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Abstract 1 

The presence of human adenoviruses in recreational water might cause disease in the 2 

population upon exposure. Human adenoviruses detected by PCR could also serve as indicators 3 

of the virological water quality. In order to assess the applicability of human adenoviruses to 4 

the evaluation of the faecal contamination in European bathing waters, a real-time quantitative 5 

PCR assay was developed for the quantification of human adenoviruses in 132 samples 6 

collected from 24 different recreational marine and freshwater sites in nine European countries. 7 

Selected samples presenting positive nested-PCR results for human adenoviruses were 8 

analyzed using quantitative PCR and 80 samples from a total of 132 produced quantitative 9 

results with mean values of 3.2x10
2
 per 100 ml of water, human adenovirus 41 being the most 10 

prevalent serotype. Human adenoviruses were quantified in samples from all 15 surveillance 11 

laboratories. Statistical analysis showed no homogeneous linear relation between human 12 

adenoviruses and E. coli, intestinal enterococci or somatic coliphages concentrations in the 13 

tested samples when considering all the data together. Significant correlations between human 14 

adenoviruses and at least one of the other indicators were observed only when data from 15 

individual Laboratories were considered. The quantification of human adenoviruses may 16 

provide complementary information in relation to the use of bacterial standards in the control of 17 

water quality in bathing water.   18 

19 
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Introduction 1 

 2 

The presence of pathogenic microorganisms in faecally polluted recreational waters produces a 3 

perceived public health and economic problem, especially in countries which depend strongly 4 

on tourism. The European Bathing Water Directive (2006/7/EC) came into force in March 2006 5 

to protect the health of the European bathers. The adequacy of using bacteria as indicators of 6 

the microbial water quality has been questioned since viruses and protozoan cysts have shown 7 

to be more resistant to treatment and disinfection processes commonly applied in sewage 8 

treatment plants (Tree et al. 2003). However, the new Directive does not include the analysis of 9 

viruses as one of the microbiological parameters listed. Article 14 of the Directive highlights a 10 

special interest on scientific, analytical and epidemiological developments relating to bathing 11 

water quality including those in relation to viruses, and encourages the report of these 12 

developments. 13 

Human adenoviruses (HAdV) have been proposed as indicators of the presence of human fecal 14 

pathogens in the environment (Puig et al. 1998). HAdV have been demonstrated to be more 15 

prevalent than enteroviruses in water and shellfish (Pina et al. 1998), to be highly stable in the 16 

environment (Bofill-Mas et al. 2006) and highly resistant to disinfection treatments including 17 

UV radiation, especially adenoviruses 40 and 41 (Gerba et al. 2002; Thurston-Enriquez et al. 18 

2003). Moreover, adenoviruses have been included in the U.S Environmental Protection 19 

Agency’s contaminant candidate list (EPA CCL) and have been documented to be the second 20 

most significant cause of viral outbreaks in recreational waters (Sinclair et al. 2009). 21 

Adenoviruses contain a double-stranded DNA genome of approximately 35,000 bp. They may 22 

be excreted in faeces for months or years following infection and may cause both enteric illness 23 

and respiratory and eye infections (Crabtree et al. 1997). Infection may be caused by 24 

consumption of contaminated water or food as well as by inhalation of aerosols during water 25 

recreation (Sinclair et al. 2009).  26 
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HAdV have previously been detected in environmental samples by PCR-based techniques 1 

(Pina et al. 1998, Bofill-Mas et al. 2006; Xagoraraki et al. 2007, Albinana-Gimenez et al. 2 

2009).  Occurrence of HAdV in river and coastal waters has been recently reviewed by Jiang 3 

(Jiang, 2006). Although quantitative real-time PCR (qPCR) methods for the quantification of 4 

some HAdV serotypes in diverse environmental samples have been recently described (Bofill-5 

Mas et al. 2006; Choi and Jiang, 2005; Dong et al. 2009; Haramoto et al. 2007; He and Jiang, 6 

2005; Jiang et al. 2005; Van Heerden et al. 2005a; Xagoraraki et al. 2007), to our knowledge,  7 

quantitative data on the occurrence of HAdV in European recreational waters has only been 8 

reported in one European country (Muscillo et al. 2008). 9 

In this study, a real-time quantitative PCR assay (qPCR) was used for the quantification of 10 

