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1. SUMMARY 

Currently, one of the most important challenges of medicinal chemistry is the fight against 

drug-resistant infections. The increase in bacterial resistance to existing antibiotics, together 

with the decrease in research and development spending in the pharmaceutical industry, is 

becoming a major threat to global health. The reasonable use of antibiotics could slow down the 

development of bacterial resistance, but it is essential to continue research to find new and 

more efficient drugs. Within this context, natural products continue to be a source of inspiration 

for new targets and drugs. 

A201A is a natural antibiotic recently discovered that derives from adenosine, and 

comprises two units of glycoside and one of coumarate. Notably, A201A results from the 

combination of two known antibiotics with potent antibacterial activity, such as hygromycin A 

and puromycin. Similarly to these two drugs, A201A also acts by inhibiting protein synthesis by 

blocking translation in the ribosome. 

The main objective of this present TFG report was a review on A201A, with a focus on the 

synthetic routes of the compound and its derivatives, the elucidation of the biosynthesis 

pathway, and studies of structure-antibacterial activity. 

Keywords: aminonucleoside, antibiotics, biosynthesis, organic synthesis, protein synthesis 

inhibition.  
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2. RESUM 

Actualment, un dels reptes més important de la química medicinal és la lluita contra les 

infeccions resistents als medicaments. L'augment de la resistència bacteriana als antibiòtics 

existents, juntament amb la disminució de la despesa en investigació i desenvolupament a la 

indústria farmacèutica, s'està convertint en una amenaça important per a la salut mundial. L'ús 

raonable d'antibiòtics podria frenar el desenvolupament de resistència bacteriana, però és 

essencial continuar amb la investigació per trobar fàrmacs nous i més eficients. En aquest 

context, els productes naturals continuen sent una font d'inspiració per a nous objectius i 

fàrmacs. 

L'A201A és un antibiòtic natural descobert recentment que deriva de l'adenosina i inclou 

dues unitats de glicòsid i una de cumarat. En particular, A201A resulta de la combinació de dos 

antibiòtics coneguts, amb una potent activitat antibacteriana, com són la higromicina A i la 

puromicina. De manera similar a aquests dos fàrmacs, l'A201A també actua inhibint la síntesi 

de proteïnes bloquejant la traducció al ribosoma. 

L'objectiu principal d'aquest present informe de TFG ha estat una revisió sobre A201A, amb 

una atenció centrada en les rutes sintètiques del compost i els seus derivats, l'elucidació de la 

via de biosíntesi i estudis d'activitat antibacteriana-estructura. 

Paraules clau: A201A, aminonucleòsid, antibiòtics, biosíntesi, inhibició de la síntesis proteica, 

síntesis orgànica.  
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3. INTRODUCTION 

Antibiotics are natural or artificial chemical synthetic products, designed to selectively block 

some crucial process in microbial cells. Most of the classes of antibiotics in use were discovered 

more than forty years ago and since then a large majority of the newly approved drugs have 

been based on chemical modifications of existing structures to combat clinical resistance. To 

date, all kinds of antibiotics have seen the emergence of resistance in bacteria that compromise 

their use.1 At present, antibiotic resistance is today one of the greatest threats to global health, 

food security and development. It is a natural and inevitable phenomenon, since it occurs when 

bacteria mutate in response to the use of antibiotics, but the misuse of these drugs in humans 

and animals is accelerating the process. In the last two decades, the resistance of pathogens to 

common antibiotics has increased 100%. In addition, bacterial conjugation has caused 

multiresistance to different antibiotics. Consequently, treatment of certain infectious diseases 

has become more difficult due to the loss of efficacy of antibiotics.2 Antibiotic resistance 

prolongs hospital stays, increases medical costs and mortality among patients. 

Meanwhile, it is necessary to change urgently the way of prescribing and using antibiotics in 

order to sustain the actual antibiotic battery. Although, new medications are being developed, if 

current behaviors are not modified, antibiotic resistance will continue to pose a serious threat. 

Behavioral changes are also needed and should include measures to reduce the spread of 

infections. Because the achievements of modern medicine are being put at risk, if we do not 

have effective antibiotics to prevent and treat infections, organ transplants, chemotherapy, and 

surgical interventions will become more dangerous. Therefore, it is urgent and necessary to 

implement new policies and invest in research to develop new strategies to combat bacteria 

with novel antibiotic compounds.3 

Motivated for this urgency, researchers and scientists are trying to create new antibiotics, 

but this process takes much more time than bacteria need to develop new resistance 

mechanisms. It has been estimated that developing an antibiotic involves about 15 years and a 

large investment. Since antibiotics drugs are commonly used in short-term treatments,4 the big 

pharmaceutical companies have neglected the antibiotic research due to low profits and 
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directed their investments to other disease areas.5 Other big problem is that there are countries 

that can not allocate enough money to fight antibiotic resistance. Studies conducted by 

economists looking to the future indicate that if the situation continues the same course it is 

expected that in 2050 there will be ten million deaths annually in the world due to resistance 

bacteria, a very considerable increase in comparison with 700,000 deaths annually in 2016.6 

The sequencing of the first complete bacterial genome in 1995 generated new hope for the 

discovery of antibacterial drugs. 

