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Abstract

Recent studies have unveiled the similar nature of solvent (screening) effects and bridge-

mediated contributions to electronic energy transfer, both related to the bridge/solvent polar-

izability properties. Here we exploit the similarity of such contributions to develop a fully

polarizable mixed QM/discrete/continuum model aimed at studying electronic energy trans-

fer processes in supramolecular systems. In the model, the definition of the three regions is

completely flexible and allows us to explore the possibility to describe bridge-mediated con-

tributions by using a polarizable MM description of the linker. In addition, we show that

the classical MMPol description of the bridge can be complemented either with an analogous

atomistic or a continuum description of the solvent. Advantages and drawbacks of the model

are finally presented and discussed with respect to the system under study.
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1 Introduction

Electronic energy transfer (EET) consists in the radiationless migration of the excitation energy

of a sensitized donor (D) to a proximate acceptor (A). In photosynthesis, ultrafast EET among

antenna pigment-protein complexes allows to funnel the captured sunlight to reaction centers with

very high quantum efficiencies.1–4 The same principle is used in organic photovoltaic cells, where

the absorbed excitons have to be efficiently transferred to charge-separation interfaces,5,6 whereas

in organic light-emitting diodes (OLED) the processes is reversed, and EET is used to direct the

excitons generated upon charge injection.7,8

The basic design principles of EET processes can be understood based on Förster theory,9

which relates the transfer rate between weakly coupled D/A molecules with the square of the

electronic coupling matrix element between the initial and final states of the EET reaction, V , and

a spectral overlap factor between normalized donor emission and acceptor absorption lineshapes,

J:

k =
2π

h̄
V 2J, (1)

In intermolecular EET, the effect of the molecular environment on the electronic coupling V is

typically described in terms of a screening effect that significantly slows down the EET process. In

Förster theory, this effect is described by a rather crude screening factor s = 1/n2, where n is the

refractive index of the medium, so that the total coupling is cast in terms of a direct D/A interaction

Vs and a screening factor s, V = s ·Vs. In intramolecular EET processes, however, the D/A units are

covalently linked by some molecular spacer that can significantly modulate the coupling between

the units,10–12 in so-called through-bond contributions either mediated by superexchange, as in

electron transfer,13,14 or by modifying the D/A Coulombic interaction.12

In the last decade there have been important efforts in order to accurately model both screen-

ing effects15–23 and bridge-mediated effects to EET.24–31 Screening effects, which arise from the

coupling of solvent electronic states with the D/A states,20 can be modeled either using contin-

uum dielectric models, mixed quantum mechanics/molecular mechanics (QM/MM) methods, or
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by including them in the QM calculation as in subsystem TDDFT.21,32 In continuum models, the

solvent contribution is dictated by its macroscopic optical dielectric constant, i.e. approximately

the refractive index related to the solvent polarizability,33 whereas in mixed QM/MM models sol-

vent molecules are explicitly considered and described through a classical polarizable force field.19

Bridge-mediated effects, on the other hand, arising from coupling of the bridge states to the D/A

states, are typically modeled by including the linker in the QM calculation.24–31 Recent studies,

however, have pointed out that the leading contributions to bridge-mediated singlet-singlet EET

often arise from Coulomb contributions rather than superexchange,27,28,30,31 thus relating the en-

hancement or screening of the D/A coupling with the bridge polarizability.28,30

In the present study, we develop a fully coupled QM/discrete/continuum method for energy

transfer that combines a continuum dielectric description of the environment with a flexible def-

inition of QM and polarizable MM regions. This three-level method allows us to explore the

possibility to describe bridge-mediated contributions by using a polarizable MM description of the

linker combined with a continuum model for solvent effects. In addition, we show that the classical

MMPol description of the bridge can be complemented either with an atomistic or a continuum

description of the solvent, and discuss some of the advantages and drawbacks of these two options

depending on the chemical system under study. Applications to different D-bridge-A systems are

reported to determine potentials and limitations of the method.

2 Theory

We implemented a fully polarizable mixed QM/discrete/continuum model, where a solute, de-

scribed at QM level, is surrounded by a set of polarizable MM atoms and by a polarizable struc-

tureless medium. The latter is treated with the Polarizable Continuum Model (PCM),34 imple-

mented according to the Integral Equation Formalism (IEF-PCM35,36), while the MM atoms are

represented as a set of charges and induced dipoles, using the MMPol model recently developed by

some of the present authors.19 This MM layer may be employed to describe both solvent molecules
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and non-QM parts of the solute itself. Here below we first report the main elements of the general

implementation (which is similar to the one presented by Steindal et al.37), and successively we

detail on its extension to describe EET processes within a TD-DFT formalism.

2.1 The electrostatic problem

In the PCM model, the polarization of the solvent is represented by placing a set of "apparent"

charges, {qPCM
i }, on the mesh of the molecular cavity’s surface. These charges are obtained from

the electrostatic potential of the QM solute, plus eventually the potential generated by the MM

distribution, using the equation:

TTT QQQ = RRRVVV , (2)

where QQQ is the vector containing the {qPCM
i } set of PCM charges on each of the Ntes surface

finite elements (generally called "tesserae"), VVV a vector with the value of the potential on the same

tesserae, and TTT and RRR are matrices depending on geometrical factors and on the solvent permittivity

ε (either the static or the optical one, depending on the case).

On the other hand, the MM molecules are described as a set of fixed charges, {qMM
i }, centered

on the atoms, and a set of induced dipoles, {µµµ i}, whose positions are generally referred to as polar-

izable sites. The induced dipoles can be obtained, similarly to the PCM case, from the electrostatic

field due to the QM solute and the PCM and MM distributions, calculated on the polarizable sites:

MMM = αααEEE, (3)

where MMM is the vector containing the induced dipoles {µµµ i} on the Npol polarizable sites, EEE the

value of the electric field on the same sites and ααα the MMPol matrix containing the polarizability

tensors {ααα i} and whose expression depends on the MMPol model used.

Eq. Eq. (2) and Eq. (3) differ from the standard PCM and MMPol equations in that the potential

and electric field also contain “mixed” contributions from both the MMPol and PCM distributions,

and therefore the two problems cannot be separated.
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In more detail, the elements of the total potential of Eq. (2) can be written as:

Vt =V QM
t +V MM

t =V QM
t +∑

c

qMM
c

|rrrt− rrrc|
+∑

p

µµµ p · (rrrt− rrrp)∣∣rrrt− rrrp
∣∣3

=V QM
t +bt +∑

p
SSSt,pµµµ p, (4)

where indices t, c and p label tesserae, MM charge sites and polarizable sites, respectively.

