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 35 

Pyrazol-3-amine is a scaffold present in a large number of compounds with a wide range of biological 36 

activities and, in many cases, the heterocycle is C4–C5 fused to a second ring. Among the different 37 

reactions used for the decoration of the pyrazole ring, Ullmann and acylation have been widely applied. 38 

However, there is some confusion in the literature regarding the regioselectivity of such reactions 39 

(substitution at N1 or N2 of the pyrazole ring) and no predictive rule has been so far established. As a part 40 

of our work on 3-amino-pyrazolo[3,4-b]pyridones 13, we have studied the regioselectivity of such 41 

reactions in different C4–C5 fused pyrazol-3-amines. As a rule of thumb, the Ullmann and acylation 42 

reactions take place, predominantly, at the NH and non-protonated nitrogen atom of the pyrazole ring 43 

respectively, of the most stable initial tautomer (1H- or 2H-pyrazole), which can be easily predicted by 44 

using DFT calculations. 45 

 46 

.  47 



INTRODUCTION 48 

 49 

The pyrazol-3-amine scaffold (1) is present in more than 124 000 heterocylic compounds covered in the 50 

literature with biological activities including antitumoral (2, Linifanib),1 antiinflammatory (3),2 anti-51 

diabetic (4),3 and anti-infective agents (5, Sulfaphenazole)4 (Fig. 1). 52 

The parent unsubstituted heterocycle 6 (R1 = R4 = R5 = H) can present three tautomeric forms 53 

(Fig. 2): 1H-pyrazol-3-amine (1H-6), 2H-pyrazol-3-amine (2H-6, also named 1Hpyrazol-5-amine), and 54 

the imino form (imino-6). There has been great controversy about which is the most stable tautomer and 55 

some initial studies pointed to the lower stability of the imino tautomer imino-6,5 with respect to the amino 56 

forms. Moreover, more recent theoretical studies seem to indicate a higher thermodynamic stability of the 57 

1H-pyrazol-3-amine form (1H-6) by 1.6 kcal mol−1 with respect to 2H-pyrazol-3-amine (2H-6) 58 

tautomer.6,7 59 

As regards the C4–C5 fused forms of the pyrazol-3-amine scaffold, some of the most widely used 60 

include: 4,5,6,7-tetrahydro-1H-indazol-3-amines (1H-7, around 2200 substances), 1Hindazol-3-amines 61 

(1H-8, circa 65 000 compounds), and 1H-pyrazolo[3,4-b]pyridin-3-amines (1H-9, more than 9600 62 

structures) and their corresponding 2H-tautomers (Scheme 1). 63 

As a part of our ongoing research in the area of tyrosine kinase inhibitors,8 we synthesized a series 64 

of 3-amino-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-ones (13) which include a C4–C5 fused 65 

pyrazol-3-amine structure. Thus, among others, we obtained 2H-13a (R = Me) and 2H-13b (R = Ph) upon 66 

treatment of the corresponding 2-methoxy-6-oxo-1,4,5,6 tetrahydropyridin-3-carbonitriles 12a–b, 67 

obtained from the treatment of α,β-unsaturated esters 10a–b with malononitrile (11) in NaOMe/MeOH, 68 

with hydrazine hydrate in MeOH under microwave irradiation at 140 °C (Scheme 1).9 Contrary to the 69 

pyrazol-3-amine 6, compounds 13 are depicted as the 2H-tautomer for reasons discussed later in this 70 

paper. 71 

Once obtained, we decided to derivatize compounds 2H-13 using two of the reactions most widely 72 

used on systems containing the pyrazol-3-amine substructure: the Ullmann and acylation protocols. Then, 73 

we realized that there is uncertainty in the literature regarding the nitrogen atom of the pyrazol-3-amine 74 

ring at which the derivatization takes place. 75 

Thus, in the case of the pyrazol-3-amine 1H-6, while all the references available indicate that the 76 

Ullmann reaction takes place mainly at N1 with yields higher than 80%,10,11 the acylation seems to take 77 

place at N1 or at N2.12,13 The situation is even more complex in the case of the fused rings 7–9. There 78 

are examples of acylation at N1 or N2 of 1H-7,14 but only at N1 of 1H-815 and 1H-9.16 In some cases, 79 

the acylation also takes place at the C3-NH2 group.17 As regards the Ullmann reaction, there are only 80 

some examples at N1 of 1H-8.11,18 81 

The lack, to the best of our knowledge, of any theoretical rationalization to justify or predict such 82 

behaviour and our own results during the exploration of the Ullmann and acylation reactions on systems 83 

2H-13, included in this paper, led us to carry out an experimental and theoretical study to understand the 84 



reactivity of these scaffolds and the importance of the degree of unsaturation and electronic characteristics 85 

of the C4–C5 fused rings. 86 

The reaction conditions used for the Ullmann and acylation reactions during such experimental 87 

study carried out on tautomeric C4–C5 fused pyrazol-3-amines are included in Scheme 2. 88 

  89 



RESULTS AND DISCUSSION  90 

 91 

In a previous paper8 we showed that the treatment of pyridines 12a (R = Me) and 12b (R = Ph) in MeOH 92 

at 140 °C under microwave irradiation with phenylhydrazine only affords the N2-phenyl substituted 93 

pyrazolo[3,4-b]pyridin-6-ones 2Ph-14a–b (Fig. 3). 94 

With the aim of synthesizing the corresponding N1-phenyl substituted isomer 1Ph-14b (R = Ph), 95 

we treated 2H-13b under the Ullmann reaction conditions described by Beyer et al.10 The reaction 96 

afforded a single compound, both in the crude material and after isolation in 31% yield, which corresponds 97 

again to the N2-phenyl substituted isomer 2Ph-14b (R = Ph), as established by comparison with a sample 98 

of 2Ph-14b obtained by cyclization of 12b with phenylhydrazine.8 This result, contrary to expectations 99 

according to bibliographic references, led us to perform a calculation19 of the energy values of the 1Hand 100 

2H-tautomers of 13b and the N1-phenyl and N2-phenyl substituted isomers 1Ph-14b and 2Ph-14b, 101 

respectively. The energy values obtained for the 1H- and 2H-tautomers of 13b and for the N1- and N2-102 

phenyl substituted pyrazolopyridones 1Ph-14b and 2Ph-14b, clearly indicate that the 2H-tautomer 2H-103 

13b and the N2-phenyl substituted isomer 2Ph-14b are more stable than the corresponding N1 isomers by 104 

2.1 and 1.6 kcal mol−1, respectively. The stability difference between isomers, both in the case of the 105 

starting material and the arylated product, will certainly not favour the formation of the N1-arylated 106 

isomer. Such a result is also compatible with the observation of a single group of signals in the 1H-NMR 107 

spectrum of the unsubstituted starting pyrazolopyridone, regardless of the solvent used, which should 108 

consequently correspond to the 2H-tautomer 2H-13b. 109 

To understand the effect of the unsaturation of the C4–C5 fused ring, we introduced a double bond 110 

at C4–C5 of the pyrazolo[3,4-b]pyridin-6-one 13b. The 1H-NMR spectrum in d6-DMSO presented the 111 

signals of a single compound that was not possible to be unequivocally identified as the 2H-tautomer 2H-112 