Most of the antibiotics introduced in human clinical use have been natural products made by 

a microorganism to affect neighboring microbes, either to regulate their growth or to activate 

their elimination. When antibiotic producers enter the stationary phase and face competition 

from nutrients and/or space, they activate the genes that encode antibiotic molecules to wage a 

chemical war against their neighbors. Actinomycetes have been, for decades, one of the most 

important sources for the discovery of new antibiotics with a significant amount of drugs and 

analogs successfully introduced in the market and still used today in clinical practice.  

Among the compounds produced by the actinomycete group bacteria, A201A noted for 

being a complex aminoacyl nucleoside antibiotic (Fig. 1), which was first isolated from 

Streptomyces Capreolus NRRL 3817 in 1985.7 Interestingly, it has also been reported that the 

same nucleoside antibiotic was isolated from crude extracts of a deep-sea bacteria in the ocean 

of southern China, Marinactinospora thermotolerans SCSIO 00652 in 2011.8 The structure of 

A201A was elucidated by NMR7 (see appendix) and, recently, the compound was fully 

synthesized chemically by Yu's group.9 

A201A is very active against gram-positive aerobic and anaerobic bacteria, as well as most 

gram-negative anaerobic species. However, it is much less toxic to aerobic gram-negative 

bacteria, some fungi and mammals. 

 

 
Figure 1. Chemical structure of A201A 
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3.1. HOW THE ANTIBIOTIC A201A WORKS 

The genetic information is translated into proteins in the ribosome. Research on antibiotics 

that act on ribosome has provided much needed information about its mechanism of action.10 

Current structural studies have characterized antibiotics that had been discovered decades ago, 

with unique structural characteristics that use novel modes of action to interact with the 

ribosome and thus inhibit the translation of genetic information. Consequently, ribosome 

inhibitors are successful medications to treat infections.11 

The ribosome translates the genetic information encoded in mRNA into proteins. Bacterial 

70S ribosome consists of three stands of RNA and more than 50 proteins assembled into two 

subunits: a small 30S and a large 50S. The peptidyl transferase center (PTC) where peptide 

building occurs consists of three sites (Fig. 2A)12 : Aminoacyl-, Peptidyl- and Exit-site, which are 

the positions that the entering Aa-tRNAs and the proteins that are being constructed occupy into 

the ribosome. The tRNA bound to the amino acid to be incorporated is first positioned in the A-

site, then the translocation occurs to the P-site where the protein chain is elongated. Finally, 

when the peptide is completed it is transferred to the E-site to be expelled from the ribosome.  

Antibiotics that target the large subunit, such as the A201A antibiotic, tend to cluster at the 

PTC, the peptide bond formation site, which occurs between Aa-tRNA at A-site and P-tRNA at 

P-site with the result of inhibiting the proper formation of peptide bonds by steric blocking.13 

The chemical structure of A201A has similarities with hygromycin A and puromycin 

antibiotics, so that A201A showed to bind analogously to them within the PTC of the large 

ribosomal subunit (Fig. 2B). A201A has an additional ᴅ-rhamnose moiety compared to 

hygromycin A that allowed to reach the ribosome more deeply. Despite this, X-ray crystal 

studies showed that A201A proceeded by a different mechanism than hygromycin A and 

puromycin. A201A occluded the A-site by causing local distortions to the tRNA acceptor arm 

that avoided the proper housing of Aa-tRNA at PTC, with the result of inhibiting the formation of 

peptide bonds.14, 15 
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Figure 2B. X-ray structure of the binding of A201A within the bacterial ribosome, and enlarged 
image of the interaction. The image was reproduced unaltered from reference no. 13. 

Figure 2A. The translocation process during the ribosomal protein synthesis. 
The image was reproduced unaltered from reference no. 12. 
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4. OBJECTIVES 

As mentioned above, antibiotic resistance is becoming one of the largest threats to human 

health which urges to increase the efficiency of existing drugs, and seek also new strategies 

and antibiotics to fight bacteria. It is also very important to raise public awareness of antibiotic 

abuse for human use and animal feeding. 

In this context, the main objective of this work was to gather information about a new 

antibiotic named A201A with a structure similar to two existing antibiotics, puromycin and 

hygromycin A, and which showed promising wide-spectrum antibacterial activity. 

In particular, this report covered three main issues: 

 Review of the organic synthetic routes leading A201A. 

 Summary of the biosynthetic pathways that were proposed to explain the 

formation of A201A in the producing bacteria. 

