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Abstract

The present paper introduces a new model used to study and analyse the severe acute

respiratory syndrome coronavirus 2 (SARS-CoV2) epidemic-reported-data from Spain. This

is a Hidden Markov Model whose hidden layer is a regeneration process with Poisson immi-

gration, Po-INAR(1), together with a mechanism that allows the estimation of the under-

reporting in non-stationary count time series. A novelty of the model is that the expectation

of the unobserved process’s innovations is a time-dependent function defined in such a way

that information about the spread of an epidemic, as modelled through a Susceptible-Infec-

tious-Removed dynamical system, is incorporated into the model. In addition, the parameter

controlling the intensity of the under-reporting is also made to vary with time to adjust to pos-

sible seasonality or trend in the data. Maximum likelihood methods are used to estimate the

parameters of the model.

Introduction

A major difficulty in the fight against the pandemic caused by the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV2) is the large number of people who become infected and

experience a mild form of the disease but can pass it on to others [1, 2]. The lack of tests to

carry out large-scale diagnoses and the different protocols regarding testing policies add an

extra source of uncertainty about the true number of infected individuals. This causes the

number of cases reported by the authorities that serve as a basis for public health policies to

severely underestimate the actual number of cases in the population [3].

The problem of under-reporting affects data quality and therefore contributes to misrepre-

sent results and conclusions, as reported observations do not reflect the total amount of cases

of interest but only a fraction of them. Any measure related to the evolution or impact of the

epidemic (e.g., lethality rates, basic and effective reproduction numbers, and others) will be

distorted. This problem is not exclusive of epidemics but pervades in most areas of public
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health, economics, and society, among others. During the past years, several authors have stud-

ied this phenomenon in different applications. Among these authors, we can highlight [4] who

studied the under-reporting in worker absenteeism through Markov chain Monte Carlo analy-

sis, [5] who considered a Bayesian approach to estimate the number of committed crimes in

Málaga in 1993 and Stockholm between 1980 and 1986, [6] who described the under-reported

in work-related skin diseases in Norway from 2000 to 2013, or [7] who studied under-report-

ing in tuberculosis in Brazil. Global percentages of under-reporting during a given period of

time can be estimated, for instance, with stochastic Susceptible-Exposed-Infectious-Recovered

(SEIR) models, including unobservable compartments of non-ascertained individuals. In

order to estimate the parameters in such models, it is necessary to have data on individual evo-

lution of the epidemic, that is, for each individual, the date of contagion or appearance of first

symptoms, number of days in quarantine, hospital, or similar information is required, regard-

less of the estimation methodology. There are many examples of this situation. For instance,

[8] who estimates SARS-CoV2 in Wuhan via MCMC, [9] who uses least squares estimator for

SARS-CoV2 in Uruguay, or [10] who employs a simpler version of an SEIR model, called Sus-

ceptible-Infected-Recovered (SIR) model, to understand the relationship between the observed

and unobserved cases of the Hong Kong seasonal influenza epidemic in New York between

1968 and 1969. Although the previous works proposed new methods to describe, identify or

estimate under-reporting of data, none of them, to our knowledge, tried to model the under-

reporting in integer-valued time series data.

In [11] it is proposed a simple model for integer-valued time series data that estimates the

under-reporting of the human papillomavirus infections in the province of Girona from 2010

to 2014, the number of deaths attributable to a rare, aggressive tumour (pleural and peritoneal

mesotheliomas) in Great Britain from 1968 to 2013, and the number of botulism cases in Can-

ada from 1970 to 2013. The model mentioned above was extended by considering a more com-

plex correlation structure among the time series observations in [12], where the authors

studied the number of real cases of gender violence in Galicia from 2007 and 2017. The ade-

quacy of the models in [11, 12] was assessed through simulations of different scenarios that

were well recovered by the estimation procedure, and as for real data, the results coincide with

the expert’s opinion.

Our original motivation for this work was to study daily reported cases of SARS-CoV2 in

different areas of Spain. The protocol for testing as of February 2020 only included clinically

suspicious patients who recently arrived from China [13]. The protocol experienced changes

in the succeeding weeks, and by May 2020, the norm became the polymerase chain reaction

(PCR) or molecular tests performed to individuals with a broader collection of symptoms and

contacts of confirmed patients [14]. This scenario suggests a hidden process that governs the

evolution of the daily number of infected individuals, and an observed process that reflects

only part of it. Moreover, the proportion of unobserved cases varies in time, due at least to the

changes in testing protocols. On the other hand, it is reasonable to assume that the underlying

process is non-stationary since the evolution of the epidemic of SARS-CoV2 has been observed

to evolve initially drawing a mild logarithmic curve followed by an outbreak with exponential

growth, which later slows down and also declines exponentially, with varying growth-decay

rates which depend much on the application and effectiveness of public health prevention

measures.

In light of all the above considerations, we propose here a new extension of the model in

[11], which deals with the non-stationary behaviour of the hidden process and estimates the

under-reporting in epidemics such as the SARS-CoV2 and potential outbreaks. The unob-

served process is modeled with an INAR(1) structure, assuming that for each case counted

during day n, a new case appears in day n + 1 with a fixed (yet unknown) probability α, and to

PLOS ONE Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case

PLOS ONE | https://doi.org/10.1371/journal.pone.0242956 December 3, 2020 2 / 20

https://www.juntadeandalucia.es/

institutodeestadisticaycartografia/badea/informe/

anual?CodOper=b3_2314&idNode=42348. Codes

are available at https://github.com/underreported/

HMCmodel.

Funding: This work was co-funded by Instituto de

Salud Carlos III (COV20/00115), and the Spanish

Ministry of Economy and Competitiveness

(RTI2018-096072-B-I00). A.Fernández-Fontelo

acknowledges financial support from the German

Research Foundation (D.F.G.). D. Moriña
acknowledges financial support from the Spanish

Ministry of Economy and Competitiveness,

through the Mara de Maeztu Programme for Units

of Excellence in R&D (MDM-2014-0445) and

Fundacion Santander Universidades. A. Arratia

acknowledges support by grant TIN2017-89244-R

from MINECO (Ministerio de Economa, Industria y

Competitividad) and the recognition 2017SGR-856

(MACDA) from AGAUR (Generalitat de Catalunya).