15b or the 1H-tautomer 1H-15b (Fig. 3). In this case, the difference of the DFT calculated energies was 113 

only of 0.2 kcal mol−1 in favour of the 1H-tautomer 1H-15b.  114 

This compound was treated under the same Ullmann reaction conditions used with 2H-13b. The 115 

analysis of the reaction crude showed a complete conversion of the starting material into two different 116 

compounds in unequal proportions. 117 

The major product (80%) could be isolated by selective precipitation in water and corresponds to 118 

the N2-phenyl substituted isomer 2Ph-16b (Fig. 3). Identification of the product was carried out by direct 119 

comparison with a sample obtained by oxidation of 2Ph-14b with DDQ. 120 

Purification of the crude material by column chromatography allowed the isolation of the minor 121 

product (∼20% by NMR integration). This compound presented the same signal profile as 2Ph-16b but 122 

with different chemical shifts. Confirmation of the structure of 1Ph-16b, was done by single crystal X-ray 123 

diffraction. The ORTEP diagram and atomic numbering are given in Fig. 4. 124 

Although the predicted energies for 2Ph-16b and 1Ph-16b seemed to indicate that 1Ph-16b would 125 

be 0.5 kcal mol−1 more stable than 2Ph-16b, once more the N2-phenyl substituted isomer 2Ph-16b 126 



predominated. The very similar energy between the tautomers is consistent with the formation of both 127 

products. In this case, the proportion between the two isomers cannot be explained by such a small energy 128 

difference and therefore other factors such as the relative stability of the Cu-complexes can play a 129 

determining role. Energy optimization and frequency calculations at B3LYP/def2TZVP level of theory 130 

were performed for Cu complexes that lead to 1Ph-16 and 2Ph-16 compounds. Computational study 131 

evinces that the 2Ph-Cu complex could be 6.5 kcal mol−1 more stable than 1Ph-Cu (calculation details 132 

are found in the ESI†). 133 

Simultaneously to this Ullmann derivatization study, we studied the acylation of pyrazolo[3,4-134 

b]pyridin-6-ones (13) also with unexpected results. Initially, we treated 2H-13c (obtained upon treatment 135 

of pyridone 12c with hydrazine in MeOH under microwave irradiation, Scheme 2) with 1 equivalent of 136 

benzoyl chloride and 1.5 equivalents of Et3N at room temperature for 24 h in THF or 1,4-dioxane 137 

following the reaction conditions previously described.9 The reaction afforded a mixture of two 138 

compounds in a 80 : 20 ratio (1H-NMR integration) that present the same number and type of signals. 139 

Both compounds were initially assigned as the N1-benzoyl and N2-benzoyl substituted compounds 1Bz-140 

17c and 2Bz-17c, respectively (Scheme 3). 141 

Interestingly, the ratio of the two compounds changed with the reaction temperature from 80 : 20 142 

at room temperature to 15 : 85 at 200 °C (temperatures higher than 100 °C were achieved by using 1,4-143 

dioxane heated under microwave irradiation and working in a sealed vial) (Fig. 5). For the experiments at 144 

25 °C, 40 °C and 60 °C, the use of THF or 1,4-dioxane showed equivalent results. 145 

Both isomers, 1Bz-17c and 2Bz-17c, were obtained separately by working at different 146 

temperatures and purifying the samples by column chromatography. 147 

Surprisingly, isomer 1Bz-17c was transformed to isomer 2Bz-17c when heated at high 148 

temperatures (180 °C). Thus, a mixture containing mainly the N1-isomer 1Bz-17c was heated in 1,4-149 

dioxane at 180 °C under microwave irradiation for 30 minutes with no extra reagents. The final crude 150 

product contained a mixture composed mainly of isomer 2Bz-17c. 151 

In order to unequivocally establish the structure of isomers 1Bz-17c and 2Bz-17c, we prepared 152 

the 13C labelled N2-substituted compound 13C-2Bz-17c using an alternative synthesis. 13C labelled 153 

benzhydrazide was reacted with pyridone 12c in CH2Cl2 at 140 °C under microwave irradiation (Scheme 154 

4). 155 

The structure was assigned using the HMBC spectrum of product 13C-2Bz-17c (Fig. 6) where a 156 

correlation between the NH2 at C3 and the 13C of the carbonyl group of the benzoyl moiety proved the 157 

proximity (4 bond distance) of these two groups. 158 

Finally, the structure of 2Bz-17c could be confirmed by single crystal X-ray diffraction (Fig. 7). 159 

The results above suggest that the behaviour of the reaction may correspond to a kinetic vs. 160 

thermodynamic control20 where isomer 1Bz-17c corresponds to the kinetic isomer (the one with the 161 

lowest activation energy) and isomer 2Bz-17c to the thermodynamic isomer (the one with the highest 162 



activation energy barrier but the most thermodynamically stable one). A similar situation in 163 

aminopyrazoles was described by Fandrick et al.21 164 

With the aim of giving theoretical support to this hypothesis, we calculated22,23 the free-energy 165 

path for both possible transformations. The energy values obtained clearly indicate that 2H-13d (R = H) 166 

is approximately 2.7 kcal mol−1 more stable than 1H-13d supporting our hypothesis. Moreover, the 167 

resulting energy plots as a function of the reaction coordinate have allowed the determination of the 168 

energies of the transition states (18d and 19d) and the reaction products (1Bz-17d and 2Bz-17d). The 169 

reaction occurs through the practically simultaneous formation of the amide bond and the loss of HCl via 170 

a quasi-five membered ring. The results obtained are summarized in Scheme 5. 171 

As it can be seen, the results obtained seemed to validate our hypothesis of a kinetic vs. 172 

thermodynamic control where 2H-13d is transformed at low temperature (ΔG‡ = 13.2 kcal mol−1) to the 173 

N1-benzoyl isomer 1Bz-17d while at higher temperatures it is transformed (via 1H-13d) through a less 174 

stable transition state (ΔG‡ = 14.4 kcal mol−1) to the N2-benzoyl isomer 2Bz-17d, 1.0 kcal mol−1 more 175 

stable than 1Bz-17d. 176 

The previous results draw a picture of the reactivity of pyrazolo[3,4-b]pyridin-6-ones 13 (Scheme 177 

6). The most stable tautomer 2H-13 reacts through the NH group (depicted in green) in the Ullmann 178 

reaction to afford the N2-phenyl substituted isomer 2Ph-14 while the lone pair of the N1 atom (depicted 179 

in blue) reacts in the acylation at room temperature to afford the N1-benzoyl substituted compound 1Bz-180 

17 (kinetic isomer). An increase in the reaction temperature shifts the tautomerization ratio towards the 181 

less stable tautomer 1H-13 whose N2 atom (depicted in red) reacts with the benzoyl chloride to afford the 182 

N2-benzoyl substituted compound 2Bz-17 (thermodynamic isomer). 183 

The transposition of the 1-benzoyl derivative 1Bz-17 to the more stable 2-benzoyl substituted 184 

isomer 2Bz-17 at 180 °C in 1,4-dioxane under microwave irradiation could, probably, follow a mechanism 185 

similar to that established for the Fries rearrangement24 or proceed via a N1–N2 triangular transition state 186 

in a [1,5]-sigmatropic rearrangement (a calculation suggests a ΔG‡ = 33.5 kcal mol−1 perhaps affordable 187 

at 180 °C). 188 

Once established a rationalization to justify the regioselectivity of the Ullmann and acylation 189 

reactions of structures 13, we considered if it was possible to extend it to the other structures that contain 190 

the pyrazol-3-amino moiety. With this aim, we calculated the energies of the 1H- and 2H-tautomers of the 191 

most common pyrazol-3-amines and the ΔG between both tautomers using DFT (Fig. 8). 192 