 Structure-antibacterial activity relationships of A201A and its analogs. 

5. METHODS 

In this bibliographic work on A201A antibiotic, different databases were used which were 

accessible through the services of CRAI-UB. 

First of all, an extensive search was carried out by using A201A as a searching keyword. 

Starting with the American Chemical Society (ACS) database, 5 articles were found. It was 

followed by searching Web of Science database, including the citations of the primary collected 

articles, which produced 18 additional references. Reaxys database was also used in the same 

way as the other two databases, also searching for chemical structure similarity with A201A 

(higher than 60%), and about 40 articles were collected. The same searching process was 

repeated via Scifinder database, which also incorporated the search of the chemical reactions in 

which A201A participated, resulting in more than 50 references. We also searched in Index 

Merck and Pharmacopeia databases but no more additional references were found. 
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Finally, the number of references were narrowed down by using more specific keywords 

such as Actinomycetes, antibiotics, bacterial resistance, biosynthesis, pharmaceutical drug, etc., 

in order to focus on the objectives that were established at the beginning of the work. 
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6. A201A: SYNTHESIS, BIOSYNTHESIS AND 

ANTIBACTERIAL ACTIVITY 

6.1. SYNTHESIS 

Although, several synthetic procedures were known for preparing chemically close 

compounds, such as puromycin and hygromycin A,16-18 at the present time the synthesis of 

A201A was reported only once by the group of Shenyou and col.9 

The synthesis devised by Shenyou et al.9 to synthesize the antibiotic A201A (Figure 3) 

comprised the five building blocks depicted in Figure 3, namely, 3,4-di-O-methyl-ᴅ-rhamnose 1, 

an uncommon hexafuranose 2, α-methyl-p-coumaric acid 3, 3-amino-3-deoxyribose 4, and 6-

dimethylaminopurine 5. These units are connected with different linkages, two O-glycosidic, one 

β-glycosidic and one amide. The overall synthesis was divided into three main parts. 

 

 
 

 

 

6.1.1. First part: Furanose construction 

The route started by synthesizing the furanose 6 from ᴅ-arabinose, as it contains the 

configuration at C-2 and C-3 that was present in A201A. ᴅ-arabinose was transformed into 

compound 6 after five protection steps and a final selective oxidation of the primary alcohol into 

aldehyde (See Figure 4). 

Figure 3. Synthetic fragments for preparing A201A according to the route devised by Shenyou et al.9 
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Furanose 6 was next treated with tBuLi in the presence of (PhS)3CH followed by CuO/CuCl2 

to produce ester 7 (Figure 5). In the first reaction, tBuLi reacted with (PhS)3CH to produce 

(PhS)3CLi which made a nucleophile attack over aldehyde to produce a phenylthio-ortoester 

adduct, that was finally transformed into monoester 7 by CuO/CuCl2 treatment.19 

Then, the nascent OH on 7 was protected with an acetyl group. It was followed by the 

selective removal of the p-methoxyphenyl group (MP) with ceric ammonium nitrate in aqueous 

MeCN to produce the hemiacetal 8 (Figure 5). 

 

 

 
 

6.1.2. Second part: Formation of the glycosidic bond between furanose 8 and α-methyl-p-

coumaric acid 3. 

Furanose 8 and α-methyl-p-coumaric acid 3 were first condensed by a Mitsunobu reaction, 

to form an O-glycosidic bond and it was followed by a treatment with K2CO3 in aqueous MeOH 

to remove the acetyl group leading to acetal 9 (Figure 6).20 

1.- (PhS)3CH, tBuLi in THF at -78ºC, quantitative.        2.- CuO/CuCl2 in MeOH/CH2Cl2/H2O, 78%. 

3.- Ac2O, Et3N, CH2Cl2 at rt, 96%.  4.- CAN in MeCN/H2O at 0ºC to rt, quantitative. 

Figure 5. Transformation of aldehyde 6 into 8, by ester formation and alcohol protection by acetylation. 

1.- MPOH, TMSOTf, 80%.   2.- NaOMe in MeOH/DCM at rt, 99%. 

3.- MTrCl, Pyr, 77%.    4.- TIPSOTf, 2,6-lutidine in DCM at rt, 91%. 

5.- BF3·OEt2, Et3SiH -78ºC to 20ºC, 78%.  6.- IBX in DMSO at 80ºC, 93%. 

Figure 4. Transformation of ᴅ-arabinose into protected furanose 6. 



A bibliographic review on aminonucleoside antibiotic A201A.  15 

 

 

 

 
 

Afterward, the hydroxyl group was oxidized to ketone 10 with the hypervalent iodine 

compound IBX. Then, a mixture of the isomeric methyl enol ethers 11-12 were obtained by 

reacting with Cs2CO3 and Me2CO3 in MeCN (Figure 7). Finally, the TIPS and SE protecting 

groups were eliminated with TASF in DMF, thus obtaining the compound 13 (Figure 8). 