This work was also processed in the frame CY

Initiative of Excellence (grant\Investissements

d’Avenir" ANR- 16-IDEX-0008), Project \EcoDep"

PSI-AAP2020-0000000013. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: HMM, Hidden Markov Models;

INAR, integer-valued autoregressive; MLE,

Maximum likelihood estimates; PCR, polymerase

chain reaction; SARS-CoV2, severe acute

respiratory syndrome coronavirus 2; SEIR,

Susceptible-Exposed-Infectious-Recovered; SIR,

Susceptible-Infectious-Removed.

https://doi.org/10.1371/journal.pone.0242956
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/badea/informe/anual?CodOper=b3_2314&amp;idNode=42348
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/badea/informe/anual?CodOper=b3_2314&amp;idNode=42348
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/badea/informe/anual?CodOper=b3_2314&amp;idNode=42348
https://github.com/underreported/HMCmodel
https://github.com/underreported/HMCmodel


these, a random number of other counts are added (innovations). We shall assume that these

innovations are independent of the past and Poisson distributed. The mean of the innovations

will be modelled as the difference of the affected individuals from day n to day n + 1, found

through the solution of a SIR (Susceptible, Infectious, and Removed) compartmental model,

thus taking into account the spread of the epidemic. We reconstruct the most plausible count

for each time and propose different forecasting methods. The latter allows us to estimate more

precisely measures such as the lethality rate and provide more accurate predictions for apply-

ing more realistic control and prevention measures. The model is applied to the time series of

the number of new daily SARS-CoV2 cases confirmed by PCR in different regions with differ-

ent characteristics and climate conditions in Spain. Despite being especially useful to model

and estimate the under-reporting in small areas with low counts, the application also shows

that our model can be used in larger areas that can be split into smaller regions following geo-

graphic or sanitary criteria (e.g., dividing large areas into smaller sanitary areas).

Methods

Modelling the under-reporting of stationary time series

Our approach to the modelling of the non-reported daily counts in the SARS-CoV2 cases

series is an extension of the model introduced in [11], that we briefly discuss here.

Consider that the true (unobserved) counts come from a process Xn, n 2 N, defined with

an integer-valued autoregressive model of order 1 (INAR(1)):

Xn ¼ a � Xn� 1 þWn; ð1Þ

where 0< α< 1 is a fixed parameter, and Wn are the innovations, distributed according to a

discrete probability law, independent of Xn. The operator ˚ is the binomial thinning or subsam-
pling operator defined by:

½a � Xn� 1jXn� 1 ¼ xn� 1� ¼
Xxn� 1

j¼1

Bj; ð2Þ

where {Bj} is a sequence of independent and identically distributed Bernoulli random variables

with parameter α, denoted as Bern(α). Note that [α˚Xn−1|Xn−1 = xn−1] * Binomial(xn−1, α).

The model in (1) can be seen as an homogeneous Markov chain with transition probabili-

ties given by:

PðXn ¼ ijXn� 1 ¼ jÞ ¼
Xminði;jÞ

k¼0

j

k

 !

akð1 � aÞ
j� kPðWn ¼ i � kÞ; ð3Þ

where, in the case of the so-called INAR(1) process with Poisson innovations,

PðWn ¼ i � kÞ ¼ e� lli� k

ði� kÞ! . The standard interpretation of an INAR(1) model is that a proportion

α of the individuals at time t “survive” and are part of the population at time t + 1. However,

this interpretation is misleading in our context. The observations at time t + 1 are all new indi-

viduals; some correspond to the binomial thinning and the others to the independent innova-

tions. It is known that for many applications for where INAR(1) models can be applied, this

meaningful interpretation is not possible. However, the thinning is needed for modelling the

autocorrelation of time series. For instance, this is the situation for the example of meningo-

coccal infection analysed in [15].
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More details on the INAR(1) model and several extensions can be found in [16–20] or in

[21–24] where INAR models based on generalisations of the binomial thinning operators (e.g.,

expectation thinning operators) are defined.

Now consider a very simple mechanism that can lead to an observable and potentially

under-reported process Yn:

Yn ¼

(Xn with probability 1 � o

q � Xn with probability o:
ð4Þ

That is, for each n, we observe Xn with probability 1 − ω, and a q-thinning (as defined in Eq

(2)) of Xn with probability ω, independent of the past {Xj: j< n}. Therefore, what we observe

(the reported counts) is Yn ¼ ð1 � 1nÞXn þ 1n

PXn
j¼1
xj where 1n * Bern(ω) and ξj * Bern

(q).

In the next sections, we will generalise this process to allow for non-time-homogeneous

processes, by modelling the mean of the innovations in (1), as well as the under-reporting

parameter q in (4), as functions of time.

Parameter estimation. The parameters of the model can be estimated using different

strategies. In [11], the authors proposed a moments-based method and a likelihood-based

method. Since the first method is only appropriate when the series is stationary, we will focus

on the second method of estimation based on the likelihood function.

The model described in (1) and (4) is a Hidden Markov Model (HMM) with an infinite

number of states [25, 26], and hence, the maximum likelihood estimators of the parameters

involve intensive numerical computations. For a given n, the possible values of the series Xn

must be equal to or greater than the observed value of Yn, which implies a wide range of possi-

ble trajectories. Given the observed series, there are a countable number of potential sequences

that can lead to it, and therefore the likelihood function cannot be computed directly. A way to

circumvent this problem consists of using the forward algorithm [25, 26]. This recursive algo-

rithm is linear in n; it is based on the forward probabilities of the Markov Chain that can be

computed in terms of the transition and emission probabilities. These forward probabilities

are defined by

gkðy1:k; xkÞ ¼
X

xk� 1

PðYk ¼ ykjXk ¼ xkÞPðXk ¼ xkjXk� 1 ¼ xk� 1Þ

gk� 1ðy1:k� 1; xk� 1Þ:

ð5Þ

Thus, the likelihood function of the model can be computed as

PðY1 ¼ y1;Y2 ¼ y2; . . . ;Yn ¼ ynÞ ¼
P1

Xn¼yn
gnðy1:n; xnÞ.

In this case, the transition probabilities, P(Xk = xk|Xk−1 = xk−1) are given by the Eq (3). That

is, the transition probabilities are defined by the conditional probability mass function of the

INAR(1) model. On the other hand, the emission probabilities are defined by:

PðYk ¼ ykjXk ¼ xkÞ ¼

0 yk > xk;

ð1 � oÞ þ oqxk yk ¼ xk;

o
xk

yk

� �

qykð1 � qÞxk � yk yk < xk:

8
>>>>><

>>>>>:

ð6Þ
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Notice that, in practice, an upper threshold has to be defined in the sum that computes the

likelihood function. In this application, this threshold is fixed as 1.5 times the maximum value

of the series.