Similarly, the electric field on each polarizable site, appearing in Eq. (3), can be expressed as:

EEE p = EEEQM
p +EEEMM

p +EEEPCM
p , (5)

where

EEEMM
p = ∑

c

qMM
c (rrrp− rrrc)∣∣rrrp− rrrc

∣∣3 + ∑
p′ 6=p

3(µµµ p′ · r̂rrp,p′)r̂rrp,p′−µµµ p′∣∣rrrp− rrrp′
∣∣3

= aaap + ∑
p′ 6=p

PPPp,p′µµµ p′ (6)

and

EEEPCM
p = ∑

t

qPCM
t (rrrp− rrrt)∣∣rrrp− rrrt

∣∣3 = ∑
t

UUU p,tqPCM
t . (7)

Substituting the total potential and electric field into Eq. (2) and Eq. (3), and using a more

compact matrix form, one can write:

(ααα−1−PPP)MMM −UUUQQQ = EEEQM +aaa

−RRRSSSMMM +TTT QQQ = RRR
(
VVV QM +bbb

) , (8)

where the Eq. (8) must be solved simultaneously. Noting that aaa and bbb are respectively the electric

field and potential due to the MM charges, and that SSS = −UUU†, the system of equations can be
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rearranged as:  MMM

QQQ

=

 ααα−1−PPP −UUU

RRRUUU† TTT


−1 EEEQM+c

RRRVVV QM+c

 . (9)

The induced dipoles and PCM charges are therefore obtained simultaneously by solving, ei-

ther iteratively or by matrix inversion, Eq. (9). The MM-PCM matrix is dimensioned (Ntes +

3Npol)× (Ntes+3Npol); matrix UUU is responsible for the MMPol/PCM mixing, and setting it to zero

would decouple the problem.

2.2 The QM problem

Within the Born-Oppenheimer approximation, the QM solute satisfies the Schrödinger equation,

where the Hamiltonian is divided into an unperturbed (gas-phase) term Ĥ0 and an perturbation

term Ĥenv accounting for the coupling with the environment.

Ĥeff |Ψ〉= (Ĥ0 + Ĥenv) |Ψ〉= E |Ψ〉 . (10)

The perturbation term includes all the energetic terms arising from the presence of a set of PCM

charges and of a set of MMPol charges and induced dipoles. It can be expressed in terms of four

contributions:

Ĥenv = ĤQM/PCM + ĤQM/MM + ĤMM/PCM + ĤMM/MM, (11)
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where:

ĤQM/PCM =
∫

drrr∑
t

ρ(rrr)qPCM
t

|rrr− rrrt |
= ∑

t
qPCM

t V̂ QM
t ; (12)

ĤQM/MM = Ĥel
QM/MM + Ĥpol

QM/MM

=
∫

drrr∑
c

ρ(rrr)qMM
c

|rrr− rrrc|
+

1
2

∫
drrr∑

p
ρ(rrr)

µµµ p(rrr− rrrp)∣∣rrr− rrrp
∣∣3

= ∑
c

qMM
c V̂ QM

c − 1
2 ∑

p
µµµ pÊEE

QM
p ; (13)

ĤMM/PCM = ∑
t

∑
c

qPCM
t qMM

c
|rrrt− rrrc|

= ∑
t

qPCM
t V̂ MM

t ; (14)

ĤMM/MM = Ĥel
MM/MM + Ĥpol

MM/MM

=
1
2 ∑

c
∑

c′ 6=c

qMM
c qMM

c′

|rrrc− rrrc′|
+

1
2 ∑

c
∑
p

qMM
c

µµµ p(rrrc− rrrp)∣∣rrrc− rrrp
∣∣3

=
1
2 ∑

c
qMM

c V̂ MM
c − 1

2 ∑
p

µµµ pÊEE
MM
p . (15)

In the last equations, V̂ and ÊEE are the potential and electric field operators, respectively, due

to the QM solute or to the MM charge distribution. For what concerns the latter terms, it is

possible to consider the MM charges (constant both in position and size) as belonging to the set of

“fixed charges” together with the nuclei. Therefore, the two MM electrostatic terms Ĥel
QM/MM and

Ĥel
MM/MM can be included in a modified gas-phase Hamiltonian Ĥ ′

0
, while the perturbation term

can be written as:

Ĥ ′
env

= ĤQM/PCM + ĤMM/PCM + Ĥpol
QM/MM + Ĥpol

MM/MM

= ĤQM+c/PCM + ĤQM+c/MM, (16)

where the label ‘QM+c’ indicates, as in Eq. (9), that the interaction is with the QM system (nuclei

and electron density) plus the MM charges.

The Fock matrix contains extra 1-electron and 2-electron terms due to the environment (plus
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the constant charge–charge interaction), so that it reads:

FFF = hhh0 +GGG0(PPP)+hhhenv +XXXenv(PPP), (17)

where hhh0 and GGG0 are the usual gas-phase 1- and 2-electron terms (plus the eventual contribution

from the MM charges), while hhhenv and XXXenv arise from the interaction of the QM electron density

with the PCM charges and MM charges and induced dipoles. In particular, the 1-electron term hhhenv

accounts for the interaction with both the PCM and the MM charges and the dipoles induced by the

fixed charges (nuclei and MM charges), while XXXenv accounts for the interaction with those induced

by the electron distribution, i.e. those found by solving Eq. (9) with the electric field and potential

due to the QM electronic wavefunction. These PCM charges and induced dipoles therefore depend

themselves on the wavefunction, and this is stressed by explicitly indicating the term dependence

on the density matrix PPP.