HAdV in fresh and marine recreational waters of nine different European countries. The assay 11 

(Hernroth et al. 2002; Bofill et al. 2006) has previously demonstrated sensitive detection of the 12 

wide diversity of serotypes and has been used for the detection of HAdV in shellfish samples 13 

from divergent geographical areas (Formiga-Cruz et al. 2002) as well as for the monitoring of 14 

viral removal efficiency in a drinking-water treatment plant (Albinana-Gimenez et al. 2009), 15 

and for the detection and quantification of HAdV in different wastewater matrices (Bofill-Mas 16 

et al. 2006). 17 

In this study, developed as part of the VIROBATHE project (a European Union Research 18 

Framework 6 funded project), a total of 132 fresh water and seawater samples collected from 19 

24 different recreational sites in nine different European countries was analyzed for the 20 

presence of HAdV and the concentration of these viruses was estimated by qPCR. To evaluate 21 

the potential role of HAdV as an indicator of faecal contamination, the potential correlation 22 

between the HAdV genome copy numbers and bacterial and bacteriophage levels in these 23 

samples was also evaluated. 24 

25 
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Materials and Methods 1 

Environmental samples. In the bathing season of 2006, 10-L water samples were collected at 2 

approximately weekly intervals during the bathing season by 15 different laboratories from 3 

nine European countries (see Table 1 for a detailed list of countries), according to ISO 4 

19458:2006.  Samples were collected from 24 different sites representing typical seawater as 5 

well as freshwater bathing sites in the European Union. Samples were collected at least at six 6 

meters from the shore and 1 meter from the surface. Samples were processed within 24 hours 7 

after collection. 8 

A 10-L sample of artificial seawater or freshwater was used as negative control of the 9 

concentration step and an extra sample, spiked with HAdV2 virus grown on A549 cells, was 10 

processed as a positive control of the concentration process. 11 

 12 

Viral strains 13 

To confirm the applicability of the assay, a collection of supernatants obtained from 14 

adenovirus-infected cell cultures from routine clinical analysis comprising representative 15 

serotypes of HAdV species A (31), B (3, 7, 7b, 35), C (1, 2, 6), D (37) and F (40, 41) were 16 

tested using the qPCR protocol. 17 

During the study, the sensitivity of the qPCR assay applied in the different laboratories was 18 

tested by analyzing a commercial quantified suspension of HAdV5 DNA (ABI, Advanced 19 

Biotechnologies Incorporated. Columbia, Maryland, USA). 20 

 21 

Bacteriological analysis E. coli (EC) and intestinal enterococci (IE) levels present in the 22 

samples were determined by Bio-Rad miniaturized methods using culture in liquid media (most 23 

probable number) for the detection and enumeration of E. coli  (ISO 9308-3: 1998, water 24 

quality- Detection and enumeration of Escherichia coli and coliform bacteria – Part 3: 25 
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Miniaturized method (Most Probable Number) for the detection and enumeration of E.coli in 1 

surface and waste water) and enterococci (ISO 7899-1: 1998. Water quality – Detection and 2 

enumeration of intestinal enterococci – Part 1: Miniaturized method (Most Probable Number) 3 

for surface and wastewater) in bathing, surface, and waste water (ISO 7899-1 and ISO 9308-3).  4 

 5 

Bacteriophage analysis Somatic coliphage titres were determined following the double agar 6 

layer procedure as described in ISO 10705-2:2001, Detection and enumeration of 7 

bacteriophages. Part 2: Enumeration of somatic coliphages. 8 

 9 

Concentration of viral particles from seawater samples. Recovery of viral particles from 10-10 

L seawater samples was performed using either a procedure based on the use of cellulose 11 

nitrate membrane filters (Wallis and Melnick, 1967a; Wallis and Melnick, 1967b) and virus 12 

elution with glycine-skimmed milk buffer as described in (Bitton et al. 1979a; Bitton et al. 13 

1967b) or a method based on a one-step concentration of viruses by direct flocculation with 14 

skimmed milk (Calgua et al. 2008). 15 

 16 

Concentration of viral particles from freshwater samples. Recovery of viral particles from 17 