The reconstruction of the most likely latent sequence is a key point in the current analysis

since it gives us a picture of how the unobserved process behaves. To do so, the Viterbi algo-

rithm [27] is used, which consists of finding the sequence X� that maximises the likelihood

function of Xn given the observed process Yn and a known vector of parameters. That is,

X� ¼ argmaxXP̂ðX1:njY1:nÞ ¼
P̂ðX1:n jY1:nÞ

P̂ðY1:nÞ
. However, since the denominator P̂ðY1:nÞ, does not

depend on Xn, it suffices to maximise the joint probability P̂ðX1:njY1:nÞ.

Modelling the spread of an epidemic: The SIR model

The key interest of researchers when dealing with an epidemic such as the current SARS-CoV2

is to estimate the propagation of the disease and predict its possible end date to apply appropri-

ate measures of control and prevention [28]. The literature offers different approaches to deal

with so, as the so-called SIR and SEIR compartmental models. These models have extensively

used for study influenza’s epidemic evolution as [29] who use an SEIR model to evaluate vac-

cine policies effects on England and Wales’s influenza epidemics, [30] who employs SEIR

model to study seasonal influenza evolution in England by linking the prior seasonal informa-

tion to the immunity in the following period in order to ensure non-independence between

the successive influenza seasons, or [31] who presents a set of different research works aimed

at modelling the influenza epidemics.

We shall link the expectation of the innovations in (1) to the daily number of individuals

affected by the disease. For that purpose, we will study a simplified version of the SIR model.

This model belongs to the class of compartmental models, and a system of ordinary differential

equations governs its behaviour. Consider three classes of individuals at each time t 2 R: those

who are healthy but susceptible to get the disease (S(t)), those who are infected and thus trans-

mitters of the disease (I(t)), and those individuals who have been removed from the system

and will not get infected again (R(t)) [32, 33]. The SIR model describes the dynamics of the

spread of the virus and it is formally defined by a system of differential equations given in S1

Appendix.

The parameters of interest are β, γ, and N, which are the infection rate, the removal rate,

and the total susceptible population, respectively. For each t, the following condition is ful-

filled: S(t) + I(t) + R(t) = N. Usually, the initial conditions are set to R(0) = 0, I(0) = I0 and

S(0) = N − I0. Although this model sensibly represents certain epidemics’ evolution, it is hard

to fit into real-world data due to the sensitiveness to slight changes in both the parameters’ val-

ues and the initial conditions.

Consider now the number of affected individuals A(t) = I(t) + R(t). In S1 Appendix, we

show that the number of individuals affected by the disease can be fairly represented by:

AðtÞ ¼
M�A0ekt

M� þ A0ðekt � 1Þ
: ð7Þ

where k = β − γ and M� ¼
Nðb� gÞ
b� g=2

. Recall that β is the infection rate, γ is the recovery rate and N
the total susceptible population.

The solution given in (7) allows to take into account the information on the spread of the

epidemics in the model given by (1) and (4), by considering that the expectation of the innova-

tions, instead of being constant, that is, λ, it will be a function of time such that λt = new(t) = A
(t) − A(t − 1), where new(t) are the new affected cases at time t. It can be seen that the Eq (7)
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behaves as an exponential function close to the origin, that is, A(t)�A0 ekt when t� 0.

Therefore, the new affected cases grows exponentially at the beginning, that is, new(t) = A(t) −
A(t − 1) = A0(1 − e−k)ekt. In addition, the function A(t) tends to M� as t tends to1. The maxi-

mum value of A(t), that is, A(1) can be obtained by numerically solving the following equa-

tion (see S1 Appendix for details):

Að1Þ �
Ng
b

log
N � A0

N � Að1Þ

� �

þ R0 ¼ 0: ð8Þ

Eq (8) can be especially useful in the reconstruction of the SIR process by recovering the

parameters β, γ, and N once the under-reporting model is estimated.

Taking into account this SIR representation of the expected value of the innovations λt in

the latent process model, a more realistic description of the model for the SARS-CoV2 data

will be derived, which will allow estimating the characteristics of the under-reporting in such

data and the spread of the epidemic jointly.

Modelling the under-reporting of non-stationary time series including

information on the spread of the disease

The model described in Eqs (1) and (4) is useful for detecting and quantifying the under-

reporting at a local scale because of the likelihood computations work well with relatively small

counts. It is also meant to model weakly stationary processes, i.e., with expectation, variance,

and auto-covariances not varying in time.

However, many real-world time series data are non-stationary as they may be governed by

trends or volatilities and may have different seasonal and cyclic patterns. For example, the

series of daily new SARS-CoV2 cases analysed in the present work show intricate trend pat-

terns. The observed series in the cases we analyse present a seasonal component due to the

“weekend effect”. That is, the number of cases reported during certain days of the week

decreases, and thus the official records show fewer cases periodically. This behaviour repeats

weekly. It is a problem attributable to the reporting process and not to the nature of the under-

lying phenomenon. The model in Eqs (1) and (4) has to be modified in order to take this par-

ticularities into account.

We proceed now to incorporate the information on the evolution of the SARS-CoV2 epi-

demic into the model in Eqs (1) and (4), and thus to fit the trend displayed in Figs 1, 3, and 4

appropriately.

Our analysis is based on the daily number of new cases of SARS-CoV2. For each time n, the

new counts can be expressed in terms of the affected number of individuals introduced in the

previous section. That is, for each n, the number of new individuals can be defined in terms of

the number of affected individuals, as follows: new(n) = A(n) − A(n − 1), where A(n) is defined

in (7). This information can be appropriately incorporated into the model to accommodate

the trend present in the data using the information on the propagation of the epidemic pro-

vided by the data themselves.

A sensible way to do this is by considering that the expectation of the innovations of the

latent process Xn in expression (1) varies with the number of new cases at each time n, and

thus that the model in (1) and (4) is not stationary anymore. Specifically, the innovations of Xn

will have Poisson distribution with λn = new(n) = A(n) − A(n − 1), where A(n) is given by (7).