2.3 TD-DFT and Electronic Energy Transfer

The QM/MMPol/PCM method has been implemented within the TD-DFT Linear Response scheme,

in the same way it had been done for the PCM and MMPol independently. In a basis of single ex-

citations between KS orbitals, solving Eq. (18) provides the excitation frequencies ωn and the

corresponding eigenstates
(

XXXn YYY n

)†

:

 AAA BBB

BBB∗ AAA∗


 XXXn

YYY n

= ωn

 111 000

000 −111


 XXXn

YYY n

 , (18)

where AAA and BBB form the Hessian of the electronic energy. The inclusion of both PCM and MMPol

effects in this picture is simply a combination of the two effects,19,33,38 so that matrices AAA and BBB
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can be written as:

Aai,b j = δa,bδi, j(εa− εi)+K0
ai,b j +CPCM

ai,b j +DMMPol
ai,b j (19)

Bai,b j = K0
ai, jb +CPCM

ai,b j +DMMPol
ai,b j , (20)

where indices i and j label occupied orbitals and a and b virtual orbitals, and where matrices KKK, CCC

and DDD are written in terms of the orbitals as follows:

Kai,b j =
∫

drrrdrrr′ψ∗a (rrr)ψi(rrr)
[

1
|rrr− rrr′|

+gxc(rrr,rrr′)
]

ψ
∗
b (rrr
′)ψ j(rrr′); (21)

CPCM
ai,b j = ∑

t

[∫
drrrψ

∗
a (rrr)ψi(rrr)

1
|rrrt− rrr|

]
qt(ψ

∗
b ,ψ j); (22)

DMMPol
ai,b j = −∑

p

[∫
drrrψ

∗
a (rrr)ψi(rrr)

rrrp− rrr∣∣rrrp− rrr
∣∣3
]

µp(ψ
∗
b ,ψ j). (23)

The term in Eq. (21), which is the only term present in vacuo, couples the (i→ a) and ( j→ b)

excitations through Coulomb and exchange-correlation kernels, while the PCM and MMPol terms

of Eq. (22) and Eq. (23) may be interpreted as accounting for the Coulomb interaction between the

(i→ a) excitation and the solvent polarization response to the ( j→ b) excitation, i.e. an interaction

mediated by the environment. Note that the PCM charges in Eq. (22) are obtained solving either

Eq. (2) or Eq. (9), but using the optical permittivity of the solvent, ε∞, i.e. only considering the fast

solvent response. The MMPol induced dipoles are always considered as a fast response.

Eq. (18) can be generally written as MMMWWW n = ωnIIIWWW n; when the Linear Response treatment is

generalised to a non-interacting couple of chromophores, sharing a resonance frequency ω0, the

equation can be written as:

 MMMDD MMMDA

MMMAD MMMAA


 WWW D

WWW A

= ω

 III SSSDA

SSSAD III


 WWW D

WWW A

 , (24)

where the indices D and A refer to the donor and acceptor, and SSS includes the overlap between
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donor and acceptor orbitals. When the D/A interaction is turned on, the energies are no longer

degenerate, and the electronic coupling between donor and acceptor is defined as half the resulting

energy splitting. If the interaction is treated as a perturbation, Eq. (24) can be solved approximately

and the coupling can be obtained from the first-order perturbed energies as:15

V ≡ ω+−ω−
2

=WWW †
DMMMDAWWW A−ω0WWW †

DSSSDAWWW A (25)

=WWW †
D

(
KKKDA +CCCPCM

DA +DDDMMPol
DA

)
WWW A−ω0WWW †

DSSSDAWWW A.

Note that matrices KKKDA, CCCPCM
DA and KKKMMPol

DA differ from those of Eq. (21) — Eq. (23) in that the

orbitals labelled i and a belong to the donor, while those labelled j and b belong to the acceptor; the

same holds for the overlap matrix SSSDA. When these matrices are contracted with WWW †
D and WWW A, the

resulting contributions to the first-order coupling can be written in terms of the diagonal elements

of the one-particle transition density matrices (“transition densities”), ρ̃D and ρ̃A:

VCoul =
∫

drrrdrrr′ρ̃†
A(rrr)

1
|rrr− rrr′|

ρ̃D(rrr′);

Vxc =
∫

drrrdrrr′ρ̃†
A(rrr)gxc(rrr,rrr′)ρ̃D(rrr′);

VOvlp =−ω0

∫
drrrρ̃

†
A(rrr)ρ̃D(rrr);

VPCM = ∑
t

[∫
drrrρ̃

†
A(rrr)

1
|rrr− rrrt |

]
qt(ρ̃D);

VMMPol =−∑
p

[∫
drrrρ̃

†
A(rrr)

rrrp− rrr∣∣rrrp− rrr
∣∣3
]

µp(ρ̃D).

(26)

The definitions reported in Eq. (26) show that the first-order electronic coupling between two

chromophores can be calculated from the transition densities of the non-interacting chromophores.

In practice, a coupling calculation is performed in two stages: first the transition densities of the

isolated chromophores are calculated (‘monomer stage’); then, these are combined to obtain the

coupling (‘coupling stage’). The first three terms of Eq. (26) are present in vacuo; the exchange-

correlation and overlap terms are often negligible, compared to the Coulomb term. The PCM
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and MMPol terms describe the interaction between the acceptor transition density with the PCM

charges and MMPol dipoles induced by the donor one.

3 Computational details

All the QM calculations were run at the TD-DFT level, employing the CAM-B3LYP functional39

and the 6-31G(d) basis set, using a locally modified version of the Gaussian09 suite of codes.40

The choice of the functional and the basis set was done mainly to maintain the consistency with

previous studies on the same systems.

As for MMPol parameters, the fixed MM charges were obtained from a fit of the electrostatic

potential of the molecule or fragment, using the Merz and Kollman method.41,42 The CAM-B3LYP

functional and 6-31G(d) basis set were used in the calculations, consistently with the QM calcu-

lations. The problem eventually arising from the presence of covalent bonds between the QM and

the MM fragments was tackled by following the link atom method:43 the QM-MM bonds were

initially cut and saturated on both sides with hydrogens. The saturated MM fragment, isolated,

was then used to obtain the Merz-Kollman (MK) charges; afterwards, the MM atoms previously

bound to the QM chromophores, together with their saturation hydrogens, were removed to avoid

hyperpolarization problems; their MM charges were summed and distributed onto the covalently

bound MM atoms.

The polarizable sites coincide with the MM atoms. The values of the isotropic polarizabilities

placed on each atom depend on the MM treatment of polarization chosen. We adopted the Thole

model, which avoids intramolecular overpolarization problems by using a smeared dipole-dipole

interaction tensor.44 Atomic isotropic polarizability values were taken from the fit of experimental

molecular polarizabilities performed by van Duijnen and Swart using the linear version of Thole

dipole-dipole tensor.45 We also tested the polarizabilities derived recently in the context of the

Amber force field,46 always finding little dependence of the results on the model used.

The continuum solvent description was based on the IEF formulation of the PCM model,35,36
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using the discretization procedure into point charges available in Gaussian09 asking for the Gas-

sian03 defaults.

