuration depicted by the small arrows external to the magnetic cubes (light yellow
regions); for illustrative purposes the stray field arrows are averaged over 3 × 3 × 3 unit cells. The
red-blue colors indicate the divergence of the stray fields.

An analogous processing was carried out for holograms from different assemblies
and the resulting induction vector maps and contour maps of the magnetic phase shift
are shown in Figure 6. Both of them present a cooperative organization governed by
the dipole–dipole interaction, despite their stronger spatial deviation from a perfectly
aligned assembly. This is probably because they contain a bigger proportion of crystals
of different sizes. Long reaching stray field lines are visible, particularly at the tips, both
on simulated and experimental mappings, but close outside the field of view. Flux lines
forming concentric circles can also be seen in Figure 6e,f. The contrast spot observed at the
center of that nanocube corresponds to the turn out-of-plane magnetization [21], which
leads to a drastic reduction of the dipolar energy.

We will end by making at least a brief reference to such vortex configurations. Figure 7
shows the size dependence of the spontaneous magnetization of a cubic magnetite nanopar-
ticle. With increasing particle sizes beyond ∼50 nm, the magnetization of a single domain
vanishes indicating the 3D vortex flux closure structure. Additionally, for exploratory
purposes we included (not-shown) an iron oxide outer layer of thickness 0–2 nm with the
bulk maghemite magnetic parameters. This thin shell layer, however, does not seem to
change the simulated magnetic configurations of the Fe3O4 nanocubes.

Similar calculations have been performed in the past, especially by Butler and Baner-
jee [12]. They found that stable single-domain cubic magnetite nanoparticles at 290 K exist
in the transition region 40–76 nm imposed by the superparamagnetic limit and the cost of
introducing domain walls. Accordingly, in another study Usov et al. [22] estimated it in
about 56 nm in lateral size. Therefore, the overall agreement is reasonable considering the
experimental errors and the zero temperature simulations. Moreover, a vortex-like state
such the one depicted in Figure 6, which is now perpendicular to the chain axis, may also
depend sensitively on the particular arrangement of the surrounding assembles [23], the
explanation of which is beyond the scope of this paper.
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Figure 6. (a,d) Reference images. (b,e) In-plane induction maps. (c,f) Magnetic phase signal visual-
ized as a cos(nφM) contour map superimposed to the amplitude image. Arrows and contours cor-
respond to magnetic flux lines showing the magnetic coupling of the cubes. Stray field lines are 
visible at the tip of the chains. A vortex spinning perpendicular to the chain axis is also visible in 
(e,f), highlighted by red squares. The two last crystals on the upper side of the chains show a com-
plex magnetic state. Interactions between neighboring nanocubes induce a bending of the mag-
netic induction. 

We will end by making at least a brief reference to such vortex configurations. Figure 
7 shows the size dependence of the spontaneous magnetization of a cubic magnetite na-
noparticle. With increasing particle sizes beyond ∼50 nm, the magnetization of a single 

Figure 6. (a,d) Reference images. (b,e) In-plane induction maps. (c,f) Magnetic phase signal visu-
alized as a cos(nϕM) contour map superimposed to the amplitude image. Arrows and contours
correspond to magnetic flux lines showing the magnetic coupling of the cubes. Stray field lines
are visible at the tip of the chains. A vortex spinning perpendicular to the chain axis is also visible
in (e,f), highlighted by red squares. The two last crystals on the upper side of the chains show
a complex magnetic state. Interactions between neighboring nanocubes induce a bending of the
magnetic induction.

Materials 2021, 14, 774 8 of 10 
 

 

domain vanishes indicating the 3D vortex flux closure structure. Additionally, for explor-
atory purposes we included (not-shown) an iron oxide outer layer of thickness 0–2 nm 
with the bulk maghemite magnetic parameters. This thin shell layer, however, does not 
seem to change the simulated magnetic configurations of the Fe3O4 nanocubes. 

Similar calculations have been performed in the past, especially by Butler and 
Banerjee [12]. They found that stable single-domain cubic magnetite nanoparticles at 290 
K exist in the transition region 40–76 nm imposed by the superparamagnetic limit and the 
cost of introducing domain walls. Accordingly, in another study Usov et al. [22] estimated 
it in about 56 nm in lateral size. Therefore, the overall agreement is reasonable considering 
the experimental errors and the zero temperature simulations. Moreover, a vortex-like 
state such the one depicted in Figure 6, which is now perpendicular to the chain axis, may 
also depend sensitively on the particular arrangement of the surrounding assembles [23], 
the explanation of which is beyond the scope of this paper. 

 
Figure 7. Size dependence of normalized magnetization. The snapshots show the remanent mag-
netization configurations, taken along two orthogonal directions, for exemplary dimensions (50, 
58, and 90 nm). For clarity purposes the arrows representing the magnetization are average over 
10 × 10 × 10 basic unit cells. All the particles are drawn at the same scale. 

4. Conclusions 
We were able to map the magnetic configuration of ensembles of Fe3O4 nanocubes, 

approximately 40 nm in size, by means of electron holography. The self-assembly of the 
nanocubes in the form of chains was confirmed to be driven both by the shapes of the 
blocks and by the dipole–dipole interaction. Furthermore, a very good agreement between 
simulated and experimental phase shift maps is obtained. 

In this regard, our former work unambiguously demonstrate the important role of 
chain alignment on the area of hysteresis loop (and therefore of the SAR) [24]. Conse-
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Figure 7. Size dependence of normalized magnetization. The snapshots show the remanent mag-
netization configurations, taken along two orthogonal directions, for exemplary dimensions (50,
58, and 90 nm). For clarity purposes the arrows representing the magnetization are average over
10 × 10 × 10 basic unit cells. All the particles are drawn at the same scale.
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4. Conclusions

We were able to map the magnetic configuration of ensembles of Fe3O4 nanocubes,
approximately 40 nm in size, by means of electron holography. The self-assembly of the
nanocubes in the form of chains was confirmed to be driven both by the shapes of the
blocks and by the dipole–dipole interaction. Furthermore, a very good agreement between
simulated and experimental phase shift maps is obtained.

In this regard, our former work unambiguously demonstrate the important role of
chain alignment on the area of hysteresis loop (and therefore of the SAR) [24]. Consequently,
disorientation of the assembly and deviations from the homogeneous flux distribution
(as the ones reported in Figure 6) would lead to a considerable decrease in the heating
efficiency and can most probably explain the smaller SAR values for the 40 nm sample
compared to the 20 nm case [11].

It is our view that our findings contribute to the knowledge on the complexity of the
magnetic structure in applications as diverse as non-volatile storage devices and cancer
therapies, which calls for further studies.
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