Therefore, the unobserved process Xn becomes:

Xn ¼ a � Xn� 1 þWnðlnÞ; ð9Þ

where the value of parameter α is still fixed between (0, 1), but now the parameter of the
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Poisson distributed innovations Wn is a function of time, λn = f(Θ, n), where Θ is a vector of

parameters. Particularly, λn = new(n) = A(n) − A(n − 1), where A(n) is defined by (7), assum-

ing that A0 = 1. The value of A0 is known, representing the number of affected people at the

starting time. However, if this value also needs to be estimated, it should thus be kept in the

expression (7) as a parameter.

The model (4) defines the under-reported as an independent process in the sense that the

state of under-reporting at time n is not affected by the same state at time n − 1. However, Fer-

nández-Fontelo et.at. in [12] introduced a version of the under-reporting scheme according to

Fig 1. Observed and reconstructed time series. Gray-dotted lines are the observed time series for Cantabria (top), Islas Canarias (middle), and Islas

Baleares (bottom). Black-bold lines are the reconstructed time series with the Viterbi algorithm.

https://doi.org/10.1371/journal.pone.0242956.g001
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a two-state Markov chain. Although this approach of the under-reporting process could have

been considered in the current model, the resulting model would be significantly more com-

plicated than the one presented here from a computational perspective. In addition, the

under-reporting process in (4) could also be considered stationary since it remains constant

throughout the study (e.g., the under-reporting does not vary with time).

In the present work, however, the under-reporting process is flexible in that we do not

restrict the under-reporting parameters to be constant over time; they can vary throughout the

study if needed. To do so, both under-reporting parameters ω and q can be made to vary with

time, that is, ωn = f(n, Γ) and qn = f(n, Δ), where Γ and Δ are vectors of parameters. In our cur-

rent model, just the parameter q is considered time-dependent, and not both parameters to

reduce computational issues. The latter means that, if both parameters ω and q are considered

time-dependent, the resulting model is more complex and often shows convergence problems.

Particularly, the intensity of the under-reporting (i.e., q) is adjusted by the following logistic

function:

qn ¼
exp g0 þ g1nþ g2sin 2pn

7

� �
þ g3cos 2pn

7

� �� �

1þ exp g0 þ g1nþ g2sin 2pn
7

� �
þ g3cos 2pn

7

� �� � ; ð10Þ

Hence, we ensure that qn 2 (0, 1). In expression (10), γ1 indicates whether q increases or

decreases over time, while γ2 and γ3 indicate whether the series has a seasonal pattern with

period p = 7 (weekly). Notice that if γ1 = γ2 = γ3 = 0, then the previous logistic function

becomes constant and thus qn = q, resulting in the model (4). Hence, considering this function

for the intensity of the under-reporting, the under-reporting process in the present model is

defined by:

Yn ¼
Xn with probability 1 � o;

qn � Xn with probability o:

(

ð11Þ

The parameters of the new model defined in (9) and (11) can be estimated using the for-

ward algorithm through the forward probabilities defined in (5). In addition, the Viterbi algo-

rithm introduced before can also be used to reconstruct the most likely latent sequences.

Model forecasting. Another interesting point of the current analysis is the prediction of

new daily cases of SARS-CoV2. These predictions can be used as a tool for foreseeing potential

future outbreaks of the disease and, therefore, helping to implement earlier measures to lessen

the impact of outbreaks. We propose two different predictors.

The most straightforward way to predict the values of Yn+1, Yn+2, . . . given the sample val-

ues Y1, Y2, � � �, Yn is by considering their average point predictions, that is, E(Yn+1), E(Yn+2). . ..

In particular, since the model (1) is an auto-regressive model of order 1, these average point

predictions are expressed in terms of the last observed value, that is, Yn.

According to the properties of the binomial thinning operator, we have that E(Yn+k) =

E(Xn+k)(1 − ω(1 − qn)), where EðXnþkÞ ¼
lnþk
1� a

and λn+k = A(n + k) − A(n + k − 1). On the other

hand, it is easy to see that EðXnþkÞ ¼ a
kEðXnÞ þ

Pk
i¼1
ak� ilnþi. Hence, if we have estimates for

the corresponding parameters at a given time n + k, the average point prediction of Yn+k can

be computed as follows:

EðYnþkÞ ¼ φnþka
kYn þ φnþkð1 � oð1 � qnÞÞ

Xk

i¼1

ak� ilnþi; ð12Þ

where φnþk ¼
1� oð1� qnþkÞ

1� oð1� qnÞ
. See S2 Appendix for more details on the computations.

PLOS ONE Estimating the real burden of disease under a pandemic situation: The SARS-CoV2 case

PLOS ONE | https://doi.org/10.1371/journal.pone.0242956 December 3, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0242956


The standard errors of these predictions (12) can be estimated using the Delta method.

Briefly, the estimated variance of the prediction ÊðYnþkÞ, that is,

dVarðÊðYnþkÞÞ ¼ rÊðYnþkÞ
T
SrÊðYnþkÞ, where E(Yn+k) follows from (12),rEðYnþkÞ ¼

@EðYnþkÞ

@a
;
@EðYnþkÞ

@m ;
@EðYnþkÞ

@b
;
@EðYnþkÞ

@o
;
@EðYnþkÞ

@g0
;
@EðYnþkÞ

@g1
;
@EðYnþkÞ

@g2

� �
is the gradient function of E(Yn+k),

and S is the variance-covariance matrix of the estimators of the parameters. Finally, the confi-

dence intervals of ÊðYnþkÞ can be easily computed as ÊðYnþkÞ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðÊðYnþkÞÞ

q

.

We can also predict an individual value of Yn+k based on its conditional distribution given

the last value of the latent process Xn. This distribution is (see S3 Appendix):

YnþkjXn ¼ xn �
Binomialðak; xnÞ þ Poissonð

Pk
i¼1
ak� ilnþiÞ 1 � o;

Binomialðqnþka
k; xnÞ þ Poissonðqnþk

Pk
i¼1
ak� ilnþiÞ o:

8
<

:
ð13Þ

The distribution (13) is a mixture of two components that are sums of a Binomial distribu-

tion and a Poisson distribution. To compute the corresponding probabilities for each compo-

nent, a direct modification of expression (3) can be used. Finally, if P1(Yn+k = j|Xn = xn) is the

probability of Yn+k = j in the first component of the mixture (13), and P2(Yn+k = j|Xn = xn) the

same probability in the second component, the probability that P(Yn+k = j|Xn = xn) of the mix-

ture (13) is P(Yn+k = j|Xn = xn) = (1 − ω)P1(Yn+k = j|Xn = xn) + ωP2(Yn+k = j|Xn = xn).