In order to obtain representative structures of the distribution of toluene solvent molecules

around the PDI-TDI system, we also performed classical molecular dynamics simulations of the

dyad, in which the structure of the PDI-TDI molecule was kept frozen. The simulation system was

built by solvating the dyad in a toluene box (buffer zone of 20 Å) using the Leap module of the

Amber9 suite of programs.47 Both the toluene solvent and the PDI-TDI dyad were described using

the GAFF force field.48 The system was initially thermalized by running a 100-ps MD simulation

at constant volume in order to increase the temperature from 100 K to 298 K. Then, a 100-ps

equilibration at constant pressure (1 atm) and temperature (298 K) was performed using standard

coupling schemes in order to reach an appropiate density of the toluene solution. Finally, the

simulation was extended for 2 ns for production purposes. All runs were performed with Amber9

using an integration time step of 1 fs, periodic boundary conditions, the Particle Mesh Ewald

approach to deal with long-range electrostatics, and a nonbonded cutoff equal to 10 Å. For pressure

regulation, an isothermal compressibility of 92 TPa−1 was used for toluene.

4 Results

There are various instances when a coupled fully-polarizable QM/MM/PCM model is desirable.

We present and discuss here the study of two different cases.

The first case presented in Section 4.1 considers Donor–Bridge–Acceptor (DBA) systems in

which the donor and acceptor chromophores are treated quantum mechanically, the bridge is de-

scribed at MMPol level and the solvent is introduced as a polarizable continuum. The advantages

and limitations of such a mixed QM/classical description of the solute are discussed.

The second case where QM/MM/PCM is applied, in Section 4.2, considers instead a full-QM

solute surrounded by a solvent. The first solvation shell, comprising solvent molecules within

a certain distance (cutoff) to the solute, are described at MMPol level to exploit the structural
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information extracted from a molecular dynamics simulation (MD); PCM is used for the rest of

the solvent, beyond the cutoff distance.

4.1 MMPol description of the bridge in DBA systems

As described in the Introduction, in DBA systems the bridge may affect the excitation energy

transfer rates between the donor and the acceptor via two mechanisms: superexchange and medi-

ated Coulomb interaction. The first is a long-range through-bond mediated exchange interaction

involving the orbitals of the bridge; it resembles the electron transfer exchange interaction and

is quantum-mechanical in character. The mediated Coulomb interaction, on the other hand, is

electrostatic in character and depends on the polarizability of the bridge. It has been observed

that such interaction may either increase or reduce the donor/acceptor coupling (see for instance

Fückel et al. 28 and Chen et al. 30), and that the bridge effect is in general a complex phenomenon

dependent on the bridge orientation, and possibly characterized by anisotropic polarizabilities.12

For this reason, if one wants to carry out a mixed study on DBA systems, where the chro-

mophores are described at a QM level and the bridge at a lower level, a model retaining structural

information of the bridge and accounting for its anisotropic polarizability should be employed,

rather than averaged models. At the same time, full-QM models, where both the chromophores

and the bridge are treated quantum-mechanically, may be cumbersome and computationally expen-

sive. The polarizable MMPol model19 seems to be an ideal compromise, as it greatly reduces the

computational requirements of a full QM description, but at the same time correctly describes the

bridge charge distribution and polarizability. The first aim of this section is to investigate whether

such a classical polarizable description of the bridge correctly reproduces the enhancement of the

D/A coupling which has been observed in some DBA systems, and which has been ascribed to me-

diated Coulomb interactions. At the same time, we expect our model to fail whenever the bridge

effect is quantum-mechanical in character (e.g. in case of a superexchange effect).

Two families of DBA systems, characterized by a significant effect of the bridge on the elec-

tronic coupling, have been studied. The systems have been selected so to allow a direct comparison
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with the “exact” benchmark, e.g. a full QM description. The general approach followed here con-

sists in comparing the coupling results obtained when the bridge is treated quantum-mechanically

to those obtained when it is treated classically, with the MMPol model. The solvent is then con-

sidered as a PCM charge distribution, placed on the molecular cavity.

4.1.1 PDI-TDI and PMI-TDI systems

Previous studies on electronic energy transfer in a perylene diimide – terrylene diimide (PDI-TDI)

dyad, separated by a substituted terphenyl spacer (see Figure 1), have shown a strong deviation

from Förster behavior.49

TDI (acceptor)

O

O

O

O

O

O

O

O

Octyl

Octyl

N N N N

i-Pr

i-Pr

i-Pr

i-Pr

PDI (donor)

bridge

Figure 1: Structure of the PDI-TDI dyad investigated in this work.

The dyad is characterized by a weak electronic coupling; a QM study by Curutchet et al. 27 has

shown that the bridge does not affect the donor and acceptor transition energies, but it strongly

enhances the coupling by 56%, and also induces a slight delocalization of the donor and acceptor

transition densities over the bridge. The procedure followed in that study consisted in building

several systems comprising the chromophores and the three phenyl units, variously arranged. The

simplest of these models included no bridge at all, while the more complete ones included all three

phenyl units, differently arranged. The bridge phenyl units were always treated at a QM level,

either as part of the donor or the acceptor.

In the present study, we follow a similar procedure, defining four different QM models (M0,

M1, M2 and Mc) and one MMPol model (labelled MMPol). Model M0 includes the two chro-

mophores only, and no bridge; model M1 (model M2) includes one (two) of the bridge phenyl

units (see Figure 1), whereas Mc includes all the bridge phenyl units. We note that M1, M2 and

Mc models can be obtained in different ways; for example for M1 there are two possible configu-
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rations, one with the phenyl unit bound to the acceptor and the other with the same unit bound to

the donor. The number of alternative configurations increases for M2, which can be realized with

three alternative configurations, and for Mc, for which the configurations are four (PDIPh3/TDI

and the complementary one but also PDIPh2/TDPh and the complementary one). However, as

demonstrated by Curutchet et al.,27 the coupling depends much more strongly on the number of

phenyl units included in the picture, rather than on how these are arranged. In all the cases here

tested, the coupling differences between two configurations of the same model are always below

4%. The electronic coupling results we present in this section are therefore averaged over all the

possible different configurations for each model.

In the model labelled MMPol, a mixed QM/MM description of the DBA system is employed:

the chromophores are described at QM level, while the whole bridge (the three phenyl units) are

described as a classical polarizable distribution of point charges and induced dipoles, according

to the MMPol scheme. This model is clearly able to include eventual polarization effects of the

bridge, while disregarding all QM effects, and may therefore provide useful information on the

role of the bridge itself in the EET process.