10 liters of fresh water was performed by applying a procedure based on the use of glass wool 18 

columns and elution with glycine-beef extract buffer as described previously (Vilaginès et al. 19 

1993).  20 

 21 

Nucleic acid extraction. Nucleic acids were extracted from 5-ml sample concentrates using 22 

NucliSense® reagents (Biomeriéux, Boxtel, The Netherlands). For the seawater samples 23 

concentrated by the methodology described by Calgua et al. (2008), NucleoSpin RNA virus F 24 
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(Macherey & Nagel, Germany), was used for extraction of nucleic acids. Nucleic acids were 1 

frozen until further qPCR analysis. 2 

Extracted viral nucleic acids were transported frozen when the qPCR assays were performed in 3 

a laboratory distant from the laboratory collecting and processing the samples. 4 

 5 

Construction of qPCR standards. The DNA concentrations of plasmid pBR322 containing 6 

the HAdV 41 hexon sequence (kindly donated by Dr. Annika Allard, University of Umeå, 7 

Sweden) was estimated using Genequant pro (Amersham Biosciences). Ten μg of each DNA 8 

were linearized with BamHI, purified with the QIAquick PCR purification kit (QIAGEN, Inc.), 9 

quantified again and serially diluted such that 10 µl of the sample contained 10
0
, 10

1
, 10

2
, 10

3
, 10 

10
4
, 10

5
 and 10

6
 copies of DNA. 11 

The stability of the standard DNA suspension was evaluated in 3 different eluents: DNA eluted 12 

with RNAse-free distilled water, Tris-EDTA, and the elution buffer provided in the 13 

NucliSens® kit from Biomerieux (Biomérieux, Boxtel, The Netherlands). Aliquots were kept at 14 

4ºC and -80ºC for 3h and two weeks and variations on Ct values were analyzed by applying the 15 

qPCR as described. The stability of standard suspensions resuspended in TE buffer were also 16 

evaluated by repeated analysis after more than two weeks of storage at 4ºC and -80ºC. 17 

 18 

qPCR assay for the quantification of HAdV DNA. Samples previously identified to be 19 

positive by nested-PCR (nPCR) analysis using the primers developed by Allard et al. (2001) 20 

were analyzed by qPCR. The assay applied in this study was been described by Hernroth et al.  21 

(2002) and is based in the amplification of the HAdV hexon gene. Amplifications were 22 

performed in a 25-µl reaction mixture
 
containing 10 µl of DNA and 15 µl of TaqMan 23 

Universal PCR Master Mix (Applied Biosystems) containing 0.9 µM of each primer (AdF and 24 

AdR) and 0.225 µM of fluorogenic probe (AdP1) for HAdV detection. TaqMan Universal 25 
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PCR Master Mix was supplied in a 2X concentration and contained AmpliTaq Gold DNA 1 

polymerase, dNTPs with dUTP, ROX as passive reference, optimized buffer components and 2 

AmpErase uracil-N-glycosylase.  3 

Following activation of the uracil-N-glycosylase (2 min, 50ºC) and activation of the AmpliTaq 4 

Gold for 10 min at 95ºC, 40 cycles (15 s at 95ºC and 1 min at 60ºC) were performed in the 5 

detection system currently used in every laboratory: Stratagene Mx3000P, ABI Sequence 6 

Detection System 7000 and LightCycler 480. 7 

Neat and a ten-fold dilution of the DNA suspensions were run in duplicate (4 runs/sample) for 8 

analyzing environmental samples whereas each dilution of standard DNA suspensions (from 9 

10
0
 to 10

6
) was run in triplicate. In all qPCRs the amount of DNA was defined as the mean of 10 

the data obtained. Standard precautions were applied in all assays, including separate areas for 11 

the different steps of the protocol and addition of non-template control (NTC) and non-12 

amplification control (NAC) to each run. The presence of enzymatic inhibitors in the samples 13 

was evaluated by adding 10
4
 GC of target DNA as an external control to the environmental 14 

samples assayed.  15 

 16 

Sequence analysis of the PCR products obtained by nPCR.  The amplicons obtained after 17 

nPCR assays of HAdV were purified using the QIAquick PCR purification kit (QIAGEN, Inc.). 18 