Given the distribution (13), and replacing the parameters by the maximum likelihood esti-

mates, we can also estimate regions of prediction of size 1 − α� finding the lower and upper

limits r1 and r2 that satisfy:
Pr1

j¼1
PðYnþk ¼ jjXn ¼ xnÞ � a

�=2 and
Pr2

j¼1
PðYnþk ¼ jjXn ¼ xnÞ � 1 � a�=2.

Results

The current application is based on the official daily number of confirmed SARS-CoV2 cases

in different areas of Spain. In particular, it shows that the model presented before can be used

to identify and quantify the under-reporting in small regions of Spain as well as in larger areas

that can be officially and hierarchically divided into smaller regions (e.g., areas that can be

divided into provinces or sanitary regions). That is, the model is ideal for quantifying the

under-reporting issue locally and brings a solution to study that phenomenon in larger areas

by aggregating the information in their smaller regions. Also, at the same time the under-

reporting is estimated, the model accommodates the spread of the pandemic and provides this

information through the parameters M� and k.

Under-reporting of SARS-CoV2 in small areas of Spain

Three different small areas from Spain in the North (Cantabria), South (Islas Canarias),

and Mediterranean coast (Islas Baleares) have been selected. The data from these areas con-

sist of the number of confirmed cases by PCR tests. The day of confirmation coincides with

the actual day the patient manifests symptomatology. See “Availability of data and codes”

section for data availability. All time series range in the period from March 5 to May 20,

2020.

The time series corresponding to Cantabria takes values ranging from 0 to 161 cases per

day, with a mean of 36 and 2788 positive PCR cases. The number of deaths is 209, 36 deaths

per 100000 inhabitants since the beginning of the pandemic, set on February 20, 2020.
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The time series for Islas Canarias takes values ranging from 0 to 147 positive PCR cases per

day and with an average of 30 roughly and a total of 2299 positive cases by PCR. A total of 155

people died, which means seven deaths per 100000 inhabitants since the beginning of the

pandemic.

The time series for Islas Baleares has values ranging from 0 to 107, with an average of 28

and 2125 positive cases by PCR. Two hundred twenty-one deaths are registered in this area

since the beginning of the pandemic. This implies a total of 19 deaths per 100000 inhabitants.

Fig 1 shows the evolution over time of the new daily positive cases by PCR in Cantabria

(top), Islas Canarias (middle), and Islas Baleares (bottom). The graph shows that these time

series are governed by a trend that increases to a maximum peak (the peak of the pandemic)

and decreases. Therefore, it is evident that the time series are non-stationary. Additionally, the

series shows periodic peaks that coincide with the “weekend effect” previously described.

Table 1 shows the maximum likelihood estimates (MLE) of the model defined in (9) and (11).

For Cantabria, the overall frequency of under-reporting, that is, ω is estimated as ô ¼ 0:8814

and the intensity, that follows the function (10), is q̂n ¼
exp 0:3875� 0:0197nþ0:3203sin 2pn

7ð Þþ0:1748cos 2pn
7ð Þð Þ

1þexp 0:3875� 0:0197nþ0:3203sin 2pn
7ð Þþ0:1748cos 2pn

7ð Þð Þ
.

On the other hand, the latent process for Cantabria is estimated as

Xn ¼ 0:9653 � Xn� 1 þWðl̂nÞ, where l̂n ¼ ÂðnÞ � Âðn � 1Þ and ÂðnÞ ¼ 237:99e0:3304n

237:99þe0:3304n� 1
. For the

other two regions, the models are similar to the model for it Cantabria. In particular, for Islas

Canarias, the overall frequency and intensity of the under-reporting process are ô ¼ 0:7943

and q̂n ¼
exp 0:9469� 0:0218nþ0:2313sin 2pn

7ð Þ� 0:0570cos 2pn
7ð Þð Þ

1þexp 0:9469� 0:0218nþ0:2313sin 2pn
7ð Þ� 0:0570cos 2pn

7ð Þð Þ
. The latent process for Islas Canarias is

estimated as Xn ¼ 0:9271 � Xn� 1 þWðl̂nÞ where ÂðnÞ ¼ 256e0:3271n

256þe0:3271n� 1
. Finally, for Islas

Baleares, the under-reporting process parameters’ are estimated as ô ¼ 0:7913 and

Table 1. MLE for Cantabria, Islas Canarias and Islas Baleares.

Cantabria Islas Canarias Islas Baleares

â 0.9653 0.9271 0.9539

s:e:â 0.0034 0.0066 0.0046

M̂ � 237.99 256.00 194.69

s:e:M̂ � 18.99 22.54 17.77

k̂ 0.3304 0.3271 0.2919

s:e:k̂ 0.0141 0.0092 0.0107

ô 0.8814 0.7943 0.7913

s:e:ô 0.0406 0.0521 0.0496

ĝ0 0.3875 0.9469 0.3485

s:e:ĝ0
0.1071 0.1289 0.1386

ĝ1 -0.0197 -0.0218 -0.0232

s:e:ĝ1
0.0024 0.0037 0.0037

ĝ2 0.3203 0.2313 -0.1004

s:e:ĝ2
0.0454 0.0629 0.0540

ĝ3 0.1748 -0.0570 0.4145

s:e:ĝ3
0.0432 0.0618 0.0556

Table gives the MLE and standard errors of the parameters of the model defined in (9) and (11) for Cantabria, Islas

Canarias and Islas Baleares.

https://doi.org/10.1371/journal.pone.0242956.t001
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q̂n ¼
exp 0:3485� 0:0232n� 0:1004sin 2pn

7ð Þþ0:4145cos 2pn
7ð Þð Þ

1þexp 0:3485� 0:0232n� 0:1004sin 2pn
7ð Þþ0:4145cos 2pn

7ð Þð Þ
. The latent process for Islas Baleares is Xn ¼

0:9539 � Xn� 1 þWðl̂nÞ where ÂðnÞ ¼ 194:69e0:2919n

194:69þe0:2919n� 1
.

Fig 1 shows the officially registered new daily SARS-CoV2 cases confirmed by PCR in Can-

tabria, Islas Canarias, and Islas Baleares from 5 March to 20 May (grey lines). The graph also

shows the reconstructed time series with the Viterbi algorithm for the above areas (black

lines). Although the Spanish authorities have confirmed by PCR a total of 2788, 2299, and

2125 new SARS-CoV2 cases in the studied period in Cantabria, Islas Canarias, and Islas Bale-

ares, the model presented here estimates a total of 6074, 3370, and 4079 new cases within this

period in the areas mentioned above. That is, officially Cantabria, Islas Canarias, and Islas Bal-

eares, only the 45.9%, 68.2%, and 52.9% of the total new SARS-CoV2 cases by PCR are

registered.