For each model, two sets of calculations are run: one in vacuo and one in toluene; in the latter

case, the solvent is described at PCM level.

To
ta
l&c
ou

pl
in
g&
(c
m

/1
)&

0"

20"

40"

60"

80"

100"

M0" M1" M2" Mc" MMPol"

Vacuum"

Toluene"

Figure 2: Total coupling (cm−1) of the PDI-TDI dyad. Models M0, M1, M2, Mc and MMPol: see
text. Red bars: coupling in vacuo; blue bars: coupling in toluene, described through PCM.
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The couplings obtained are reported in Table 1 (exchange-correlation and overlap terms are

not reported as they are negligible). The total couplings are shown in Figure 2. Red bars refer to

calculations in vacuo, blue ones to those in toluene.

Comparing the QM models, M0 through Mc, we notice the strong coupling enhancement due

to the presence of the bridge between the chromophores; such effect is estimated in Table 1 as the

percentage difference between the total coupling of each model and that of M0. Including the full

bridge results in a 67% and 48% increase of the coupling in vacuo and in toluene, respectively, in

agreement with the previous studies.27

The MMPol model should be compared to the Mc one, as they both include the whole bridge,

although at different levels (QM and MMPol, respectively). From Table 1 we observe that the

Coulomb coupling term in the MMPol model is similar to that in the M0 model, which is reason-

able, while the enhancement effect of the bridge is accounted for in the explicit MMPol coupling

term, VMMPol. Comparing the total coupling from Mc and MMPol models, we observe that such

enhancement effect is roughly reproduced, although it is somehow underestimated by the MMPol

model, with errors around 13% both in vacuo and in toluene.

Assuming that the contributions to the coupling arise from both through-space polarization

effects and through-bond QM effects, and considering that the latter are completely disregarded by

the classical MMPol model, we can interpret the discrepancies observed between the two models

and estimate the through-space polarization effect of the bridge to be approximately ranging from

68% to 60% of the total coupling (as obtained from results in vacuo and in toluene, respectively).

Table 1: Electronic coupling (in cm−1) for the PDI-TDI dyad in toluene, arranged according to
various models (see text). (a): Estimate of the bridge contribution as the percentage difference
with M0 total coupling. (b): The values reported are the average over the different configurations
within the same model.

Vacuum Toluene
Model VCoul VMMPol VTOT B.C.(a) VCoul VMMPol VPCM VTOT B.C.(a)

M0 59.3 — 59.3 75.1 — −42.6 32.5
M1(b) 68.8 — 68.8 (16%) 84.1 — −47.8 36.4 (12%)
M2(b) 80.7 — 80.7 (36%) 93.7 — −52.9 40.8 (26%)
Mc(b) 99.1 — 99.1 (67%) 106.1 — −57.9 48.1 (48%)
MMPol 61.5 24.7 86.2 (46%) 76.4 17.5 −51.8 42.0 (29%)
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As pointed out in previous studies, the presence of the bridge does not significantly affect

the character of the electronic excitations in the chromophores. As an example, in Figure 3 we

show the HOMO and LUMO molecular orbitals of the donor molecule, whose S0→ S1 excitation

is dominated by the HOMO → LUMO transition, for both the M0 and the Mc models. When

the whole bridge is considered as part of the donor molecule (Mc model), the excitation is still

dominated by the same transition and the HOMO and LUMO do not seem to be significantly

distorted with respect to the M0 case (plots (a) and (b)), although the transition density shown in

plot (c) shows small contributions on the bridge atoms. Such a small delocalization of the transition

density over the bridge, already observed by Curutchet et al.,27 can be mediated by wavefunction

overlap, and thus may explain the disagreement between Mc and MMPol couplings observed in

Figure 2.

D DB3

(a)

(b)

(c)

Figure 3: HOMO (a) and LUMO (b) molecular orbitals, and ground to first excited state transition
density (c) of the isolated PDI (D) and the PDI-Bridge configuration (DB3). Surface isovalue 0.01
a.u. in (a) and (b), 0.002 a.u. in (c).

When the solvent is included in the picture, the resulting total coupling values (plotted as blue

bars in Figure 2) show an evident decrease due to the overall screening effect of the solvent, which

reduces the total coupling to up to 50% of the value in vacuo. In particular, see also the explicit

PCM term, VPCM, in Table 1, arising from the interaction of the donor transition density with the
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solvent polarization charges induced by the acceptor transition density (see Eq. (26)). The implicit

solvent effect on the Coulomb term, on the other hand, is positive (compare VCoul in vacuo and in

toluene).

Conversely, the presence of the PCM solvent induces a decrease of the explicit MMPol term,

VMMPol, which is reduced from 24.7 to 17.5 cm−1. This effect is caused by the solvent reaction

field opposing the field generated by the QM chromophores, and thus reducing the effective field

on the MMPol atoms and consequently their polarization.

The results on the PDI-TDI system show that most of the bridge effect can be reproduced

by a classical model; as a comparison, we performed a similar set of calculations on a related

DBA system, a perylene monoimide – terrilene diimide dyad with a ladder-type pentaphenylene –

phenylene bridge (PMI−pPh−Ph−TDI, shown in Figure 4). Contrary to the PDI-TDI, in this case

the bridge is strongly coupled to the donor unit, so that the optical spectra of the PMI-pPh molecule

change significantly with respect to those of the bare PMI.31 In this case, the PMI−pPh excitation

shows a strong charge-transfer character, so a purely electrostatic description of the D-B coupling

provided by the MMPol model is expected to break down.

To verify this prediction we have repeated the same analysis previously applied to PDI-TDI

dyad and we have compared different QM models including no bridge (M0 = PMI / TDI), the –Ph

unit (M1 = PMI / TDI-Ph), the –pPh unit (M2 = PMI-pPH / TDI) and the complete Ph-pPh bridge

(Mc = PMI-pPH / TDI-Ph). The whole bridge is also included in the MMPol model but in a fully

classical way. For each model, two sets of calculations are run: one in vacuo and one in toluene;

in the latter case, the solvent is described at the PCM level.

PMI (donor) TDI (acceptor)

pPh Ph

Figure 4: Geometry of the PMI-TDI dyad.
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Figure 5: Total coupling (cm−1) of the PMI-TDI dyad. Models M0, M1, M2, Mc and MMPol: see
text. Red bars: coupling in vacuo; blue bars: coupling in toluene.

As Figure 5 shows, the coupling enhancement effect induced by the pPh spacer is very large,

but it is almost completely lost in MMPol calculations, as expected. The results do not qualitatively

change when we include the solvent (toluene) but what we see is just a reduction of the coupling

due to the explicit PCM term.