The values obtained clearly indicate that the degree of unsaturation of the C4–C5 fused ring and 193 

the electronic characteristics of such ring determines the ΔG between both tautomers and the most stable 194 

tautomer in each case. Thus, while in the not fused pyrazol-3-amine 6 the 1H-tautomer is more stable than 195 

the 2H-tautomer by 2.6 kcal mol−1, the situation is totally reversed for our compounds 13 where the 2H-196 

tautomer is 2.1 kcal mol−1 more stable. The introduction of a double bond at the pyridone ring of 197 

compounds 13, as it happens in structures 15, balances the relative stability between the two tautomers 198 

(0.3 kcal mol−1), hampering a clear identification of the most stable form. The aromatization of the 199 



pyridine ring as it happens in structure 20 will cause the total inversion of the most stable tautomer, now 200 

being 1H-20 9.4 kcal mol−1 more stable than 2H-20. 201 

For the rest of C4–C5 fused pyrazol-3-amines considered, 4,5,6,7-tetrahydro-1H-indazol-3-202 

amines (7), 1H-indazol-3-amines (8), and 1H-pyrazolo[3,4-b]pyridin-3-amines (9), the 1Htautomer is 203 

always the most stable. 204 

It is interesting to note that presence of a C4–C5 fused aromatic ring as in 20, 8, and 9 largely 205 

increases the value of the ΔG in favour of the 1H-tautomer (9.4, 7.9, and 11.1 kcal mol−1, respectively) a 206 

fact that correlates with the reactivity of such structures as it will be discussed later. 207 

In order to cast light on the reactivity of such systems and be capable of predicting Ullmann and 208 

acylation reactions in the future, we decided to review the information contained in the literature for those 209 

structures in Fig. 8 for which such information is available, and to carry out extra experimentation with 210 

the other ones. 211 

As described previously in this paper, in the case of the pyrazol-3-amine 6 the references available 212 

indicate that the Ullmann reaction takes place mainly at N1 with yields higher than 80%10,11 while the 213 

acylation seems to take place at N1 or at N2.12,13 Such result seems to agree with the greater stability of 214 

tautomer 1H-6 and the energy difference between both tautomeric forms (1H-6 and 2H-6). 215 

In the case of our compounds 13, the situation is totally reversed and as described above the 216 

Ullmann reaction takes place at N2 to afford only compounds 2Ph-14 while the acylation initially produces 217 

the N1-acylated compounds 1Bz-17. As discussed previously, such results are caused by the greater 218 

stability of the 2H-13. 219 

The introduction of a double bond at the pyridone ring of 2H-13b affords 15b (due to the slight 220 

energy difference between both tautomers it is difficult to envisage which one is obtained). The treatment 221 

of 15b under Ullmann conditions renders a mixture of isomers 2Ph-16b and 1Ph-16b where the N2-aryl 222 

substituted derivative 2Ph-16b is still the major product but allowing the synthesis of the N1-aryl 223 

substituted derivative 1Ph-16b in low yield. The benzoylation reaction of 15b has also afforded a mixture 224 

of two compounds presenting the same pattern of signals in the 1H-NMR spectrum. The major compound 225 

(70% by NMR integration) seems to correspond to the N2-benzoyl substituted isomer 2Bz-21b (Fig. 9) 226 

on the basis of the NH2 chemical shift compared with 2Bz-17c. In this case, the very small energy 227 

difference between the two possible tautomers 2H-15b and 1H-15b allows an intermediate behaviour 228 

between 13 and 6. 229 

To see the effect of the aromatization of the pyridone ring present in our compounds 13, we 230 

obtained compound 20 (Fig. 9) upon treatment of the commercially available 2,6-dichloronicotinonitrile 231 

with NaOMe/MeOH that yielded a mixture of the 2-methoxy and 6-methoxy substituted chloro 232 

nicotinonitriles which were subsequently treated with hydrazine monohydrate to afford 1H-20 (40% yield) 233 

as the only bicyclic compound. The Ullmann reaction on 1H-20 only afforded the N1-substituted 234 

compound 1Ph-22 (Fig. 9) totally reversing the behaviour observed for the non-aromatic structures 13 and 235 

15. On the other hand, the acylation of 1H-20 afforded a single major compound that corresponds to the 236 



benzamide 23 (Fig. 9) formed by acylation of the NH2 group. Such behaviour must be due to the big 237 

difference of stability in favour of the 1H-tautomer of 20. 238 

To the best of our knowledge, no Ullmann reactions have been described for the 4,5,6,7-239 

tetrahydro-1H-indazol-3-amine 7 and, as described in the introduction, there are examples of acylation at 240 

both N1 and N2.14 241 

Finally, in the case of compound 8, the aromatic equivalent of compound 7, the Ullmann reaction 242 

with iodobenzene leads only to the N1-phenyl substituted compound 1Ph-24 (the substitution point was 243 

corroborated by 1D-NOESY spectroscopy). Interestingly, benzoylation of 8 only affords one major 244 

product which corresponds to the substitution on the amine group (25, Fig. 9). Once more, the big 245 

difference of energy between the two possible tautomers 1H-8 and 2H-8 seems to be the responsible of 246 

these results. 247 

Surprisingly, when the pyrazol-3-amine ring is fused to an aromatic ring the acylation reaction 248 

only takes place on the NH2 group. Acylation at N1 or N2 of the bicyclic heterocycle would disrupt de 249 

10π aromatic system, whereas acylation of the exocyclic NH2 group does not (Fig. 10).  250 

Thus, the N1 substituted isomers 1R-8 and 1R-9 present aromatic circulation in both rings thanks 251 

to the double bond that can be drawn in the fusion of both rings. On the contrary, in the case of the N2 252 

substituted structures 2R-8 and 2R-9 only a peripheric circulation is possible due to the forced positions 253 

of the double bonds in the pyrazole ring. Therefore, the aromatic circulation seems to have a remarkable 254 

impact on the relative stability of the tautomers and the reactivity of such compounds, being the 1R 255 

isomers with a bicyclic aromatic circulation the most stable ones. 256 

 257 

  258 



CONCLUSIONS  259 

 260 

The experimental results obtained in this study combined with the calculations carried out seem to cast 261 

light on the uncertainty present in the literature regarding the Ullmann and acylation reactions of C4–C5 262 

fused pyrazol-3-amines. The nitrogen atom of the pyrazole ring in which the Ullmann reaction takes place 263 

corresponds to the nitrogen bearing the proton (the NH group) while, preferably, the acylation takes place 264 

on the non-protonated nitrogen atom. Such nitrogen atoms (protonated and non-protonated) correspond 265 

to the most stable tautomer which can be easily predicted using DFT calculations. In cases in which the 266 

energy difference is high (probably above 5 kcal mol−1) the regioselectivity is also high. However, lower 267 

energy differences can produce mixtures of regioisomers or even behaviours like the kinetic vs. 268 

thermodynamic control found for compounds 13. 269 

When the pyrazol-3-amine ring is fused to an aromatic ring, the difference in favour of the 1H-270 

tautomer is so high (even greater than 10 kcal mol−1) that the Ullmann reaction is regiospecific at N1 and 271 

the acylation only takes place in the NH2 group avoiding the alteration of the aromatic conjugation of the 272 

bicycle. 273 

In summary, the regioselectivity of the Ullmann and acylation reactions on C4–C5 fused pyrazol-274 

3-amines is controlled by the degree of unsaturation and electronic characteristics of the fused ring. These 275 

reactions take place predominantly at the NH group and the non-protonated nitrogen atom, respectively, 276 

of the pyrazole ring of the most stable tautomer (1H- or 2H-pyrazol-3-amine) that can be easily predicted 277 

using DFT calculations. The complementary derivatization of the less stable tautomer may become 278 

practically impossible when the energy difference between both tautomers is high. 279 