On 20 May, 209, 155, and 221 people died due to SARS-CoV2 in Cantabria, Islas Canarias,

and Islas Baleares, respectively. As expected, the lethality rates computed using the observed

and reconstructed number of confirmed cases by PCR differ. While these rates are 7.5%, 6.7%,

and 10.4% in Cantabria, Islas Canarias, and Islas Baleares, the reconstructed rates significantly

decrease to 3.4%, 4.6%, and 5.4%.

Results in Table 1 also allow reconstructing the SIR model, and therefore estimating the

parameters β, γ, and N, also using the number of affected people A� when the curve A(t) grows

fastest (see S1 Appendix).

Although the SIR model’s exact solution can be derived, in our model, an approximate solu-

tion to the SIR model has been considered the logistic function A(t) to make the model com-

putationally less expensive. Because our SIR estimation relies on an approximated solution, in

practice, in some cases, the reconstruction of the parameters β, γ, and N is not possible since

the equation (S1.11) has no proper solution.

In the case of Cantabria, Islas Canarias and Islas Baleares, a proper solution for (S1.11) has

been found for the three regions. In particular, for Cantabria, considering the estimated

parameters â ¼ 0:9653, M̂� ¼ 237:99, k̂ ¼ 0:3344 and observing that the fastest growth of A
(t) occurs at A� = 1631.9, we obtain A1� 6858.5, A0 ¼ 1=ð1 � âÞ ¼ 28:8 and, solving numer-

ically (S1.11), N̂ ¼ 427418:7. Then, plugging the value of N̂ in (8) and using that b̂ � ĝ ¼

0:3344 we find ĝ ¼ 85:57 and b̂ ¼ 85:90.

Acting similarly for the other two regions, for Islas Canarias N̂ ¼ 50629:4, ĝ ¼ 10:07 and

b̂ ¼ 10:40. For Islas Baleares, N̂ ¼ 79584:6, ĝ ¼ 13:05 and b̂ ¼ 13:34

Fig 2 shows the forecasting results based on the average point prediction and the k-ahead

forecasting distribution (e.g., percentiles 2.5%, 50%, and 97%) for the areas mentioned above

using a dynamic and static approach. The dynamic method is usually used to evaluate the

models’ predictive capability and consists of splitting down the time series into the training

and testing time series sets of sizes n − k and k. The method starts training the model over the

n − k observation in the training set. The prediction and the 95% confidence levels for the

observation n − k + 1 are computed through the trained model and compared to the true

observation n − k + 1. After that, the training set is updated by including the first n − k + 1,

the model is re-fitted over the new training set, and a new prediction for the observation n − k
+ 2 is computed. This recursive process is repeated until the last prediction for the n observa-

tion is computed over the training set containing the n − 1 first observations. The static

method is usually used to predict unknown future values. The idea consists of using the last Xn

value to predict both the average point prediction at time t + k and the k-ahead forecasting

distribution.
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Fig 2 shows the dynamic prediction from 6 May to 20 May. In particular, the graph shows

the average point prediction (blue line), the median point prediction (yellow lines), and the

percentiles 2.5% and 97.5% (red-solid lines) of the forecasting distribution. For all areas, it is

clear that most of the time, the observed values are within the percentiles 2.5% and 97.5%, that

is, within the 95% confidence levels. This figure also shows the static prediction from 21 May

to 27 May, a period where no observations are available (supplemental material).

Fig 2. Dynamic and static forecasting. Dynamic (solid lines) and static (dotted lines) forecasting for Cantabria, Islas Canarias and Islas Baleares. Red

lines correspond to the percentiles 2.5% and 97.5%, blue line corresponds to mean, and yellow line corresponds to median.

https://doi.org/10.1371/journal.pone.0242956.g002
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Under-reporting of SARS-CoV2 in large areas of Spain

In this second example, the number of daily SARS-CoV2 cases confirmed by PCR is studied in

two large areas of Spain by splitting these areas into smaller hierarchical regions (e.g., areas

divided into smaller areas according to geographical or sanitary reasons). In these cases, as

before, the day of confirmation coincides with the actual day the patient had symptoms. Recall

that the model introduced here is especially useful for studying the evolution of the SARS-

CoV2 cases and identifying and quantifying its under-reported in small areas. However, in

this example, we will show that larger areas can also be studied with these models if we have a

way to split these vast areas.

The autonomous community of Galicia is divided into seven different sanitary areas. These

areas’ data consist of the number of daily new cases of SARS-CoV2 confirmed by PCR from 12

March to 27 April. For the Galician data, the series had to be cut on 28 April since the region’s

health system changed the definition of new cases from 28 April onwards. Overall the autono-

mous community, the minimum and the maximum number of new daily cases confirmed by

PCR range from 0 to 185, with 21 cases per day on average. A total of 6974 cases are registered

in Galicia as confirmed cases by PCR on 28 April. See “Availability of data and codes” section

for data availability.

The autonomous community of Andalucı́a is divided into seven provinces. In this case,

each province’s time series is the number of new daily SARS-CoV2 cases confirmed by PCR

from 5 March to 20 May. Overall Andalucı́a, the minimum and the maximum number of daily

cases confirmed by PCR range from 0 to 185, with 20.4 cases per day on average. A total of

12591 cases are officially registered in Andalucı́a as confirmed cases by PCR on 20 May. See

“Availability of data and codes” section for data availability.

Table 2 shows the maximum likelihood estimates of the model in (9) and (11), or nested

versions, for each of the sanitary areas and provinces of Galicia and Andalucı́a, respectively. It

can be seen in that table that the models between lower regions within the same area are

consistent.

Figs 3 and 4 show the time series for each sanitary area or provinces and the corresponding

reconstructions for Galicia and Andalucı́a, respectively.