4.1.2 ZnFbB(CH3)4 system

Another system studied is a porphyrin dimer. Several studies showed that dimers of Zinc (Zn)

and metal-free (Fb) porphyrins, linked by semirigid bridges, have interesting properties; in partic-

ular, some are characterized by a rapid and highly efficient energy transfer from the Zn-porphyrin

(donor) to the metal-free one (acceptor).50–52 We present here the results on one of these dimers,

having a diaryl-ethyne linker, referred to as ZnFbB(CH3)4 in the paper by Strachan et al.;52 its

structure is shown in Figure 6.

In order to assess the influence of the bridge on the coupling, and whether a classical description

is appropriate for it, we have built four models following what did before for the other two systems.

As before, model M0 completely neglects the bridge whereas Mc includes the entire bridge at QM

level. We note that, in Mc, the partition into donor and acceptor can be done either associating the
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Figure 6: Structure of the ZnFbB(CH3)4 dimer investigated in this work.

phenyl-ethyne unit to the Zn-porphyrin or the way around: here we report data only for first choice

as the results do not change in the other case. In addition, an intermediate M1 model is defined in

which only the two phenyl groups of the bridge are considered as parts of the QM chromophores

whereas the ethyne is neglected. Finally, in the model labelled MMPol the QM chromophores are

as in M0, but the whole bridge is included at the MMPol level.

Table 2 reports the excitation energies obtained in vacuo for the four models.

Table 2: Excitation energies, in eV, relative to the first four states of the donor and acceptor
chromophores of ZnFbB(CH3)4 dimer, in the four models considered.

Acceptor Donor
Model S1 S2 S3 S4 S1 S2 S3 S4

M0 2.14 2.36 3.45 3.54 2.35 2.35 3.54 3.57
M1 2.12 2.33 3.40 3.49 2.33 2.33 3.50 3.50
Mc 2.12 2.33 3.40 3.49 2.33 2.33 3.50 3.50
MMPol 2.14 2.35 3.42 3.52 2.35 2.35 3.53 3.53

Note the quasi-degeneration of states 1 and 2 and of states 3 and 4; this is more evident for

the donor chromophore, containing the Zn atom, because of the D4 symmetry, which is broken in

the metal-free porphyrin. Moreover, the results indicate that the effects of including the bridge are

very small (the changes from M0 to Mc are less than 1% for all states) and the MMPol description

correctly reproduces all the states with the respective quasi-degeneracies.

For what concerns the coupling results, we present in Table 3 the couplings between all possi-
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ble pairs of the bright states reported in Table 2 (the third and fourth excited states). The oscillator

strengths of these B-states are between 1.2 and 1.6, while those of the lower Q-states are approxi-

mately between 0.001 and 0.01.

Table 3: Electronic coupling terms in cm−1, in vacuo, between the strong B-states of the ZnFb
porphyrin dimer studied. Vi, j indicates the electronic coupling between the donor’s Si state and the
acceptor’s S j state.

V3,3 V3,4
Model VCoul VMMPol VTOT VCoul VMMPol VTOT

M0 59.1 — 59.1 48.8 — 48.8
M1 48.6 — 48.6 48.2 — 48.2
Mc 157.1 — 156.4 195.9 — 194.7
MMPol 86.0 46.3 132.3 88.1 50.9 139.1

V4,3 V4,4
Model VCoul VMMPol VTOT VCoul VMMPol VTOT

M0 62.5 — 62.5 85.7 — 85.7
M1 125.2 — 125.2 148.6 — 148.6
Mc 58.7 — 58.6 34.1 — 34.2
MMPol 53.5 -9.4 44.1 58.3 -8.8 49.4

For models Mx, the only important contribution to the coupling comes from the Coulomb

interaction, since exchange-correlation and overlap contributions (not reported) are negligible. In

order to compare the different models one has to take into account that shifts between the (quasi)

degenerate states are possible moving from one model to the other. In particular, from the analysis

of the data reported in Table 3 it is evident that introducing the full bridge induces a shift between

the states 3 and 4 in the donor. As a result V3,i of Mc corresponds to V4,i of M0 and M1 and

viceversa: this shift is exactly reproduced by the MMPol description.

To have a more direct analysis, in Figure 7 we report a graph of the total couplings obtained as

a sum of all the couplings listed in Table 3. Both results in vacuo and in toluene are shown.

We first analyze the vacuum results. Moving from M0 to Mc (i.e. including the bridge in the

picture) the coupling increases by 42%. Similarly, in MMPol model such enhancement is provided

by the MMPol coupling term, VMMPol, which explicitly accounts for the polarization effect of the

bridge: the Mc and MMPol difference is ca. 17%.

When introducing a continuum description of the solvent (toluene), we observe a reduction

of the total coupling, because of the explicit PCM term which opposes the Coulomb coupling.
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Figure 7: Total coupling (cm−1) in the ZnFb(CH3)4 dyad. Models M0, M1, Mc and MMPol: see
text. Red bars: coupling in vacuo; blue bars: coupling in toluene.

Again, moving from M0 to Mc results in a marked increase (40%) of the coupling; this is again

reproduced by the MMPol model, where the explicit MMPol term favors the Coulomb coupling

against the PCM term: the Mc and MMPol difference is ca. 16%, i.e. similarly to what found for

the PDI-TDI dyad.

From the results obtained for the PDI-TDI dyad and ZnFbB(CH3)4, we can conclude that

employing a classical polarizable description of the bridge, in DBA systems where there is no QM

mixing between chromophore and bridge orbitals, provides a reliable and quick alternative to the

full-QM treatment, and can be successfully coupled to an average polarizable description of the

solvent through a PCM description.

To complete the analysis, it is important to explore another applicability of the QM/MMPol/PCM

model, related to the description of the solvent effects. To this scope, we have compared three

different formulations to describe the solvent, namely a full continuum (PCM) decription, a full

atomistic (MMPol) description, and a mixed (MMPol/PCM) description: atomistic for the first

solvation shells, and continuum for the rest of the solvent. This final analysis is here performed on

the PDI-TDI dyad when immersed in toluene.
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4.2 Description of the solvent

Discrete and continuum models follow almost opposite approaches in describing the effect of the

solvent on QM solutes, and they may be thought as complementary for what concerns their advan-

tages and disadvantages. Discrete QM/MM models have the advantage of retaining information on

the solvent structure, and therefore of being able to describe short-range, specific solute–solvent

interactions with good accuracy. At the same time, in order to get a correct picture of the dy-

namic solute–solvent interaction, it is necessary to sample a large number of configurations from

a molecular dynamics simulation. Conversely, continuum solvation models describe the solvent in

an averaged way, and therefore do not need configuration sampling. However, the solvent struc-

tural information is lost, and specific solute–solvent interactions are neglected.