Purified DNA was directly sequenced with the ABI PRISM Dye Terminator Cycle 19 

Sequencing Ready Reaction kit version 3.1 with Ampli Taq DNA polymerase FS (Applied 20 

Biosystems) following the manufacturer’s instructions. The conditions for the 25-cycle 21 

sequencing amplification were: denaturing at 96ºC for 10 s, annealing for 5 s at 50ºC and 22 

extension at 60ºC for 4 min. The nested primers nehex3deg and nehex4deg described by Allard 23 

et al. (2001) were used for sequencing at a concentration of 0.05 µM. 24 
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The results were checked using the ABI PRISM 377 automated sequencer (Perkin-Elmer, 1 

Applied Biosystems). The sequences were compared with the GenBank and the EMBL 2 

(European Molecular Biology Library) using the basic BLAST program of the NCBI (The 3 

National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/BLAST/). 4 

Alignments of the sequences were carried out using the ClustalW program of the EBI 5 

(European Bioinformatics Institute of the EMBL, http://www.ebi.ac.uk/clustalw/). 6 

 7 

Statistical analysis In order to measure the correlation between HAdV genome copy 8 

numbers with the three other quantitative biological indicators (E. coli (EC), intestinal 9 

enterococci (IE), and somatic coliphages (SC) a synthetic approach based on a linear model 10 

was applied, simultaneously taking into account the possible effects of the water type and the 11 

laboratory. The variables were first transformed by using the log(x+1) function. With all the 12 

quantitative variables transformed, the model included the following sources of variation: (1) 13 

type of water, a fixed factor with two levels (marine or fresh), denoted by α in the equation 14 

below, (2) laboratory, a nested factor to water type, according to the Anova terminology, and 15 

denoted by β in the equation, and (3), the interaction between the laboratory and the covariate 16 

included in the model (EC, or IE or SC). This latter parameter is denoted by γ. We thus have 17 

three separate models including in each one a different covariate. For the three models, the 18 

following generic equation is applied: 19 

( ) ( )ijk i j i j i ijk ijky x e         20 

In the equation, yijk is the log transform of HAdV, xijk the log transform of the biological 21 

indicator considered (EC, or IE or SC) and eijk is the error term of the linear model. The sub 22 

indexes denote that the data correspond to the k sample in the j laboratory on the i water type. 23 

In the Anova literature, it is a classical model which allows testing on several groups the 24 

equality of the slopes of a linear relation between two variables.  25 

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/clustalw/


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 

 

Notice that if the Anova table shows the interaction γ term to be statistically significant, it must 1 

be interpreted that the slopes of the linear relation between x and y are different for some 2 

laboratories. If such is the case, the analysis must be conducted separately on each laboratory's 3 

data to estimate the linear relation between the variables. That is, the model must be reduced to 4 

the ordinary simple linear regression, splitting the full data set into several subsets 5 

corresponding to each laboratory: 6 

ijk ijk ijky x e     7 

All the statistical tests were computed using the statistical package Spss 15.0.1 (Spss Inc., 8 

Chicago, IL, USA).  9 

10 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 

 

Results 1 

Specificity and sensitivity of the qPCR. The assay was selected for the quantification of 2 

HAdV in bathing waters because it was shown previously that the sensitivity of this assay was 3 

significantly higher than that obtained by other qPCR assays (Bofill-Mas et al. 2006).  4 

The specificity of the assay was confirmed with a wide range of strains isolated by cell cultures 5 

from approximately 100 clinical samples. Serotypes of human adenovirus species A 6 

(adenovirus 31), B (3, 7, 7b, 35), C (1, 2, 6), D (37) and F (40, 41) were quantified by applying 7 

the HAdV qPCR assay here described. High concentrations of human polyomaviruses JCPyV 8 

and BKPyV, commonly present in urban sewage samples, were not detected by using the 9 

HAdV qPCR assay (data not shown).  10 

The sensitivity of the assay was estimated to be 1-10 genome copies ( GC ) based on the data 11 

obtained in 20 different HAdV qPCR runs using synthetic plasmid DNA and the quantification 12 

of the commercial quantified suspension of HAdV5 DNA (ABI, Advanced Biotechnologies 13 

Incorporated. Columbia, Maryland, USA).  A fluorescent signal was obtained in 90% of the 14 

runs when analyzing 10
0
 GC according to spectrophotometrical measurements of standards. 15 