In a word, it is worthwhile to determine the energy difference of the two possible tautomeric forms 280 

of the pyrazol-3-amine ring before starting an expensive group of experiments that can lead to the 281 

undesired final isomer (sometimes difficult to be unequivocally assigned using standard spectroscopic 282 

techniques as can be seen above). 283 

  284 



EXPERIMENTAL 285 

 286 

General information 287 

 288 

All solvents and chemicals were reagent grade. Unless otherwise mentioned, all solvents and chemicals 289 

were purchased from commercial vendors (Sigma-Aldrich, ABCR, Fluorochem and ACROS Organics) 290 

and used without purification. 1H and 13C-NMR spectra were recorded on a Varian 400-MR spectrometer 291 

(1H-NMR at 400 MHz and 13C-NMR at 100.6 MHz). Chemical shifts were reported in parts per million 292 

(δ) and are referenced to the residual signal of the solvent DMSO-d6 (2.5 ppm in 1H-NMR and 39.5 ppm 293 

in 13C-NMR). Coupling constants are reported in Hertz (Hz). Standard and peak multiplicities are 294 

designed as follows: s, singlet; d, doublet; dd, doublet of doublets; dt, doublet of triplets t, triplet; q, 295 

quadruplet; qn, quintuplet; br, broad signal. IR spectra were recorded in a Thermo Scientific Nicolet iS10 296 

FTIR spectrophotometer with Smart iTr. Wavenumbers (ν) are expressed in cm−1. MS data (m/z (%), EI, 297 

70 eV) were obtained by using an Agilent Technologies 5975. HRMS data were obtained by using a 298 

micrOTOF (Bunker) high resolution spectrometer (EI or APCI mode). Elemental microanalyses were 299 

obtained on a EuroVector Instruments Euro EA 3000 elemental analyzer. The melting points were 300 

determined with a SMP3 melting point apparatus (Stuart Scientific) and are uncorrected. Automatic flash 301 

chromatography was performed in an Isco Combiflash medium pressure liquid chromatograph with 302 

RediSep® silica gel columns (35–70 μm) using a suitable mixture of solvents as eluent. Microwave 303 

irradiation experiments were carried out in an Initiator™ (Biotage) microwave apparatus, operating at a 304 

frequency of 2.45 GHz with continuous irradiation power from 0 to 400 W. Reactions were carried out in 305 

2.5, 5, and 20 Ml glass tubes, sealed with aluminium/Teflon crimp tops, which can be exposed up to 250 306 

°C and 20 bar internal pressure. Temperature was measured with an IR sensor on the outer surface of the 307 

process vial. After the irradiation period, the reaction vessel was cooled rapidly to 50 °C by air jet cooling. 308 

Pyridones 12a (R = Me), 12b (R = Ph), and 12c were synthesized as previously described.8 309 

 310 

 311 

3-Amino-5-methyl-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one (2H-13a) 312 

 313 

A mixture of 0.60 mmol of pyridone 12a and 1.20 mmol of hydrazine monohydrate in 4 mL of methanol 314 

was heated under microwave irradiation at 140 °C for 30 minutes. The solvent was removed under reduced 315 

pressure, the residue was dissolved in the minimum amount of methanol and precipitated with ether. The 316 

solid was filtered, washed with ether and dried in vacuo over P2O5 to yield 36 mg (36%) of 2H-13a as a 317 

white solid. Mp: 246 °C. IR (KBr) νmax (cm−1): 3403 (N–H), 3335 (Csp2–H), 3227, 2930, 1692 (CvO), 318 

1644, 1558, 1540, 1466, 1380, 1286, 798, 712. 1H-NMR (400 MHz, DMSO-d6): δ 10.57 (s, 1H, N–H), 319 

9.83 (s, 1H, N–H), 4.89 (s, 2H, NH2), δ 2.64 (dd, J = 14.8, 6.8 Hz, 1H, C4-H), 2.45–2.34 (m, 1H, C5-H), 320 

2.12 (dd, J = 14.9, 9.6 Hz, 1H, C4-H), 1.09 (d, J = 7.0 Hz, 3H, Me). 13C-NMR (100 MHz, DMSO-d6): δ 321 



173.1 (CvO), 148.4 (C3), 143.4 (C7a), 82.3 (C3a), 35.9 (C5), 23.6 (C4), 16.4 (Me). MS (70 eV, EI): m/z 322 

(%): 166.1 (100%), 111.1 (40%), 110.1 (67%), 109.2 (29%), 68.1 (29%), 43.2 (32%). HRMS (EI) m/z 323 

calculated for C7H10N4O [M]+: 166.0859; found [M]+: 166.0855. 324 

 325 

 326 

3-Amino-5-phenyl-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one (2H-13b) 327 

 328 

As above for 2H-13a but using 0.60 mmol of 12b to afford 99 mg (72%) of 2H-13b as a white solid. Mp: 329 

>250 °C. IR (KBr), νmax (cm−1): 3348 (N–H), 3230, 1656 (CvO), 1619, 1561, 1381, 701 (Csp2–H). 1H-330 

NMR (400 MHz, DMSO-d6): δ 10.65 (s, 1H, N–H), 10.13 (s, 1H, N–H), 7.31–7.25 (m, 2H, Ph–H), 7.24–331 

7.17(m, 3H, Ph–H, Ph–H), 4.95 (s, 2H, NH2), 3.70 (t, J = 7.2 Hz, 1H, C5-H), 2.83 (dd, J = 15.1, 6.9 Hz, 332 

1H, C4-H), 2.65 (dd, J = 15.1, 7.6 Hz, 1H, C4-H). 13C-RMN (100 MHz, DMSO-d6): δ 171.0 (CvO), 333 

148.3 (C7a), 143.8 (C3), 141.0 (Ph), 128.2 (Ph), 128.1 (Ph), 126.5 (Ph), 81.9 (C3a), 47.6 (C5), 24.1 (C4). 334 

MS (70 eV, EI) m/z (%): 228.1 (100%), 137.0 (29%), 110.1 (54%). HRMS (EI) m/z calculated for 335 

C12H13N4O+ [M + 1]+: 229.1084; found [M + 1]+: 229.1085. 336 

 337 

 338 

3-Amino-4-methyl-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one (2H-13c) 339 

 340 

As above for 2H-13a but using 0.60 mmol of 12c to afford 89 mg (89%) of 2H-13c as a white solid. Mp: 341 

>250 °C. IR (KBr) νmax (cm−1): 3439 (N–H), 3380 (N–H), 1631, 1680 (CvO). 1H-NMR (400 MHz, 342 

DMSO-d6): δ 10.56 (s, 1H, NH), 9.88 (s, 1H, NH), 4.86 (s, 2H, NH2), 2.87 (td, J = 6.8, 4.6 Hz, 1H, C4-343 

H), 2.51 (dd, J = 15.7, 6.8 Hz, 1H, C5-H), 2.10 (dd, J = 15.7, 4.6 Hz, 1H, C5-H), 1.03 (d, J = 6.8 Hz, 3H, 344 

Me). 13C-NMR (100 MHz, DMSOd6): δ 170.2 (C1), 147.8, 143.3, 88.1 (C4), 40.4 (C2), 22.5 (C3), 20.9 345 

(C7). MS (70 eV, EI) m/z (%): 166.2 (71%), 152.1 (23%), 151.1 (100%), 148.2 (25%), 136.1 (29%). 346 

HRMS (EI) m/z calculated for C7H11N4O+ [M + 1]+: 167.0927; found [M + 1]+: 167.0926. 347 

 348 

 349 

3-Amino-2,5-diphenyl-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b] pyridin-6-one (2Ph-14b) 350 