The idea beyond a mixed discrete/continuum modeling of the solvent is then to try and combine

the two models in order to exploit their complementary strengths: a discrete representation of the

solvent molecules at short range may correctly describe the specific interactions, even using a

relatively small number of configurations. For what concerns the average, long-range interactions,

a continuum model may be employed beyond the discrete shell of solvation.

With this in mind, we have carried out a study to verify the advantages of such mixed approach

in the calculation of the chromophore properties and electronic coupling of the PDI-TDI dyad in

toluene. First, we ran a classical MD simulation of the system and extracted 11 structures from the

trajectory. For each structure, several cutoff radii were applied, so that toluene molecules located

further than the cutoff from the closest QM atom were discarded. Cutoff values of 0 (with no

explicit solvent molecules), 3, 5, 8, 10, 15 and 30 Å were used. The average number of solvent

molecules, 〈nsolv〉, included in each case is reported in Table 4.

For each configuration, at each cutoff value, two coupling calculations are run, both describing

the PDI-TDI dyad at QM level (using the previous Mc model) and the explicit solvent molecules at

MMPol level. In one set, however, an extra PCM layer is considered to account for the long-range

solvent effect beyond the cutoff. We will refer to this set as QM/MMPol/PCM, while the set that

does not include the continuum solvent description on top of the discrete one will be referred to as
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Table 4: Average dimensions of QM/MMPol and QM/MMPol/PCM calculations. (a) The matrix
dimension is (Ntes+3Npol)

2; (b) for cutoff 8 Å the cavity is discretised into larger tesserae to reduce
the computational demand; (c) no QM/MMPol/PCM calculations run for cutoffs larger than 8 Å.

Cutoff Dimension / 106 (a)
/ Å 〈nsolv〉 〈Ntes〉

〈
3Npol

〉
QM/MMPol QM/MMPol/PCM

0.0 0 3564 0 0 13
3.0 50 14075 2235 5 266
5.0 73 17406 3276 11 428
8.0 169 20265 (b) 7605 58 777

10.0 235 — (c) 10590 112 —
15.0 428 — (c) 19272 371 —
30.0 558 — (c) 25110 630 —

QM/MMPol.

Before presenting the results, we recall that the computational complexity of the inclusion of

the environment effects can be roughly estimated considering the dimension of the MMPol, PCM

or MMpol/PCM matrices, depending respectively on (3Npol)
2, (Ntes)

2 and (Ntes + 3Npol)
2, where

Ntes is the number of tesserae forming the molecular cavity and Npol the number of polarizable

sites (in our case, the number of MM atoms). The average number of tesserae and polarizable sites

and the average dimension of the matrices are reported in (Table 4) for the different choices of the

cutoffs.

It is evident that each single QM/MMPol/PCM calculation is generally much more computa-

tionally expensive than each QM/MMPol one. However, the data reported in (Table 4) does not

include any possible optimization of the PCM description when combined to the MMPol. As a

matter of fact, it is reasonable to assume that when the first solvation shells are treated explicitly,

the additional PCM description can be treated with lower numerical accuracy than the case where

a pure PCM description is used. In particular, the quality of the mesh used can be significantly

reduced with a corresponding important reduction of Ntes. This and other numerical aspects of the

implementation have not been investigated in this paper but surely need to be optimized to obtain

the required efficiency: efforts in this direction are in progress.

Figure 8 shows the excitation energy of the chromophores (top: acceptor, bottom: donor) as

a function of the cutoff. The blue line represents the values obtained from a QM/MMPol picture,

24



2.60

2.65

2.70

Cutoff / Å
0 5 10 15 20 25 30

2.10

2.15

2.20

2.25

Excitation energy / eV

(a)

(b)

Figure 8: Excitation energies (eV) of the PDI-TDI chromophores (top: acceptor, bottom: donor) as
a function of the cutoff. The blue and the red line represent the values obtained from a QM/MMPol
and a QM/MMPol/PCM description, respectively.

where the QM solute is solvated by an increasing number of explicit solvent molecules at MMPol

level. Note that at cutoff 0 the calculation is a pure QM in vacuo (the relative value is shown as

a horizontal blue line). While more toluene molecules are included in the picture, the excitation

energy decreases from ∼ 2.23 and converges to ∼ 2.13 eV, for the acceptor, while it starts from

∼ 2.72 and converges to ∼ 2.63 eV, for the donor. The inclusion of discrete molecules therefore

lowers the excitation energy of ∼ 0.1 eV in both cases.

The red line of Figure 8, similarly, shows the excitation energy obtained from QM/MMPol/PCM

calculations, where the QM solute and discrete solvent molecules are enclosed in a PCM cavity

that simulates the long-range solvent response beyond the cutoff. The value at cutoff 0, where no

explicit solvent molecule is included, corresponds to the pure PCM calculation, and is indicated

by a horizontal red line. The QM/MM/PCM results clearly tend to the same value to which the

QM/MMPol result tend (∼ 2.13 and 2.63 eV for the acceptor and donor respectively); the calcula-

tions are run up to a cutoff value of 8 Å.
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Before analyzing the figure, we note that the values reported on this plots and on the following

ones refer to the average value from the 11 snapshots considered which have been proven to be

sufficient to represent averaged values for such a low interacting solvent as toluene. The error bars

show the standard deviation σ .

The observation of the different behavior shown by the blue and red lines in the figure provides

information on the different solvation approaches used. The first observation concerns the pure-

QM and pure-PCM values. If we take the value obtained at a cutoff of 30 Å as the reference value,

we firstly observe that the effect of the solvent is to lower the energy by ∼ 0.1 eV with respect

to isolated molecule, as noted before. The pure-PCM calculation provides an excitation energy in

very good agreement to the reference value but the solvent effect is somehow overestimated.

A second remark concerns the convergence speed. Both QM/MMPol and QM/MMPol/PCM

calculations tend to the same limit when the cutoff is increased, but the latter model, starting from

a closer value to the reference, seems much quicker in converging, and provides a very accurate

value (error∼ 0.3%) already at cutoff = 3 Å. The QM/MMPol model, on the other hand, converges

more slowly and provides results of comparable accuracy around a cutoff of 8 Å.