For Galicia, from 12 March to 27 April 1630, 1269, 1096, 577, 1323, 670, and 409 cases of

SARS-CoV2 are officially registered in Coruña, Vigo, Santiago, Pontevedra, Ourense, Lugo,

and Ferrol, respectively. However, our model estimates that, over the same period previously

defined, 3559, 3062, 2112, 951, 3922, 1363, and 1121 cases of SARS-CoV2 in with the same

characteristics and the corresponding areas above really occurred. The latter implies that only

45.8%, 41.4%, 51.89%, 60.7%, 33.7%, 49.2% and 36.5% of the total registered cases of SARS-

CoV2 that have been confirmed by PCR has been observed in Coruña, Vigo, Santiago, Ponte-

vedra, Ourense, Lugo, and Ferrol, respectively. Overall in Galicia, a total of 6974 cases are reg-

istered between 12 March to 27 April. Our model estimates that the actual number of cases

with the same characteristics is 16090; that is, only 43.3% of the cases have been officially

registered. During that period, 405 people died due to SARS-CoV2 that implies a lethality of

5.8% or 2.5% depending on whether the denominator is the observed or reconstructed total

cases, respectively. The mortality rate overall Galicia is estimated as 15 deaths per 100000

inhabitants.

The estimation of the parameters of the SIR model can be obtained as described in the first

example. For instance, for Pontevedra N̂ ¼ 5129:6, ĝ ¼ 2:76 and b̂ ¼ 3:02, and for Ferrol

N̂ ¼ 55790:5, ĝ ¼ 39:83 and b̂ ¼ 40:11.

For Andalucia, from 5 March to 20 May, 497, 1252, 1338, 2437, 401, 1443, 2761, and 2462

cases of SARS-CoV2 are officially registered in Almerı́a, Cádiz, Córdoba, Granada, Huelva,
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Jaén, Málaga, and Sevilla, respectively. However, our models estimate 856, 1908, 2025, 3525,

644, 2552, 3845, and 3847 over the same period and respectively, for the same areas. That is,

only 58.1%, 65.6%, 66.1%, 69.1%, 62.3%, 56.5%, 71.8% and 64.0% of the total registered cases

of SARS-CoV2 that have been confirmed by PCR has been observed in Almerı́a, Cádiz, Cór-

doba, Granada, Huelva, Jaén, Málaga, and Sevilla, respectively. Overall Andalucı́a, a total of

12591 cases are registered from 5 March to 20 May. Our model estimates a total of 19202 cases

Table 2. MLE for Galicia and Andalucı́a.

Galicia

Coruña Vigo Santiago Pontevedra Ourense Lugo Ferrol

â 0.9391 0.8929 0.7661 0.8813 0.9232 0.6115 0.7145 -

s:e:â 0.0055 0.0090 0.0241 0.0211 0.0075 0.0375 0.0403 -

M̂ 266.57 342.37 468.99 107.66 329.61 527.08 322.85 -

s:e:M̂ 21.51 28.03 50.50 19.31 27.57 55.48 44.93 -

k̂ 0.3744 0.3695 0.3052 0.2519 0.3526 0.2856 0.2858 -

s:e:k̂ 0.0102 0.0087 0.0067 0.0171 0.0098 0.0061 0.0075 -

ô 0.7500 0.7591 0.6264 0.6787 0.8891 0.5467 0.7200 -

s:e:ô 0.0625 0.0632 0.0717 0.0739 0.0550 0.0823 0.0717 -

ĝ0 -0.9697 0.3823 0.2133 1.7702 0.3805 0.1192 -1.4025 -

s:e:ĝ0
0.0483 0.1587 0.2353 0.3156 0.1581 0.5829 0.1095 -

ĝ1 - -0.0672 -0.0494 -0.0987 -0.0527 -0.0979 - -

s:e:ĝ1
- 0.0068 0.0098 0.0121 0.0059 0.0225 - -

ĝ2 0.2369 - -0.3834 -0.4469 0.1610 0.6420 0.4011 -

s:e:ĝ2
0.0580 - 0.1009 0.1591 0.0566 0.1714 0.1316 -

ĝ3 0.0250 - -0.0778 0.1760 -0.3460 -1.0377 -0.1089 -

s:e:ĝ3
0.0550 - 0.0937 0.1512 0.0582 0.2606 0.1309 -

Andalucia

Almerı́a Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

â 0.9198 0.9188 0.8691 0.9240 0.7608 0.9289 0.9030 0.9212

s:e:â 0.0154 0.0098 0.0151 0.0073 0.0582 0.0084 0.0077 0.0070

M̂ 77.22 163.15 260.28 271.67 155.54 190.86 354.23 312.86

s:e:M̂ 13.38 18.32 29.18 24.56 35.58 21.29 28.00 25.61

k̂ 0.2438 0.2879 0.2626 0.3226 0.2161 0.2620 0.3608 0.3310

s:e:k̂ 0.0163 0.0110 0.0080 0.0093 0.0093 0.0092 0.0101 0.0080

ô 0.8400 0.8306 0.6864 0.8151 0.8114 0.7910 0.7717 0.9011

s:e:ô 0.0537 0.0493 0.0601 0.0492 0.0713 0.0491 0.0514 0.0365

ĝ0 1.1195 1.3226 0.1061 1.3984 -0.0319 0.7684 1.1918 1.5830

s:e:ĝ0
0.3079 0.1925 0.2020 0.1391 0.1490 0.1445 0.1363 0.1386

ĝ1 -0.0432 -0.0352 -0.0144 -0.0337 -0.0160 - -0.0242 -0.0392

s:e:ĝ1
0.0093 0.0048 0.0062 0.0039 0.0149 - 0.0039 0.0040

ĝ2 -0.2270 0.2430 0.4398 0.1198 0.1489 0.2477 0.1004 0.1734

s:e:ĝ2
0.1326 0.0979 0.0897 0.0736 0.1636 0.1600 0.0636 0.0602

ĝ3 0.5452 0.2660 -0.0627 0.4262 0.6838 0.3973 0.3880 0.4711

s:e:ĝ3
0.1280 0.0871 0.1001 0.0658 0.1660 0.0748 0.0790 0.0594

Tables gives the MLE and standard errors of the parameters of the model defined in (9) and (11) for Galicia and Andalucı́a

https://doi.org/10.1371/journal.pone.0242956.t002
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with the same characteristics as those in the registered cases; that is, only 65.6% are registered

in this autonomous community. As before, the lethality rate strongly differs depending on

whether the denominator is considered as the observed or reconstructed total of cases over the

specified period. In particular, overall Andalucia, 1371 people died over the specified period,

which implies lethality rates of 10.9% or 7.1% if the number of total cases corresponds to the

officially registered or reconstructed, respectively. The mortality rate overall Andalucı́a is esti-

mated as 16 deaths per 100000 inhabitants.