 351 

57 mg (0.25 mmol) of 2H-13b, 4.8 mg (0.03 mmol) of CuI, 81.5 mg (0.25 mmol) of Cs2CO3 were placed 352 

in a sealable tube reactor equipped with a magnetic stir bar that was sealed in vacuo and flushed with 353 

argon. 0.083 mL (0.75 mmol) of iodobenzene in 0.75 mL of N-methyl-2-pyrrolidone (NMP) (previously 354 

sealed in vacuo and flushed with argon) were added to the reaction tube using a syringe. The tube was 355 

placed in a preheated oil bath and the reaction mixture was stirred at 120 °C for 24 hours and then cooled 356 

to room temperature. The mixture was filtered in vacuo through Celite which was washed with DMF. The 357 

solvent was removed under reduced pressure and the black residue was suspended in the minimum amount 358 



of water. The resulting precipitate was filtered and washed with water, dried in vacuo over P2O5 to yield 359 

24 mg (31%) of 2Ph-14b. The spectral data were superimposable with those previously reported for 2Ph-360 

14b.8 361 

 362 

 363 

3-Amino-5-phenyl-2,7-dihydro-6H-pyrazolo[3,4-b]pyridin-6-one (2H-15b or 1H-15b) 364 

 365 

50 mg (0.22 mmol) of 2H-13b and 75 mg (0.33 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 366 

(DDQ) were dissolved in 4 mL of methanol. The mixture was refluxed for 3 h. Then, the solvent was 367 

removed under reduced pressure and the black residue was stirred in ethyl acetate. The solid was filtered 368 

and dried in vacuo over P2O5, yielding 41 mg (82%) of 2H-15b (or 1H-15b) as a slightly brown solid. 369 

Mp: >250 °C. IR (KBr), νmax (cm−1): 3342 (N–H), 3194 (Csp2–H), 1639 (CvO), 1455, 698 (Csp2–H). 370 

1H-NMR (400 MHz, DMSO-d6): δ 11.26 (s, 1H, N–H), 7.90 (s, 1H, C4-H), 7.57–7.54 (m, 2H, Ph–H), 371 

7.50 (br, 1H, NH), 7.36–7.32 (m, 2H, Ph–H), 7.26–7.20 (m, 1H, Ph–H), 6.06 (s, 2H, NH2). 13C-NMR 372 

(100 MHz, DMSO-d6): δ 162.7 (CvO), 147.7 (C7a), 145.3 (C3), 138.4 (Ph), 132.3 (C4), 128.3 (Ph), 127.7 373 

(Ph), 126.1 (Ph), 120.3 (C5), 92.3 (C3a). MS (70 eV, EI) m/z (%): 226.1 (18%), 183.1 (18%), 43.1 (100%). 374 

HRMS (ESI): calculated for C12H11N4O+ [M + 1]+: 227.0927; found [M + 1]+: 227.0930.  375 

 376 

 377 

3-Amino-2,5-diphenyl-2,7-dihydro-6H-pyrazolo[3,4-b]pyridin-6-one (2Ph-16b) 378 

 379 

As above for 2Ph-14b but using 40 mg (0.19 mmol) of 2H-15b (or 1H-15b) to yield 13 mg (22%) of 2Ph-380 

16b. 381 

2Ph-16b was also obtained by oxidation of 2Ph-14b: 50 mg (0.16 mmol) of 2Ph-14b and 73 mg 382 

(0.32 mmol) of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were dissolved in 4 mL of methanol. 383 

The mixture was stirred at room temperature overnight. The solid was filtered and washed with cold 384 

MeOH. The solid obtained was dried in vacuo over phosphorus pentoxide, to yield 34 mg (71%) of 2Ph-385 

16b. IR (KBr): ν (cm−1): 3422 (N–H), 2921 (Ph–H), 1638 (CvO), 1595, 1565 (NH), 702 (Csp2–H). 1H-386 

NMR (400 MHz, DMSO-d6): δ (ppm) 11.40 (s, 1H, NH), 8.02 (s, 1H, C4-H), 7.61–7.57 (m, 3H, N2-Ph), 387 

7.55–7.50 (m, 2H, N2-Ph), 7.39–7.34 (m, 3H, C5-Ph), 7.29–7.22 (m, 2H, C5-Ph), 6.58 (s, 2H, NH2). 13C-388 

NMR (100 MHz, DMSO-d6): δ (ppm) 162.8 (CvO), 148.8 (C7a), 142.9 (C3), 138.6 (N2-Ph), 138.1 (C5), 389 

131.8 (C4), 129.3 (C5-Ph), 128.3 (N2-Ph), 127.7 (C5-Ph), 126.6 (C5-Ph), 126.4 (C5-Ph), 123.2 (N2-Ph), 390 

121.5 (N2-Ph), 93.0 (C3a). MS (70 eV, EI) m/z (%): 303.2 (20%), 302.2 (100%), 301.1 (13%), 237.2 391 

(3%). HRMS (APCI) m/z calculated for C18H15N4O+ [M + 1]+: 303.1240; found [M + 1]+: 303.1239. 392 

 393 

 394 

 395 



3-Amino-1,5-diphenyl-1,7-dihydro-6H-pyrazolo[3,4-b]pyridin-6-one (1Ph-16b) 396 

 397 

As above for 2Ph-14b but using 57 mg (0.25 mmol) of 2H-15b (or 1H-15b). After the filtration through 398 

Celite, washing with DMF and concentration under reduced pressure, the residue was purified by column 399 

chromatography (silica column. Cy : AcOEt gradient 0% to 100% in 5 minutes and then isocratic at 100% 400 

AcOEt for 10 minutes). The desired fraction was concentrated in vacuo to afford 16 mg (20%) of 1Ph-401 

16b as a slightly brown solid. Mp: 233–236 °C. IR (KBr), νmax (cm−1): 3426 (N–H), 3304 (Csp2–H), 402 

1632, 1590 (CvO), 1501, 695 (Csp2–H). 1H-NMR (400 MHz, DMSO-d6): δ 11.50 (s, 1H, NH), 8.29–403 

8.21 (m, 2H, N2-Ph), 8.18 (s, 1H, C4-H), 7.61–7.57 (m, 2H, C5-Ph), 7.46–7.41 (m, 4H, C5-Ph, N2-Ph), 404 

7.35–7.31 (m, 1H, C5-Ph), 7.15–7.10 (m, 1H, N2-Ph), 5.99 (s, 2H, NH2). 13C-NMR (100 MHz, DMSO-405 

d6): δ 161.1 (CvO), 149.6 (C7a), 147.9 (C3), 140.0 (N2-Ph), 137.6 (C5-Ph), 132.7 (C4), 129.0 (C5-Ph), 406 

128.8 (C5-Ph), 128.1 (N2-Ph), 126.8 (C5-Ph), 123.2 (N2-Ph), 118.3 (N2-Ph), 116.7 (C5), 104.4 (C3a). 407 

MS (70 eV, EI) m/z (%): 303.2 (26%), 302.2 (100%), 301.9 (65%), 77.0 (31%). HRMS (APCI) m/z 408 

calculated for C18H15N4O+ [M + 1]+: 303.1240; found [M + 1]+: 303.1238. 409 

 410 

 411 

3-Amino-1-benzoyl-4-methyl-1,4,5,7-tetrahydro-6H-pyrazolo [3,4-b]pyridin-6-one (1Bz-17c) 412 