 

 

 
 

 

 
 

6.1.3. Third part: Completion of the synthesis of A201A 

At this stage, two glycosyl ortho-alkynylbenzoates, compounds 4 and 1, were needed to 

form the two glycosidic bonds present in A201A. These intermediates were prepared from ᴅ-

xylose and ᴅ-mannose, respectively, following previously reported procedures.21 The 

Figure 8. Transformation of enol methyl ethers 11-12 into compound 13 by deprotection. 

1.- IBX in DMSO at 80ºC, 95%.  2.- Cs2CO3, Me2CO3 in MeCN at rt, 69%. 

Figure 7. Conversion of hydroxyl ester 9 into enol methyl ethers 11-12. 

1.- PPH3, DIAD in toluene at 60ºC, 79%.  2.- K2CO3 in MeOH/H2O, 82%. 

Figure 6. Formation of acetal 9 by O-glycosidic bond formation and deprotection of alcohol. 
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cyclopropylethynylbenzoate group present in 4 and 1 was adopted after extensive work to 

optimize the Au(I) catalyzed procedure that was chosen by authors for glycosidations. 

 

 

 
 

In the first glycosidation step, nucleoside 14 was produced by β-glycosidic bond formation 

between the ribose 4 and purine 5 by Ph3PAuNTf2 catalysis (Figure 9).22 The mechanism that 

was proposed for Au(I) catalyzed glycosidation is depicted below in Figure 10.23 The interaction 

of Au(I) catalyst with the triple bond of the ortho-alkynylbenzoate (Figure 10, A) was crucial for 

the success of the glycosidation, providing the oxonium cation in mild conditions, (Figure 10, B). 

This oxonium cation condensed with chloropurine 5 to produce nucleoside 14, while at the same 

time the Au(I) catalyst was regenerated by protodemetalation, (Figure 10, C). This Au(I) 

catalyzed step had significative benefits according to the authors: the reaction resulted in 

generally excellent yields, it was conducted in neutral and mild conditions, the side reactions 

were minimal and the ortho-alkynylbenzoates were stable substrates. 

 

 
Figure 10. Gold(I)-catalyzed mechanism of glycosidation. 

Figure 9. Formation of the glycosidic bond between 4 and 5 catalyzed by gold(I). 
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Nucleoside 14 was further processed to obtain intermediate 16. First, 6-chloride was 

substituted by dimethylamine. Next, the benzoyl groups were removed and the hydroxyl groups 

were subsequently reprotected with the TES group, to yield 15. 3'-Azide at 15 was further 

transformed into primary amine 3'-amino-3'-deoxyadenosine 16 by reduction with PPh3 in 

THF/H2O (Figure 11). 

 

 
Nucleoside 16 was then condensed with the compound 13 produced previously (see first 

part) by amide formation mediated by BOP and iPr2NEt in DMF, and subsequent protection of 

the two hydroxyls with TES group, to yield 17 (Figure 12). 

 

 
In order to complete the synthesis of A201A, compound 17 was treated with LiBH4 to reduce 

the terminal ester into alcohol 18. The second glycosidic bond present in A201A was produced 

by condensation of alcohol 18 with ortho-alkynylbenzoate 1, by carrying out the same procedure 

catalyzed by gold of the first glycosidation step (see above). In this case, a stoichiometric 

amount of the catalyst was needed to produce glycosydated 19. Here, the basic properties of 

1.- BOP and iPr2NEt in DMF at rt, 78%.  2.- TESOTf, Et3N in CH2Cl2 at rt, 83%. 

Figure 12. Preparation of 17 from 13 and 16, by amide formation and hydroxyl protection. 

1.- aq. Me2NH in EtOH, 90ºC, quantitative.  2.- TESOTf in pyridine at rt, 76%. 

3.- PPh3 in THF/H2O, SiO2 at 50ºC, 93%. 

Figure 11. Transformation of nucleoside 14 into 16, by chloride replacement with dimethylamine, 

reprotection of hydroxyls with TES group and reduction of azide into amine. 
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the purine limited the protodeauration process that restored the catalyst for a new catalytic cycle 

(see Figure 10).24 Finally, the α-rhamnoside 19 was converted into the antibiotic A201A by 

elimination of TES and benzoyl protective groups by treating with NaOMe in MeOH/CH2Cl2 

(Figure 13). 

 

 

 
 

6.2. Biosynthesis 

The high structural similarities with Hygromycin A and Puromycin clearly suggest that 

A201A is a hybrid metabolite of these two antibiotics, resulting from the combination of their two 

biosynthetic routes. For this reason, it is not surprising that genes that code the biosynthesis of 

Hygromycin A25-27 and Puromycin28, 29 were also found in the gene cluster that operates in 

A201A. One proof of the evolutionary relationships between their biochemical machineries, the 

three antibiotics coincide in having an acid moiety derived from coumaric acid, (Figure 14, in 

violet). 