Fig 3. Observed and reconstructed time series. Gray-dotted lines are the observed time series for each sanitary area of Galicia. Black-bold lines are the

reconstructed time series for each sanitary area of Galicia.

https://doi.org/10.1371/journal.pone.0242956.g003
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Concerning the reconstruction of the SIR models, for example, for Córdoba N̂ ¼ 22500:2,

ĝ ¼ 6:06 and b̂ ¼ 6:33, and for Huelva N̂ ¼ 7842:1, ĝ ¼ 5:77 and b̂ ¼ 5:98.

Fig 2 can also be built for both the areas of Galicia and Andalucı́a in the same way than

what we did before for Cantabria, Islas Canarias and Islas Baleares.

Discussion

One of the major challenges in the struggle against the SARS-CoV2 pandemic relies on the

people who come down with a mild form of the disease (e.g., experiencing mild symptoms or

Fig 4. Observed and reconstructed time series. Gray-dotted lines are the observed time series for each province of Andalucı́a. Black-bold lines are the

reconstructed time series for each province of Andalucı́a.

https://doi.org/10.1371/journal.pone.0242956.g004
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even being asymptomatic) and therefore constitutes one of the most powerful vectors of virus’

transmission, combined with the lack of tests that impede carrying out large-scale screenings

[1]. However, the quick and efficient identification of those people is vital to earlier control

potential trends of infection and evaluate the pandemic’s impact (e.g., to get unbiased estima-

tors on the spread and impact of the epidemic).

Since the epidemic showed up last December in China, the concern with the under-report-

ing in official data as the number of infections and deaths worldwide has been on everyone’s

lips, including the media [34–36].

With this in mind, this paper aims to introduce an extension of the model proposed in [11]

to estimate the magnitude of the under-reporting in epidemics such as the current SARS--

CoV2. That article presents a model that considers two processes: an underlying process (true

process) that we do not observe, and the observed and potentially under-reported process that

provides a proportion of what happens (a proportion of the true process). The model’s particu-

larity is that the underlying process assumes an INAR(1) structure, and hence a particular cor-

relation structure. The model measures the under-reporting with two parameters that estimate

the number of times the process is under-reported (ω), and the overall distance between the

most likely sequence of latent states and the observed sequence (q). However, the model in

[11] is intended to fit a stationary time series, which is not the case of the SARS-CoV2 data.

Therefore, to adapt the model above to the SARS-CoV2 case, the underlying process’s expected

value is allowed to be time-dependent through an approximated solution of the SIR differential

equations that depend on the new affected individuals at each time. The new version of the

model also allows considering time-varying under-reporting, which, in the SARS-CoV2 case,

may sometimes be more realistic (e.g., the intensity of the under-reporting may decrease if the

number of large-scale screenings increases). Thus, the resulting model measures the under-

reporting and adapts the pandemic’s evolution based on the SIR model at the same time.

This paper’s results confirm that the under-reporting is effectively present in SARS-CoV2

data from various regions in Spain conditioned to different management, policies, and climate

conditions. Results also show that the model has powerful predictive characteristics exhibited

in Fig 2 and that the SIR parameters N, β, and γ can be relatively quickly recovered from the

results in Tables 1 and 2. As expected, the under-reporting from almost all regions is not con-

stant over time but varies with times showing a decreasing trend (ĝ1) and a seasonal pattern

with seven days of periodicity (ĝ2 and ĝ3). A decreasing trend means that the q parameter

tends to 0 as time increases, and therefore the intensity of the under-reporting phenomenon is

stronger as time passes. This result is surprising since it was expected a less intense under-

reporting process as time increases. However, the changes in protocols, data collection strate-

gies, among others, could have affected the evolution of this under-reporting process. On the

other hand, the seven-days periodicity is explained by the “weekend effect” that produces a sys-

tematic decrease in the number of new cases during the weekends.

It has been shown that the coverage percentages vary from 33.7% (Ourense in Galicia) to

71.8% (Málaga in Andalucı́a) and that the estimated lethality rates decrease significantly when

the number of reconstructed cases, rather than the number based only on officially reported

cases, are considered as the total number of affected individuals. In particular, lethality rates

with official cases range from 5.8% to 10.9% and decrease to 2.5% and 7.1% with the recon-

structed cases. The example with the lethality rates reveals the under-reporting influence on

the parameters’ estimates, which are often used to make decisions. Thus, the importance of

having appropriate methods to identify, control, and estimate under-reporting.

Besides the under-reporting quantification, the model allows estimating the SIR model

under the underlying process. In particular, for Cantabria, Islas Canarias, and Islas Baleares is
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estimated that the number of susceptible people (N̂ ) is 427418.7, 50629.4, and 79584.6, while

the infection and removal rates (scaled by N̂ ) are 0.0201% and 0.0200%, 0.0205% and 0.0199%,

and 0.0168% and 0.0164%, respectively. The latter means the basic reproduction numbers

(b̂=ĝ) are slightly over 1, which means that the virus, although nearly to be controlled, is

not under control yet. For the second example, which is mainly intended to show how the

model can be used for large areas with large counts, similar numbers have been obtained for b̂

and ĝ.

One of the current work’s main limitations is based on the available data since the model

can only estimate the unobserved counts that have similar characteristics to the observed data.

Since our data do not contain asymptomatic, our estimated reconstructions in Figs 1, 3 and 4

do not contain those asymptomatic and only people with the same characteristics than the

observed counts who have not been officially registered. To also include asymptomatic in the

reconstruction of the underlying process, random tests should be done to include cases that

have passed the infection asymptomatically. However, to the authors’ knowledge, this informa-

tion is not available yet. Other limitations are related to computational issues, especially when

dealing with relatively large counts, and the sensitivity of the SIR model’s approximated solu-

tion that sometimes does not allow recovering the parameters N̂ , b̂, and ĝ.

The model presented here constitutes a first approach to a reliable method to estimate a

pandemic’s under-reporting, such as the current SARS-CoV2. Furthermore, the model can be

extended in different ways, such as considering more complex correlation structures in the

underlying process (e.g., INAR(p) or INARMA model), or considering more general thinning

operators for representing the observed process.

Supporting information

S1 Appendix. Detailed computations concerning the SIR model.

(PDF)

S2 Appendix. Detailed computations concerning the average predictions.

(PDF)

S3 Appendix. Detailed computations concerning the k-ahead forecasting distribution.

(PDF)

Acknowledgments

The authors would like to thank Gustavo Eduardo Ávalos Villaseñor for his help in data scrap-
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