 413 

37 mg (0.22 mmol) of 2H-13c, 31 mg (0.22 mmol) of benzoyl chloride and 33 mg (0.33 mmol) of Et3N 414 

were dissolved in 10 mL of THF. The mixture was stirred at 40 °C overnight. The resulting solid was 415 

filtered, and the filtrate was evaporated under reduced pressure. The residue was suspended in MeOH, the 416 

solid was removed by filtration and the filtrate was evaporated under reduced pressure. The crude material 417 

was purified by column chromatography (silica column. CH2Cl2 : MeOH gradient from 0% to 5% of 418 

MeOH for 60 min) to afford 41 mg (69%) of 1Bz-17c as a yellowish solid. Mp: 73–77 °C. IR (KBr), νmax 419 

(cm−1): 3342 (N–H), 2923 (Csp2–H), 1667, 1595 (CvO), 1533, 1500, 708 (Csp2–H). 1H-NMR (400 420 

MHz, DMSO-d6): δ 9.60 (s, 1H, NH), 8.01–7.93 (m, 2H, Ph–H), 7.62–7.56 (m, 1H, Ph–H), 7.53–7.45 421 

(m, 2H, Ph–H), 5.73 (s, 2H, NH2), 3.00 (dd, J = 6.9, 2.7 Hz, 1H, C4-H), 2.87 (dd, J = 16.2, 7.4 Hz, 1H, 422 

C5-H), 2.33 (dd, J = 16.2, 2.7 Hz, 1H, C5-H), 1.09 (d, J = 6.9 Hz, 3H, Me). 13C-NMR (100 MHz, DMSO-423 

d6): δ 169.0 (CvO), 166.8 (Ph–CvO), 154.8, 140.8, 132.8 (Ph), 132.0 (Ph), 130.3 (Ph), 127.8 (Ph), 97.5 424 

(C3a), 38.7 (C5), 22.4 (C4), 19.8 (Me). MS (70 eV, EI) m/z (%): 270.2 (33%), 105.2 (100%). HRMS 425 

(APCI) m/z calculated for C14H15N4O2 + [M + 1]+: 271.1190; found [M + 1]+: 271.1190. 426 

 427 

 428 

3-Amino-2-benzoyl-4-methyl-2,4,5,7-tetrahydro-6H-pyrazolo [3,4-b]pyridin-6-one (2Bz-17c) 429 

 430 

As above for 1Bz-17c but heating 30 minutes under microwave irradiation at 180 °C to afford 23.8 mg 431 

(40%) of 2Bz-17c as a white solid. 432 



2Bz-17c was also obtained by cyclization of 12c with benzhydrazide: 0.26 mmol of 12c and 0.51 433 

mmol of benzhydrazide were suspended in 4 mL of CH2Cl2 in a 5 mL microwave vial. The mixture was 434 

heated under microwave irradiation for 2 h at 140 °C. The solution was washed with H2O (3 × 5 mL) and 435 

the organic layer was dried with MgSO4. The solvent was removed under reduced pressure to afford 30 436 

mg of 2Bz-17c (42%). Mp: 75–80 °C. IR (KBr), νmax (cm−1): 3447 (N–H), 3336 (Csp2–H), 1669, 1595 437 

(CvO), 1546, 1500, 706 (Csp2–H). 1H-NMR (400 MHz, DMSO-d6): δ 10.44 (s, 1H, NH), 7.87–7.80 (m, 438 

2H, Ph–H), 7.60–7.52 (m, 1H, Ph–H), 7.51–7.43 (m, 2H, Ph–H), 6.77 (s, 2H, NH2), 3.05 (pd, J = 6.9, 6.9, 439 

3.1, 1H, C4-H), 2.67 (dd, J = 16.0, 6.9 Hz, 1H, C5-H), 2.21 (dd, J = 16.0, 3.1 Hz, 1H, C5-H), 1.08 (d, J = 440 

6.9, 3H, Me). 13C-NMR (100 MHz, DMSO-d6): δ 170.5 (CvO), 169.4 (Ph–CvO), 152.0, 146.6, 133.9 441 

(Ph), 131.5 (Ph), 139.8 (Ph), 127.7 (Ph), 89.8 (C3a), 39.2 (C5), 21.7 (C4), 20.2 (Me). MS (70 eV, EI) m/z 442 

(%): 270.15 (41%), 105.10 (100%), 77.1(31%). HRMS (TOF) m/z (%): calculated for C14H15N4O2 +, 443 

[M + 1]+: 270.1190; found [M + 1]+: 271.1190. 444 

 445 

 446 

13C labelled 3-amino-2-benzoyl-4-methyl-2,4,5,7-tetrahydro-6Hpyrazolo[3,4-b]pyridin-6-one 447 

(13C-2Bz-17c) 448 

 449 

150 mg (1.2 mmol) of α-13C-benzoic acid and 48 μL (0.66 mmol) of SOCl2 were added into a 5 mL 450 

microwave vial with 4 mL of EtOH. The mixture was heated under microwave irradiation for 30 min at 451 

100 °C. The solvent was removed under reduced pressure to eliminate the excess of SOCl2. The crude 452 

was dissolved with 4 mL of EtOH and 480 μL (9.9 mmol) of hydrazine monohydrate were added into the 453 

solution. The mixture was heated under microwave irradiation for 10 min at 100 °C and the solvent was 454 

removed under reduced pressure. The crude was resuspended in diethyl ether to yield 97 mg (57%) of the 455 

pure 13C-benzhydrazide as white crystals. 1H-NMR (400 MHz, DMSO-d6): δ 9.75 (s, 1H, NH), 7.84–456 

7.78 (m, 2H, Ph–H), 7.54–7.48 (m, 1H, Ph–H), 7.47–7.41 (m, 2H, Ph–H), 4.45 (s, 2H, NH2). 457 

44 mg (0.26 mmol) of 12c and 70 mg (0.51 mmol) of 13Cbenzhydrazide were suspended in 4 mL 458 

of CH2Cl2 in a 5 mL microwave vial. The mixture was heated under microwave irradiation for 2 h at 140 459 

°C. The crude was purified by column chromatography (silica column, cyclohexane : AcOEt gradient 0–460 

50% in 10 minutes and then isocratic 50 : 50 for 30 minutes) to afford 14 mg (19%) of 13C-2Bz-17c as a 461 

yellowish solid. 1H-NMR (400 MHz, DMSO-d6): δ 10.44 (s, 1H, NH), 7.92–7.77 (m, 2H, Ph–H), 7.63–462 

7.52 (m, 1H, Ph–H), 7.52–7.40 (m, 2H, Ph–H), 6.77 (s, 2H, NH2), 3.06 (td, J = 6.9, 6.9, 3.1, 1H, C4-H), 463 

2.67 (dd, J = 16.0, 6.9 Hz, 1H, C5-H), 2.21 (dd, J = 16.0, 3.1 Hz, 1H, C5-H), 1.08 (d, J = 6.9 Hz, 3H, Me). 464 

13C-NMR (100 MHz, DMSO-d6): δ 170.5 (CvO), 169.4 (13CvO), 152.0 (d, J = 6.1 Hz, C3), 146.6 (d, J 465 

= 1.9 Hz, C7a), 133.9 (d, J = 68.6 Hz, Ph), 131.5 (Ph), 129.8 (d, J = 2.3 Hz, Ph), 127.7 (d, J = 4.5 Hz, Ph), 466 

89.8 (C3a), 39.2 (C5), 21.7 (C4), 20.2 (Me). 467 

 468 

 469 



6-Methoxy-1H-pyrazolo[3,4-b]pyridin-3-amine (1H-20) 470 

 471 

400 mg (2.3 mmol) of 2,6-dichloronicotinonitrile were suspended in 20 mL of anhydrous MeOH. 150 mg 472 