1.- LiBH4 in THF at -40ºC to rt, 78%. 2.- Ph3PAuOTf (1.0eq) in CH2Cl2 at 0 ºC, 55%. 

3.- NaOMe in MeOH/CH2Cl2 at rt, 76%. 

Figure 13. Completion of A201A synthesis, by glycosidation between 

18 and 1 catalyzed by Au(I) and deprotection. 
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The biosynthesis of the antibiotic A201A was independently elucidated by two different 

groups. Fernández-Lobato and col.30, 31 who studied the production in Saccharothrix mutabilis 

subsp. capreolus and Ju and col.8, 32 who did it in Marinactionospora thermotolerans deep-sea 

(Mtd). The two bacterial species essentially showed the same organization of biosynthetic 

genes with very small differences. Given the similarity between the two biosynthetic routes, here 

it will be only reviewed the proposal of the Ju's group32 as it provided a more structurally and 

mechanistically detailed pathway, and also analyzed the formation of the metabolic 

intermediates and characterized their structures. 

Below in figure 15, it is depicted the cluster of genes of A201A that was determined by 

correlation with genes producing puromycin and hygromycin. In comparison with these two 

antibiotics, an additional cluster of genes was found that probably accounted for the structural 

variances in A201A. The functionality of each gene was essentially deduced by homology of 

sequences via GenBank database and through the generation of enzymatic mutants producing 

fragmented metabolites. 

 

 

Figure 14. Similarities between the structures of Hygromycin A, puromycin and A201A. 
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A    B    C    D  [  E    F    G    M1    H    I    G1    J    R1    K    L    M    N    O    P    Q    S    T    R2    

U    G2    M2    V    M3    R3    W    M4  ]  orf1    orf2 

  Puromycin/A201A           Hygromycin/A201A            Resistance             A201A 
 

 
It was shown that the cluster genes operative in the A201A biosynthesis were MtdE through 

MtdM4 (Mtd refers to the bacteria and each letter represents a gene) and, according to the 

authors, comprised all the genes necessary for the completion of the metabolite. Within the 

biosynthetic genes, as shown in figure 15, the MtdE, F, G, and M1 genes were homologous to 

those of the puromycin pathway and participated in the biosynthesis of N,N-dimethyl-3'-amino-

3'-deoxyadenosine, whereas the MtdI, N, O, S, T, U, and V genes were homologous to those 

operating in hygromycin A and biosynthesized the moiety p-hydroxy-α-methylcinnamic acid. 

The elucidation of biosynthetic pathway showed that the bacterium produced the antibiotic 

in a specific order: first, the aminonucleoside moiety (Figure 14, moiety in blue), followed by the 

cinnamate moiety (Fig. 12, moiety in violet) and ending with the disaccharide fragment (Fig. 14, 

moieties in black and red). The biosynthesis of each moiety is discussed below. 

 

6.2.1. Steps related biosynthesis of the aminonucleoside moiety 

The enzymes that participated in this biosynthesis were MtdE, F, G and M1 and were highly 

similar to Pur3, Pur4, Pur5, Pur7, and Pur10 that operated in the puromycin biosynthesis.28, 31 

After a series of experiments and comparisons by sequence homology, it was proposed that the 

biosynthetic pathway started from ATP, as occurred in puromycin (see scheme 1). 

It was believed that adenosine entered the pathway through ATP by a series of enzymatic 

steps. Pur10, a NAD-dependent ATP dehydrogenase, converted adenosine into 3'-keto-3'-

deoxy-ATP (I). This intermediate was probably modified by aminotransferase Pur4 into 3'-

amino-3'-deoxy-ATP (II). As this intermediate was a strong inhibitor of RNA polymerase, it was 

probably detoxified by a pyrophosphatase Pur7, producing 3'-amino-3'-deoxy-AMP (III), but it 

was not clear whether Pur4 or Pur7 acted first. Then, the intermediate might be 

dephosphorylated by the monophosphatase Pur3 to give 3'-amino-3'-deoxy-A (IV). It was 

probably followed by the double methylation of nitrogen-6 by Pur5, a SAM-dependent 

methyltransferase, to yield N6,N6-dimethyl-3'-amino-3'-deoxyadenosine (V). 