Similar conclusions can be drawn from the observation of Figure 9, where the transition dipole

moment relative to the S0→ S1 transition is shown for both the acceptor (top) and donor (bottom)

molecules. Again, as expected, the simple inclusion of a continuum solvent, with no explicit MM

molecules, provides results in good agreement to the limit value, although the effect of the solvent

is overestimated. Again, note the quicker convergence of the QM/MM/PCM model. Finally, we

note a small discontinuity in the convergence behavior of QM/MM/PCM results moving from 5 to

8 Å. This could be due to different settings in the tessellation of the PCM cavity: for cutoff 8 Å a

larger average area of the tesserae has been set, in order to reduce the number of tesserae and the

computational complexity. Such discontinuity is however negligible if compared to the standard

deviation of the sample.

Finally, in Figure 10, we present the results obtained for the electronic couplings. In all plots

we observe the same general behavior pointed out before: at cutoff 0, pure-PCM results are close
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Figure 9: Transition dipole moments (Debye) of the PDI-TDI chromophores (top: acceptor, bot-
tom: donor) as a function of the cutoff. The blue and the red line represent the values obtained
from a QM/MMPol and a QM/MMPol/PCM description, respectively.

to the reference value (cutoff=30 Å), but slightly overestimating the solvent effects; QM/MM and

QM/MM/PCM values tend to the same limit, but the latter converge more quickly. More in detail,

it is evident from inspecting Figure 10(a) that the inclusion of long-range solvent effects through

the PCM model greatly improves the estimate of the total coupling, even at very small cutoffs: the

pure-PCM value underestimates the reference coupling by only 5 cm−1, and the QM/MM/PCM

model converges at 8 Å. It can be argued from this behavior that the main solvent effect to the

total coupling is due to the average long-range polarization, well described at PCM level, while

short-range specific effects do not amount to more than 5 cm−1. This clearly depends on the nature

of the solvent itself and we expect a different behavior when different solvents are modeled.

The explicit solvent effects are shown in Figure 10(b); the QM/MM/PCM results, displayed

as a red line, contain both explicit solvent effects from the MM distribution and average effects

from the PCM distribution. These effects are shown separately as a green and an orange line,

respectively. The effect of the MMPol distribution in the QM/MM/PCM model (green line) is
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Figure 10: Electronic couplings (in cm−1) vs. cutoff radius for the PDI-TDI dyad: Total VTOT
(a) and Solvent VMMPol[+VPCM] (b) terms; solvent screening factor (c). Blue lines: QM/MM
calculation; red lines: QM/MM/PCM calculation. Green and orange lines: MMPol and PCM
individual contributions to the MMPCM coupling, respectively. The error bars (±σ ) for the 11-
configuration sample are shown.

very similar to the effect of the same distribution in the QM/MM model (blue line), while the

effect of the PCM contribution (orange line) is, as expected, responsible for lowering the total

MMPCM coupling closer to the reference limit. Moving to larger cutoff values, the PCM term

increases almost by the same amount the MMPol term decreases, which results in the relatively

small variation of the QM/MM/PCM coupling (red line) at different cutoffs.
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Finally, Figure 10(c) reports the solvent screening factor, s, which can be thought, in a simple

dipole–dipole picture, as the effective screening of the Coulomb interaction due to the solvent. It

is defined as: s = VTOT
VCoul

, so that VTOT = sVCoul. In Förster theory, s is calculated as the inverse of the

solvent refractive index squared, but other approximations exist, based on different assumptions.

The Förster screening factor is indicated in Figure 10(c) as a horizontal black line, and is in good

agreement with our pure-PCM result (horizontal red line), around 0.45. The limit of the QM/MM

and QM/MM/PCM calculations is also close, at around 0.5. This confirms our previous conclusion,

that the solvent effect is mostly an average, long-range effect, which is well reproduced by a pure

PCM model.22

5 Conclusions

We have presented the formulation, the computational implementation and some applications of a

fully polarizable QM/MM/PCM approach to describe EET processes in (supra)molecular systems

in condensed phase. The model allowed us to assess the possibility to describe solvent (screen-

ing) and bridge-mediated contributions to EET in solvated bridged bichromophoric systems based

on a classical polarizable description of the solvent and bridge regions, as suggested by recent

theoretical studies. In order to retain the structural information of the bridge and its anisotropic

polarizability, the molecular linker is described through a classical polarizable MM force field.

The solvent, conversely, can be described either using a classical MM description or a continuum

solvation model. Moreover, a mixed solvent description can also be adopted, where only the first

solvation shell is described explicitly, in order to retain specific solute-solvent interactions.

We have shown that the model is able to describe the bridge-mediated enhancement of the EET

coupling in different dyads (such as perylene linked by phenyl-based spacers and porphyrins with

a diaryl-ethyne linkers). We have also illustrated the limitations of the model which clearly cannot

be applied to describe the bridge effect in systems where the bridge is strongly coupled to the donor

moiety via charge transfer interactions.
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Moreover, we have shown that both MM and PCM models provide a good description of sol-

vent screening effects, and this choice should be considered depending on the system under study.

While it is advantageous to model solvation through PCM in homogeneous media such as a stan-

dard solvent, an atomistic MM force field can improve the description of the environment in het-

erogeneous systems, such as organic crystals, polymers, or biological macromolecules. Indeed, in

organic materials the separation between “bridge” and “environment” regions can be less straight-

forward, and thus a unified modeling of the whole system at the MM level allows to tackle both

effects on an equal footing. Even in a homogeneous solvent, it can be interesting to include the

first solvation shells at the MM level if strong specific solute-solvent interactions are expected to

be important. An atomistic MM description can also be used to provide insights on the role of

different structural regions of the system on the enhancement/screening of EET interactions, be-

cause the explicit environment-mediated contribution to the coupling can be dissected into atomic

or group contributions, as we showed recently for a photosynthetic antenna complex.22 On the

other hand, a dielectric continuum description of the environment (solvent) can be advantageous

whenever detailed structural information of the environment is missing, and prevents the need to

perform molecular dynamics simulations of the system and subsequently a number of EET cal-

culations in order to account for configurational sampling. Moreover, the easiness of continuum

models to be extended to very different environments such as interfaces, membranes, as well as

composite systems including metal nanoparticles,53 makes this integration with a polarizable MM

approach a very promising strategy to describe EET processes in systems of increasing complexity.
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