(2.8 mg) of NaOMe were added and the mixture was refluxed for 24 h. The solvent was removed under 473 

reduced pressure and the crude was suspended in water. The solid was filtered and dried in vacuo over 474 

P2O5 to yield a mixture of two isomers that was used without further purification. 475 

250 mg of the mixture and 150 mg of hydrazine monohydrate (3 mmol) were dissolved in 20 mL 476 

of MeOH and heated under microwave irradiation at 140 °C for 1 h. The solvent was removed under 477 

reduced pressure, the residue was dissolved in the minimum amount of methanol and precipitated with 478 

ether. The solid was filtered and dried in vacuo over P2O5 to yield 100 mg (40%) of 1H-20 as a yellowish 479 

solid. Mp: 196–198 °C. IR (KBr), νmax (cm−1): 3386 (N–H), 3306 (N–H), 3214, 1625 (Csp2–Csp2), 480 

1602, 1519, 1446, 1412, 1334 (C–O), 1256, 1030, 802 (Csp2–H). 1H-NMR (400 MHz, DMSO-d6): δ 481 

11.70 (s, 1H, NH), 7.94 (d, J = 8.5 Hz, 1H, C4-H), 6.38 (d, J = 8.5 Hz, 1H, C5-H), 5.36 (s, 2H, NH2), 3.85 482 

(s, 3H, Me). 13C-NMR (100 MHz, DMSO-d6): δ 163.5 (C6), 150.8, 148.3, 132.2 (C4), 102.6 (C5), 100.8 483 

(C3a), 53.1 (Me). MS (70 eV, EI) m/z (%): 165.1 (10%), 164.1 (100%), 163.1 (26%), 135.1 (13%), 64.1 484 

(3%). HRMS (APCI): calculated for C7H9N4O+ [M + 1]+: 165.0771; found [M + 1]+: 165.0769. 485 

 486 

 487 

3-Amino-2-benzoyl-5-phenyl-2,7-dihydro-6H-pyrazolo[3,4-b] pyridin-6-one (2Bz-21b) 488 

 489 

As above for 1Bz-17c but using 80 mg (0.35 mmol) of 15b. The crude material was purified by column 490 

chromatography (silica column. Cy : AcOEt gradient from 0% to 50% of AcOEt for 30 min) to afford 10 491 

mg (9%) of 2Bz-21b as a yellowish solid. Mp: 215–218 °C. IR (KBr), νmax (cm−1): 3431 (N–H), 3391 492 

(N–H), 1687 (CvO), 1660, 1608 (Csp2–Csp2), 1376 (C–O), 1295 1H-NMR (400 MHz, DMSO-d6): δ 493 

11.42 (s, 1H, NH), 8.04 (s, 1H, C4-H), 8.00 (s, 2H, NH2), 7.97–7.93 (m, 2H, PhCO), 7.64–7.60 (m, 1H, 494 

PhCO), 7.57–7.50 (m, 4H, PhCO, Ph), 7.40–7.34 (m, 2H, Ph), 7.31–7.25 (m, 1H, Ph). 13C-NMR (100 495 

MHz, DMSO-d6): δ 170.0 (CvO–Ph), 163.3 (CvO), 150.9 (C3), 148.1 (C3b), 137.4 (Ph), 133.4 (Ph–CO), 496 

132.0 (Ph–CO), 131.1 (C4), 130.2 (Ph–CO), 128.4, 127.8, 127.8, 126.8 (Ph), 123.0 (C5), 91.3 (C3a). MS 497 

(70 eV, EI) m/z (%): 331.2 (27%), 330.2 (100%), 226.2 (10%), 105.1 (68%), 51.1 (9%). HRMS (APCI): 498 

calculated for C19H15N4O2 + [M + 1]+: 331.1190; found [M + 1]+: 331.1187. 499 

 500 

 501 

6-Methoxy-1-phenyl-1H-pyrazolo[3,4-b]pyridin-3-amine (1Ph-22) 502 

 503 

As above for 2Ph-14b but using 50 mg (0.30 mmol) of 1H-20 and increasing reaction time to 96 h. 30 mg 504 

of 1Ph-22 (42%) are obtained as a brown solid. Mp: 160–162 °C. IR (KBr), νmax (cm−1): 3401 (N–H), 505 

2942, 1606 (Csp2–Csp2), 1595, 1495, 1446, 1408, 1335 (C–O), 1290, 1215, 1020, 755, 691. 1H-NMR 506 



(400 MHz, DMSO-d6): δ 8.27–8.18 (m, 2H, Ph), 8.12 (d, J = 8.6 Hz, 1H, C4-H), 7.49–7.40 (m, 2H, Ph), 507 

7.17–7.08 (m, 1H, Ph), 6.60 (d, J = 8.6 Hz, 1H, C5-H), 6.00 (s, 2H, NH2), 3.98 (s, 3H, Me). 13C-NMR 508 

(100 MHz, DMSO-d6): δ 163.9 (C6), 149.2, 148.5, 139.9 (Ph), 133.0 (C4), 128.9 (Ph), 123.2 (Ph), 118.0 509 

(Ph), 110.3 (C3a), 104.1 (C5), 53.5 (Me). MS (70 eV, EI) m/z (%): 241.2 (16%), 240.2 (100%), 239.2 510 

(18%), 194.2 (5%). HRMS (APCI): calculated for C13H13N4O+ [M + 1]+: 241.1084; found [M + 1]+: 511 

241.1081. 512 

 513 

 514 

N-(6-Methoxy-1H-pyrazolo[3,4-b]pyridin-3-yl)benzamide (23) 515 

 516 

As above for 1Bz-17c but using 100 mg (0.61 mmol) of 1H-20. The crude material was purified by column 517 

chromatography (silica column. Cy : AcOEt gradient from 0% to 100% of AcOEt for 32 min) to afford 518 

43 mg (26%) of 23 as a white solid. Mp: 244–246 °C. IR (KBr), νmax (cm−1): 3276 (N–H), 3183, 1646 519 

(CvO), 1615, 1593 (N–H), 1541 (Csp2–Csp2), 1439, 1405, 1329 (C–O), 1246, 1027, 688 (Csp2–H). 1H-520 

NMR (400 MHz, DMSOd6): δ 13.07 (s, 1H, N1-H), 10.94 (s, 1H, NH), 8.19 (d, J = 8.8 Hz, 1H, C4-H), 521 

8.08–8.04 (m, 2H, Ph), 7.64–7.58 (m, 1H, Ph), 7.57–7.50 (m, 2H, Ph), 6.61 (d, J = 8.8 Hz, 1H, C5-H), 522 

3.93 (s, 3H, Me). 13C-NMR (100 MHz, DMSO-d6): δ 165.2 (CvO), 163.6 (C6), 150.4, 139.8, 135.0 (C4), 523 

133.6 (Ph), 131.9 (Ph), 128.4 (Ph), 127.9 (Ph), 105.6 (C5), 103.5 (C3a), 103.5 (Me). MS (70 eV, EI) m/z 524 

(%): 269.1 (19%), 268.2 (100%), 267.2 (9%), 240.2 (35%), 105.2 (38%). HRMS (APCI): calculated for 525 

C14H13N4O2 + [M + 1]+: 269.1033; found [M + 1]+: 269.1030. 526 

 527 

 528 

1-Phenyl-1H-indazol-3-amine (1Ph-24) 529 

 530 

As above for 2Ph-14b but using 67 mg (0.5 mmol) of 1Hindazol-3-amine to afford 67 mg (64%) of 1Ph-531 