Figure 15. Organization of the A201A biosynthetic gene cluster in  

Marinactionspora thermotolerans deep-sea (Mtd) according to ref. 32. 
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6.2.2. Steps involved in the biosynthesis of the cinnamate moiety 

The authors indicated through sequence homology that the MtdI, N, O, S, T, U, and V 

enzymes involved in A201A biosynthesis were most probably homologous to those involved in 

the hygromycin A biosynthesis, namely, Hyg4, 10, 12, 14, 15, and 22.27 

The pathway to this moiety was proposed to start with p-hydroxybenzoic acid (scheme 2), 

which derived from chorismate, a precursor produced by the shikimate pathway. Chorismate 

was first transformed by a putative chorismate lyase, encoded by Hyg4 = MtdV,33 to yield p-

hydroxybenzoic acid. In the next step, the p-hydroxybenzoic acid was probably activated by 

conversion to a thioester (VI), catalyzed by a CoA-ligase, Hyg12. In parallel, a putative 

acyltransferase Hyg22 catalyzed the conversion of methylmalonyl CoA (VII) to 2-methylmalonyl 

ACP (VIII). 

Then, a decarboxylative condensation occurred between the active acid and the 

methylmalonyl ACP that could be catalyzed by the Hyg10, a ketoacyl synthase, to yield 2-

benzoylpropionyl ACP (IX). A subsequent reduction of the keto group into hydroxyl was 

produced by the Hyg15, a 3-ketoacyl ACP reductase, to produce a β-hydroxy-α-methylpropionyl 

ACP (X). The biosynthesis was ended by dehydration, catalyzed by the Hyg14, a 3-hydroxyacyl 

ACP dehydratase, to produce the cinnamyl ACP moiety (XI). 

 

Scheme 1. Biosynthesis of the aminonucleoside moiety. 
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6.2.3. Steps involved in the biosynthesis of the disaccharide fragment 

Experiments performed by the Ju's group, suggested that the two sugar units were derived 

from the same precursor, GDP-ᴅ-mannose. To confirm this hypothesis, ᴅ-mannose (XII) was 

marked with 13C by fermentation in a M. thermotolerans strain. When it was analyzed by 13C 

NMR, it was clearly seen that the two anomeric carbons of the two sugars units were enriched 

demonstrating that the two sugars used GDP-ᴅ-mannose as a biosynthetic precursor (see 

scheme 3). 

Therefore, the biosynthetic pathway of the sugar moieties in A201A was started from the 

phosphorylated ᴅ-mannose (XIII) catalyzed by MtdK. Then, by the action of a GDP-sugar 

pyrophosphorylase, XIII was converted into GDP-α-ᴅ-mannose (XIV). This intermediate was 

then first processed by MtdM, a GDP-α-ᴅ-mannose 3',5'-epimerase, to produce GDP-β-

galactopyranose (XV) by epimerization of 3' and 5' positions, and subsequently isomerized into 

GDP-α-ᴅ-galactofuranose (XVI) by a pyranose-furanose mutase, MtdL. In parallel, GDP-α-ᴅ-

mannose was also reduced to GDP-α-ᴅ-rhamnose (XVIII) by the consecutive action of the MtdH 

and MtdJ enzymes via 4',5'-dehydration and enol-keto isomerization to GDP-4-keto-6-deoxy-ᴅ-

mannose (XVII), followed by the reduction of 4-keto group into 4-hydroxyl. The structural basis 

of GDP-α-ᴅ-mannose conversion into GDP-α-ᴅ-rhamnose in two enzymatic steps (scheme 4) 

had been previously studied by Lam et al. in Pseudomonas aeruginasa.34 

Scheme 2. Biosynthesis of the cinnamate moiety. 
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6.2.4. Steps involved in the coupling of moieties and additional methylations 

MtdQ was a ligase homologous to Hyg12 that was responsible for the coupling of 

deoxyadenosine and cinnamyl moiety by forming an amide bond (XIX). It was believed that two 

glycotransferases acted consecutively, MtdG2 that was responsible for the transfer of the 

hexafuranose moiety (XX), and MtdG1 for the rhamnose moiety (XXI). 

This biosynthesis was completed by action of three regiospecific methyltransferases and a 

desaturase. The methylases catalyzed O-methylations of glycosidic units, two of which acting on 

the rhamnose moiety, MtdM2 responsible for the O-methylation of OH-C4 and MtdM3 of OH-C3, 

and MtdM4 was believed to catalyze O-methylation of the OH-C5 of the GDP-α-ʟ-

galactofuranose unit. The biosynthesis of A201A was completed according to the authors by the 

desaturase MtdW that catalyzed a dehydrogenation of C4-C5 bond of the GDP-α-ʟ-

galactofuranose moiety. 

Scheme 4. Conversion of GDP-α-ᴅ-mannose to GDP-α-ᴅ-rhamnose according to ref. 34. 

Scheme 3. Biosynthesis of the disaccharide moieties 

GDP-α-ʟ-galactofuranose (XVI) and GDP-α-ᴅ-rhamnose (XVIII). 
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Further studies revealed that if MtdA protein was mutated, and thus inactivated, A201A was 

notably produced with a yield 25-fold higher than in the wild type.8 

 

6.2.5. Steps involved in the self resistance against A201A 

Organisms that produce potentially autotoxic antibiotics possess mechanisms for self-

resistance.35 These mechanisms include objective modification, drug inactivation or an antibiotic 

outflow system. In some cases, they may have more than one of the mechanisms. Moreover, 

antibiotics should have devices for exporting the drug or its inactivated form. Membrane 

systems involved in secretion and/or resistance to certain antibiotics have also been found. 