Thus, the sensitivity of the assay was confirmed to be between 1 to 10 GC for HAdV 5. The 16 

commercial standard was used as an intra laboratory control in all the laboratories performing 17 

qPCR analysis. 18 

 19 

Stability of the DNA used as standard 20 

To guard against the degradation of the qPCR standard DNA, stability was determined 21 

following storage for three hours at 4°C and -80°C in one of: molecular grade water, TE, or 22 

Biomérieux kit elution buffer.  No significant differences were observed after storage of the 23 

DNA with the different eluents at -80ºC for 3h and 2 weeks. Ct values showed differences 24 

between different eluents and between different temperatures lower than 1 Ct. Moreover, 25 
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during the study aliquots of plasmids resuspended in TE were kept at 4ºC for more than 2 1 

weeks and no differences in the Ct values were observed during qPCR reactions.. 2 

 3 

Virus recovery efficiency from water samples 4 

HAdV2 virus preparations were used to spike positive control samples before concentration 5 

and nucleic acid extraction in order to quantify the recovery efficiency of the methods used.  6 

The concentration method applied to determine the recovery of viruses from freshwater 7 

samples (glass wool concentration) showed an efficiency ranging from 6% to 81.5%. Two 8 

different concentration protocols had been applied to marine samples: a nitrocellulose 9 

negatively-charged membrane filter-based method showed highly variable recoveries ranging 10 

between 1.9% and 35.4% whereas one-step concentration by skimmed milk flocculation 11 

showed recoveries of 42.5-52.0% as described by Calgua et al. (2008). 12 

 13 

Quantification of HAdV in recreational waters. A total of 132 nPCR HAdV positive 14 

seawater and freshwater samples were analyzed by the qPCR assay in different laboratories. 15 

The results obtained are summarized as mean values of all samples tested at each collection site 16 

(Table 1). 17 

Eighty out of 132 samples (60.6%) tested positive with a mean value of 3.2x10
2
 GC/100ml of 18 

water. The percentage of positive samples was similar in both types of bathing water tested: 19 

59.6% for marine and 61.3% for freshwater samples and mean values were 9.1x10
2
 (3.3x10

1
-20 

2.0x10
3
) and 5.6x10

1 
GC/100 ml (4.2x10

0
-1.1x10

2
) of marine and freshwater, respectively. 21 

Forty-seven samples were further typed by nPCR and sequenced: HAdV serotypes 12, 19, 31, 22 

40 and 41 sequences were obtained with Ad41 being the serotype most commonly found. 23 

 24 

Correlation of HAdV genome copy numbers with bacteria or/and bacteriophage titres 25 
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The relation between HAdV and the other microbiological parameters observed was highly 1 

variable and the statistical analysis of the data showed no significant correlation between the 2 

numbers of HAdV, bacterial standards and somatic coliphages analyzed.   3 

For every covariate analyzed, table 2 shows strong evidence against equality of the slopes (p-4 

values<0.05). There was also strong evidence against equality on the mean of HAdV detected 5 

by the laboratories (p-values<0.05), but not in the water type (p-values>0.05). The analysis of 6 

the residuals (not shown) confirms the adequacy of the log-transformation on the variables. 7 

Because the laboratory origin has significant effects on the slopes of the model for the three 8 

covariates (E.coli, IE, SC) the samples were analyzed separately. The linear regression analysis 9 

showed a significant linear relation between HAdV and the different variables tested in four 10 

laboratories (Table 3).  11 

  12 

13 
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Discussion 1 

In order to have rapid quantitative information on the level of fecal contamination in the 2 

recreational waters studied, a standardized quantitative real-time PCR assay was applied to the 3 

specific quantification of HAdV in recreational water samples. Cell culture assays, though 4 

providing quantitative information on infectivity have a very high cost and take several days to 5 

produce a result. Moreover, not all HAdV produce a distinct cytopathic effect in culture.  The 6 

study presented was part of the VIROBATHE project that had as its main objective of 7 

evaluating the feasibility of trans-European analysis of viruses in recreational waters. The 8 

samples analyzed were selected on the basis of the results obtained by nPCR during a 9 

surveillance study including 15 European participant laboratories from nine different countries. 10 