24. Mp: 84–86 °C. IR (KBr), νmax (cm−1): 3319 (N–H), 3203, 3058 (Csp2–H), 1614 (Csp2–Csp2), 1594, 532 

1540, 1500, 1443, 1422, 1379, 1225, 743 (Csp2–H), 695. 1H-NMR (400 MHz, DMSO-d6): δ 7.84 (ddd, 533 

J = 8.0, 0.8 Hz, 1H, C4-H), 7.74 (dt, J = 8.5, 0.8 Hz, 1H, C7-H), 7.70–7.65 (m, 2H, Ph), 7.51–7.45 (m, 534 

2H, Ph), 7.40 (ddd, J = 8.5, 6.9, 1.2 Hz, 1H), 7.22–7.16 (m, 1H, Ph), 7.10 (ddd, J = 7.9, 6.9, 0.8 Hz, 1H), 535 

5.90 (s, 2H, NH2). 13C-NMR (100 MHz, DMSO-d6): δ 151.3 (C3), 140.9 (Ph), 139.7 (C3b), 130.3 (Ph), 536 

129.1 (C6), 125.2 (Ph), 121.6 (C4), 121.0 (Ph), 120.6 (C5), 117.5 (C3a), 110.6 (C7). MS (70 eV, EI) m/z 537 

(%): 210.2 (16%), 209.2 (100%), 208.2 (23%), 192.1 (6%), 51.1 (10%). HRMS (EI): calculated for 538 

C13H12N3 + [M + 1]+: 210.1026; found [M + 1]+: 210.1023. 539 

 540 

 541 

 542 

 543 



N-(1H-Indazol-3-yl)benzamide (25) 544 

 545 

As above for 1Bz-17c but using 100 mg (0.75 mmol) of 1Hindazol-3-amine. The crude material was 546 

purified by column chromatography (silica column. Cy : AcOEt gradient from 0% to 100% of AcOEt for 547 

30 min) to afford 68 mg (43%) of 25 as a white solid. Mp: 152–153 °C. IR (KBr), νmax (cm−1): 3245 548 

(O–H), 3060 (Csp2–H), 1656 (CvO), 1538, 1349 (C–O), 1281, 746 (Csp2–H), 708. 1H-NMR (400 MHz, 549 

DMSO-d6): δ 12.80 (s, 1H, NH), 10.77 (s, 1H, NH), 8.11–8.06 (m, 2H, Ph), 7.72 (dd, J = 8.2, 0.9 Hz, 1H, 550 

C4-H), 7.64–7.59 (m, 1H, Ph), 7.58–7.51 (m, 2H, Ph), 7.49 (dt, J = 8.4, 0.9 Hz, 1H, C7-H), 7.36 (ddd, J 551 

= 8.4, 6.8, 1.1 Hz, 1H, C6-H), 7.08 (ddd, J = 8.2, 6.8, 0.9 Hz, 1H, C5-H). 13C-NMR (100 MHz, DMSO-552 

d6): δ 165.6 (CvO), 141.1 (C3), 140.1(C3b), 133.8 (Ph), 131.8 (Ph), 128.4 (Ph), 127.9 (Ph), 126.3 (C6), 553 

121.8 (C4), 119.6 (C5), 117.1 (C3a), 110.2 (C7). Elemental analysis: calculated for C14H11N3O: C: 554 

70.87%, H:4.67%, N: 17.71%, found C:70.91%, H: 4.99%, N:17.68%. MS (70 eV, EI) m/z (%): 238.2 555 

(19%), 237.2 (100%), 236.1 (8%), 209.2 (19%), 105.1 (15%), 51.1 (25%). HRMS (APCI): calculated for 556 

C14H12N3O+ [M + 1]+: 238.0975; found [M + 1]+: 238.0974. 557 

 558 

 559 

Quantum mechanics calculations 560 

 561 

Energy calculations were carried out using the Gaussian 09 Rev. E.0139. An hybrid non-local density 562 

functional theory (DFT), particularly Becke’s gradient-corrected exchange–correlation density functional 563 

B3LYP with the 6-31 + G(d,p)//6-311++G(d,p) basis set was used for the geometry optimization and the 564 

calculation of frequencies. 565 

Mechanistic studies were performed using ORCA v.4.2.1 software: the structures of the molecules 566 

under study were constructed using Avogadro molecular editor25 (the two tautomeric pyrazolo[3,4-567 

b]pyridin-6-ones 1H-13d and 2H-13d not bearing any extra substituent at the pyrazole ring, the structures 568 

of benzoyl chloride and HCl and the structures of the two benzoyl substituted compounds: N1-benzoyl 569 

substituted 1Bz-17d and N2-benzoyl substituted 2Bz-17d). The structures of 1H-13d and 2H-13d were 570 

optimized using B3LYP/def2-SVP.  571 

A saddle point (TS) optimization via relaxed scan was carried out starting from both tautomers 572 

(1H-13d and 2H-13d) together with the benzoyl chloride initially situated at 3 Å and scanning the distance 573 

between the non-protonated pyrazole nitrogen atom (N2 for 1H-13d and N1 for 2H-13d) and the carbon 574 

atom of the acid chloride function of the benzoyl chloride from 3.0 to 1.2 Å in 15 points. The resulting 575 

energy plots as a function of the reaction coordinate allowed the determination of the energies of the 576 

reactants, the transition states (18d and 19d) and the reaction products. The video files of the trajectories 577 

are found in the ESI.† 578 

  579 
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Legends to figures 641 

 642 

Figure. 1 Structure of pyrazol-3-amines and compounds biologically active bearing such substructure. 643 

 644 

Figure 2. Possible tautomeric forms of 1H-pyrazol-3-amine. 645 

 646 

Scheme 1. Structures of fused pyrazol-3-amines and synthesis of 3-amino-2,4,5,7-tetrahydro-6H-647 

pyrazolo[3,4-b]pyridin-6-ones (2H-13). 648 

 649 

Scheme 2. Reaction conditions used for the Ullmann and acylation reactions on tautomeric C4–C5 fused 650 

pyrazol-3-amines. 651 

 652 

Figure 3. Structures involved in the derivatization of 3-amino-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-653 

b]pyridin-6-ones by Ullmann reaction. 654 

 655 

Figure 4. ORTEP diagram and atomic numbering of 1Ph-16b. 656 

 657 

Scheme 3. Synthesis of 3-amino-4-methyl-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-b]pyridin-6-one (2H-13c) 658 

and benzoylated derivatives. 659 

 660 

Figure. 5. Correlation between isomers 1Bz-17c and 2Bz-17c and the reaction temperature. 661 

 662 

Scheme 4. Synthesis of the 13C labelled N2-benzoyl substituted isomer 13C-2Bz-17c. 663 

 664 

Figure. 6. HMBC spectrum of 13C-2Bz-17c demonstrating the N2 substitution. 665 

 666 

Figure. 7. ORTEP diagram and atomic numbering of 2Bz-17c. 667 

 668 

Scheme 5. Kinetic vs. thermodynamic control in acylation of 2H-13d. Energy differences in kcal mol−1. 669 

ΔG between tautomers obtained by difference of ΔG‡. 670 

 671 

Scheme 6. Reactivity of pyrazolo[3,4-b]pyridin-6-ones 13: Ullmann reaction and acylation (kinetic vs. 672 

thermodynamic control). 673 

 674 

Figure. 8. Relative stability of the pyrazol-3-amine tautomers. 675 

 676 

Figure. 9. Ullmann and acylation products of C4–C5 fused pyrazol-3-amines. 677 



Figure.10. Aromatic circulation for the N1- and N2-substituted pyrazol-3-amines fused to an aromatic 678 
ring. 679 
 680 
  681 
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