The biosynthetic proposal of A201A by Fernández-Lobato's group explained above 

suggested that an additional protein Ata9 was produced in Saccharothrix mutabilis that could be 

involved in providing self-resistance to A201A. This protein proved to be a transmembrane 

protein, which would be probably involved in the A201A outflow.30 

The Barrasa's group reported the existence of an enzyme named Ard1 that participated in 

self-resistance to A201A.36 It belongs to a family of membrane transport proteins dependent on 

ATP which produce active transport of A201A. The resistance conferred by Ard1 appeared to be 

Scheme 5. Completion of the A201A biosynthesis by consecutive  

transfer of the moieties regiospecific methylations and dehydrogenation. 
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highly specific for A201A and might also be responsible for the exclusion of any enzymatically 

inactivated form of A201A. 

After the discovery of Ard1, the Barrasa's group was able to encode the enzyme Ard2 which 

showed phosphotransferase activity on A201A.37 The resulting phosphorylated product P-

A201A was totally inactive. This represented a second specific resistance mechanism for 

A201A in addition to the ATP-dependent exclusion system caused by Ard1. 

The phosphorylation by Ard2 took place on the 2'-hydroxyl group of the unsaturated 

hexafuranose moiety of A201A (Fig. 16). The site of phosphorylation was determined by 

comparison of the 1H-NMR spectra of the original molecule with the phosphorylated one. 

Specifically, the phosphorylation was revealed by an increase of the chemical shift of the proton 

H2', and a widening of the signal due to coupling with phosphorus.  

 

 
 

What it could not be known was at which point the phosphorylation took place on A201A. As 

the bacterial ribosome is sensitive to A201A, the modification of the antibiotic probably occurred 

after its biosynthesis. It was presumed that A201A was reactivated during or after cell exclusion 

by specific hydrolases that eliminated the phosphate group. 

 

6.3. Antibacterial activity of A201A and its analogs 

In one of the experiments performed by the Ju's group,33 the MtdV enzyme was mutated to 

know if it was a chorismate lyase (see above). As a result, the resulting mutant enzyme did not 

produce 4-hydroxybenzoic acid (4HB). It was envisaged that feeding thus mutated strain with 

halo-4HB, halogenated analogs of A201A could be obtained. On this basis, 3-F-4HB, 3-Cl-4HB, 

3-Br-4HB, and 3-I-4HB were assayed as building blocks (Fig. 17). What was found is that only 

Figure 16. The site of phosphorylation of A201A produced by Ard2 indicated by an arrow. 
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those precursors containing F and Cl led to the production of new compounds, namely 3'-F- and 

3'-Cl-A201A. Seeing the opportunity that novel compounds could be produced in this way, other 

4HB precursors were additionally tested. After a series of feeding experiments, 3-methyl-4HB, 

3-amino-4HB, 3-hydroxy-4HB, 2-F-4HB, and 2-Cl-HB containing analogues were obtained (Fig. 

17). Consequently, these results demonstrated that the biosynthetic machinery of A201A was 

flexible enough to accommodate various 4HB as building blocks to produce structurally varied 

analogues of A201A for structure-activity relationship studies. 

The antibacterial properties of all these A201A analogs were subsequently assayed. They 

showed to be inactive against a Gram-negative bacteria as E. coli. Most of the analogs were 

also inactive against Gram-positive bacteria (Bacillus subtilis, Bacillius thurgienis, Micrococcus 

luteus, Straphylococcus aureus), with the exception of 3'-F-A201A and 3'-Cl-A201A which were 

as active as A201A (MIC 1-8 μg mL-1). 

 

 
 

The Ju's group also experimented the production of A201A analogs by mutation of 

methylases and desaturase.32 The novel compounds that were produced are depicted in Figure 

18. 

Here, the antibacterial activity of the resulting analogs was also compared with respect to 

A201A. Notably, it was found that non-N,N-dimethylated adenine compound showed the same 

antibacterial activity as A201A. Conversely, the elimination of the other methyl groups on the 

two terminal glycosides decreased antibacterial activity by half. The elimination of the terminal 

sugar or the saturation of the double bond within hexafuranose also decreased significantly the 

bioactivity. 

Figure 17. The structure of new A201A analogs obtained from feeding  

experiments with various 4HB building blocks.32 
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Figure 18. The structure of new A201A analogs obtained 

by mutation of methylases and desaturase.32 
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7. CONCLUSIONS 

A201A, a complex aminonucleoside formed by an adenosine linked to two glycosyl units 

and coumarate, is a new antibacterial agent against aerobic and anaerobic gram-positive 

bacteria, as well as anaerobic gram-negative bacteria. It was found act by binding to the A-site 

large ribosome subunit and inhibiting the formation of the peptide bond. 