The overall objective of the present study was to evaluate the applicability of the quantification 11 

of HAdV by qPCR as an index of the presence of human faecal contamination in European 12 

recreational waters. 13 

HAdV were detected and quantified in both marine and freshwater collection sites including 14 

sites that, according to the European Bathing Water Directive (2006/7/EC), would be classified 15 

as bathing sites with good or excellent water quality, indicating that these are not free of the 16 

presence of HAdV DNA. However it should also be acknowledged that although HAdVs are 17 

known to be more stable than bacterial standards in the environment, especially in sea water 18 

and in most water treatments (Calgua et al. 2008; Albinana-Gimenez et al. 2009), the presence 19 

of viral DNA does not necessarily indicate the presence of infectious viruses. However, as part 20 

of the VIROBATHE project, the infectivity of HAdV was evaluated in some representative 21 

samples by ICC-PCR (Dong et al. 2009) and infectious HAdV were recovered from collection 22 

sites of laboratories 4, 10 and 13. 23 

It is also important to notice that in some cases (for instance, in site 2), during the bathing 24 

period, considerably high concentrations of chlorine are added to the discharged wastewater  25 
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and this fact may influence the relation between bacterial standards that are more easily 1 

inactivated than HAdV, that are more resistant to chlorine disinfection. In addition chlorine-2 

inactivated adenoviruses may produce positive qPCR results in the absence of detectable 3 

infectious particles. This could be the explanation for the significant negative correlation 4 

observed between HAdV and E. coli concentrations in the collection sites of Laboratory 2 5 

(Table 3). 6 

Standardization of the qPCR assay described was straightforward. Frozen nucleic acid 7 

extractions from overseas laboratories were transported without major problems during this 8 

study, and the DNA used as standard in the qPCR assays was also shown to retain high stability 9 

under different storage conditions. 10 

The percentage of positive samples from the total number of samples collected in the study 11 

could not be evaluated, since qPCR was done on samples which had already tested positive by 12 

nPCR. However, as expected, high variability in the percentage of positivity has been observed 13 

in other studies (Van Heerden et al. 2003, 2005b; Miagostovich et al. 2008; Verheyen. 2009). 14 

The methods applied in the study, represent low cost methods with acceptable values of 15 

recovery efficiencies, for marine samples concentrated by nitrocellulose membranes (1.9-16 

35.4%) while alternative concentration methods by flocculation with skimmed milk showed 17 

more homogeneous recoveries (42.5-58%). Variable recoveries ranging from 6% to 81.5% for 18 

freshwater sample concentrated by using glass wool were obtained.   19 

Not only some of the previously positive samples by nPCR were negative for qPCR but also 20 

some samples which had previously tested negative by nPCR produced positive results by 21 

qPCR (data not shown). Observed differences between nPCR and qPCR may be due to several 22 

factors such as small differences in sensitivity of qPCR and nPCR, different responses to 23 

enzymatic inhibition between qPCR and nPCR.  qPCR because reduce the manipulation of the 24 

sample compared to nPCR and is less prone to PCR contaminants than conventional nPCR. 25 
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It should be also considered that when HAdV are present in concentrations near the limit of 1 

detection of the technique the analysis of different replicates may show different results.  2 

Enzymatic inhibition has been observed by other authors when applying qPCR to 3 

environmental samples (e.g. Jiang, 2005). In our hands, enzymatic inhibition had been 4 

observed when applying the assay to samples with higher level of contamination (Bofill-Mas et 5 

al. 2006) and also in this study was observed in some of the sites studied in the undiluted 6 

sample.  This inhibition is not inherent to qPCR as it has also been observed during this study 7 

when analyzing these samples by conventional nPCR techniques. Future efforts should be 8 

conducted to decrease enzymatic inhibition of samples to be tested by qPCR. 9 

Different HAdV serotypes have been observed in positive qPCR, with HAdV 41 being the 10 

most commonly isolated serotype. The high prevalence of HAdV 41 in the samples studied is 11 

in accordance with what has been previously reported (Haramoto et al. 2007; Xagoraraki et al. 12 

2007).   13 

Statistical analysis evaluating potential correlations between the numbers of HAdV obtained in 14 

the study and the observed concentrations of IE, E. coli and SC in the tested samples showed 15 

no homogeneous linear relation between HAdV and the other variables when considering all 16 

the data.  17 

The analysis of the linear model showed that the water type had no significant effects on the 18 