A total chemical synthesis of A201A was reported by starting from cheap and simple raw 

materials by 47-steps convergent process. Notably, the use of a gold(I) catalyst allowed 

smoother and more suitable conditions for the formation of the two glycosidic bonds present in 

A201A. 

It was shown that different bacteria biosynthesized A201A completely from a gene cluster. 

These bacteria also contained mechanisms of self-resistance to the antibiotic. These facts 

permitted to devise an efficient biosynthetic route for producing A201A and derivatives, and 

envisaged an alternative mode of action of antibiotics against the mechanisms of self-resistance 

in A201A producing bacteria. 

A mutant enzyme permitted to prepare chemically varied A201A analogs, and perform 

structural-antibacterial activity studies. Some of these analogs showed similar activity to A201A, 

so new antibiotics with greater efficacy could be obtained in this way in the near future. 
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9. ABBREVIATIONS AND ACRONYMS 
A-site Ribosome Aminoacyl-site 

Aa-tRNA Aminoacyl-tRNA 

Ac  Acetyl 

ACP Acyl carrier protein 

AMP Adenosine monophospate 

ATP Adenosine triphosphate 

BOP Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate 

Bz  Benzoyl 

CAN Ceric ammonium nitrate 

CoA Coenzyme A 

dA  Deoxyadenosine 

dAMP DeoxyAMP 

dATP DeoxyATP 

DCM Dichloromethane 

DIAD Diisopropyl azodicarboxylate 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

E. coli Escherichia coli 

E-site Ribosome Exit-site 

GDP Guanosine diphosphate 

HB  4-hydroxybenzoic acid 

Hyg Hygromycin 

IBX  2-iodoxybenzoic acid 

iPr  Isopropyl 

MP  4-methoxyphenyl 
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MPOH 4-methoxyphenol 

mRNA Messenger ribonucleic acid 

Mtd  Marinactionospora thermotolerans deep-sea 

MTrCl 4,4'-dimethoxytriphenylmethyl chloride 

NAD Nicotinamide adenine dinucleotide 

nBu  n-butyl 

NMR Nuclear magnetic resonance 

NTf2 Bis(trifluoromethane)sulfonimide (Bistriflimide) 

P-site Ribosome Peptidyl-site 

P-tRNA Peptidyl-tRNA 

PTC Peptidyltransferase center 

Pur  Puromycin 

Pyr  Pyridine 

RNA Ribonucleic acid 

SAM S-adenosylmethionine 

SE  Trimethylsilylethyl 

tRNA Transfer ribonucleic acid 

Tf  Trifluoromethanesulfonyl (triflyl) 

TIPS Triisopropylsilylether 

TASF Tris(dimethylamino)sulfonium difluorotrimethylsilicate 

TMS Tetramethylsilane 

THF Tetrahydrofuran 

TES Triethylsilyl ether 

TESOTf Triethylsilyl trifluoromethanesulfonate 
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APPENDICES 





 

APPENDIX 1: 1H-NMR A201A 

 
  A201A 

1H NMR signal (δ, ppm)* 

Adenine moiety 

H2 8.46 (s) 

H8 8.24 (s) 

CH3 3.47(s) 

Aminopentanose 
moiety 

H1 6.05 (d, 2.5Hz) 

H2 4.56 (m) 

2-OH 5.95 (d, 4.5Hz) 

H3 4.60 (m) 

3-NH 7.83 (d, 7Hz) 

H4 4.22 (m) 

H5 3.59, 3.77 (d, 13Hz) 

5-OH 5.22 (d, 5Hz) 

Aromatic acid 
moiety 

Me 2.05 (d, 1Hz) 

Vinyl 7.27 (d, 1Hz) 

H2, H6 7.08, 7.17 

H3, H5 7.27, 7.36 

Hexafuranose 
moiety 

H1 5.86 (d, 4Hz) 

H2 4.10 (m) 

2-OH 5.57 (d, 6.5Hz) 

H3 4.55 (m) 

3-OH 5.65 (7Hz) 

5-OMe 3.49 (s) 

H6 4.01, 4.32 (d, 12Hz) 

 

Table 1. 1H-NMR characterization data of A201A according to ref. 7.. 



 

 

  A201A 

Rhamnose moiety 

H1 4.68 (d, 2Hz) 

H2 3.84 (m) 

2-OH 4.85 (d, 4.5Hz) 

H3 3.22 (dd, 3, 9Hz) 

3-OMe 3.29 (s) 

H4 3.02 (dd, 9, 9) 

4-OMe 3.40 (s) 

H5 3.55 (m) 

Me 1.17 (d, 6Hz) 

*in parentheses, multiplicity of the signal and values of coupling constants 

 