HAdV concentration measured. It shows also that the linear relation between HAdV and the 19 

other variables is not homogeneous across the laboratories and separate linear regressions show 20 

that only in 3 laboratories (4, 9 and 10) there is a significant correlation coefficient between 21 

HAdV and at least one of the covariates.  22 

The qPCR methodology applied appears to be a technology feasible to standardise and to be 23 

repeatable in routine laboratories. The HAdV qPCR assay provides a quantitative estimation of 24 

the presence and sources of faecal contamination in the water and should be considered as a 25 
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molecular index providing complementary information for the control of water quality in 1 

bathing water.   2 

3 
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Figure legends 1 

Figure 1. Comparison between mean value of IE and HAdV GC per 100 ml of water in the 2 

studied sites. Lines in bold indicate the maximum level of IE per each type of water (coastal 3 

and transitional or inland) required for good quality waters (based upon a 95-percentile 4 

evaluation) as established in the European Bathing Water Directive (2006/7/EC). 5 

 6 
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Table 1. Mean  HAdV GC values observed per 100 ml of bathing water collected from different sites (countries). Mean values of E. coli , 

intestinal enterococci and somatic coliphages per 100 ml of water are also shown. 

Samples Bacteria and phages HAdV 

Site number (Country) 
E. coli 

CFU/100ml 

Intestinal enterococci 

CFU/100ml 

Somatic coliphages 

PFU/100ml 
+qPCR/+nPCR

a
 

HAdV range 

(GC/100ml) 

HAdV mean value 

(GC/100ml) 

MARINE 

2 (Italy) 

 

<15-30  

 

<15 

 

50-100 

 

17/24 

 

10.1-6482 

 

1.8E+03 

8 (UK) 400 108 1414 2/3 30.9-45.8 3.8E+01 

9 (Spain) 2418 2418 4122 4/10 44.5-384 1.4E+02 

13 (Italy) 473 263 31 7/9 10.2-13640  2.0E+03 

14 (Portugal) 1310 252 NTb 3/10 2.3-94.8  3.3E+01 

15 (Cyprus) 46 77 NT 0/1   

Total seawater    33/57  9.1E+02 

FRESHWATER       

3 (UK) 2319 25008 750 4/8 4.8-213.3 7.4E+01 

4 (The Netherlands) 179 46 430 3/14 43.2-89.8 6.4E+01 

5 (Italy) 45 538 333 3/3 3-95.6 5.0E+01 

6 (Germany) 9982 1511 2131 9/10 1.7-133.6 4.3E+01 

7 (France) 12606 1791 1115 9/10 29.8-228.1 6.5E+01 

10 (Germany) 3590 106 675 5/10 50.8-298.  1.1E+02 

11 (Germany) 1392 1455 1733 3/6 0.6-63.2  2.2E+01 

12 (Poland) 284 0 7.2  7/10 3.3-47.2 4.2E+00 

16 (UK) 495585 9389 6788 4/4 13.1-202.8 7.4E+01 

Total freshwater    47/75  5.6E+01 

Total marine + freshwater    80/132  3.2E+02 

 
a 
Number of positive QPCR samples out of total of analyzed nested PCR positive samples 

b 
Non tested 

Table 1
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Table 2. P-values corresponding to the different Anova tests. Each column  

corresponds to a model including one covariate.   

 
 

Source of variation E.coli IE SC 

Water type 0.497 0.048 0.108 

Laboratory < 0.001 0.001 0.007 

Covariate slope 0.001 0.015 0.031 

R
2
 0.486 0.432 0.417 

 

 

 

Table 3. Laboratories showing significant linear relations between HAdV 

concentration and other microbiological parameters studied in the samples tested. 
Correlation coefficient and p-value (in parentheses) of the linearity test are shown. 

 

Laboratory code E.coli IE SC 

Laboratory 2 -0.46 (0.037)   

Laboratory 4 0.62 (0.025) 0.65 (0.015) 0.66 (0.015) 

Laboratory 9 0.72 (0.020)  0.69 (0.029) 0.72 (0.021) 

Laboratory 10 0.74 (0.015)    
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