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1. SUMMARY 

In the early 1960s, a way to synthesize superfluid helium nanodroplets was found, and in 

1990 the capture of atoms and molecules by helium nanodroplets was reported for the first time. 

In this work, an introduction into the field of the doped superfluid helium nanodroplets is given 

with emphasis on the chemical perspective. The fundamental background of all the aspects 

discussed is explained, always keeping in mind that the aim of this work is to provide a first contact 

to this interesting but intricate topic. Here, we present a brief introduction on the superfluid helium 

nanodroplets, followed by a review on the most important experimental and theoretical methods 

available to investigate these systems. 

In the experimental section, the most relevant techniques used to extract information from 

helium nanodroplets are shown. Spectroscopic techniques allow to elucidate the structures of the 

impurities in the nanodroplets. Pump-probe laser techniques provide a way to determine dynamic 

information that deepens our insight on very low-temperature chemical reactions among other 

processes. The special properties of helium nanodroplets allow us to find new products, such as 

metastable pre-reaction complexes, cold-channel products and even complex nanostructures 

unobtainable otherwise. 

In the theoretical section, the different methods available to simulate chemical phenomena 

occurring within helium nanodroplets are reviewed. Fully quantum mechanical structure 

calculations are beyond the computational possibilities for nanodroplets of hundreds or thousands 

of He atoms and the description of the systems must be carried out employing a hybrid approach. 

In structure investigations helium nanodroplets are described using density functional theory, 

while the impurities (atoms or molecules) can be described employing ab initio or classical 

approaches depending on the system studied. Dynamic studies have recently been developed 

using similar hybrid methods. Generally, the impurities are described using quantum or classical 

mechanics and the superfluid helium is described using time dependent density functional theory. 

Several methods that use different approaches can be applied to investigate processes involving 

doped helium nanodroplets. 
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2. RESUM 

Als inicis de la dècada del 1960, es va trobar una forma de sintetitzar nanogotes d’heli 

superfluid, i al 1990 es va reportar per primera vegada la captura d’àtoms i molècules per les 

aquestes nanogotes. En aquest treball es fa una introducció al camp de les nanogotes d’heli 

superfluid dopades, amb especial èmfasi en la perspectiva química. També es donen els 

fonaments necessaris per entendre els temes tractats, tenint en compte en tot moment que 

l’objectiu d’aquest treball es proporcionar un primer contacte amb aquest interessant però 

complicat camp. En les següents pàgines, presentarem una breu introducció a les nanogotes 

d’heli superfluid, seguida d’una revisió dels mètodes experimentals i teòrics disponibles per 

investigar aquests sistemes. 

En la part experimental, es donen les tècniques més rellevants utilitzades per extreure 

informació de les nanogotes d’heli. Les tècniques espectroscòpiques permeten desxifrar les 

estructures de les impureses dins les nanogotes. Mitjançant mètodes làser de “pump-probe” 

podem extreure informació de la dinàmica de les reaccions químiques a baixes temperatures, a 

més d’estudiar altres processos. Les propietats especials de les nanogotes d’heli ens permeten 

trobar nous productes, com complexos de pre-reacció metaestables, productes resultats de 

reaccions a baixes temperatures i, fins i tot, complicades nanoestructures que no poden obtenir-

se de cap altra manera. 

A la secció teòrica, es mostren els diferents mètodes disponibles per simular processos 

químics que tenen lloc a les nanogotes d’heli. Els càlculs d’estructures de nanogotes de 

centenars o milers d’àtoms d’heli i no es poden obtenir  mitjançant només mecànica quàntica, ja 

que són massa cars computacionalment. Cal recórrer a mètodes híbrids, on les nanogotes es 

descriuen mitjançant la teoria del funcional de la densitat i les impureses (àtoms o molècules) es 

poden considerar mitjançant mètodes de mecànica clàssica o ab initio, en funció del sistema 

estudiat. El estudis de dinàmica s’han desenvolupat recentment, utilitzant mètodes híbrids 

similars. En general, les impureses es descriuen utilitzant mecànica quàntica o clàssica, mentre 

que l’heli es descriu utilitzant la teoria del funcional de la densitat depenent del temps. Diversos 

mètodes de dinàmica es poden aplicar per investigar processos en les nanogotes d’heli dopades. 
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3. INTRODUCTION 

3.1. HELIUM AND SUPERFLUIDITY 

During a solar eclipse in 1868, the spectrum of the Sun was recorded for the first time, 

providing the first evidence of the helium element. It was not until 1882 that L. Palmieri found the 

same evidence from measurements of the lava of the Mount Vesuvius, being this the first time 

that helium was detected on Earth [1]. 

H. K. Onnes was the first one to liquify helium in 1908 [2]. It was found that two different liquid 

helium phases existed, one above 2.17 K (at 1 atm), named Helium-I, and one below, named 

Helium-II [3,4]. This phase transition presented some interesting properties, for instance, a 

maximum in the liquid density and a very high peak in its heat capacity [5]. 

However, the most important property of Helium-II is its superfluid behaviour. Below the 

transition temperature, named critical temperature or 𝑇𝜆, a fraction of the atoms exists in their 

lowest possible energy level that can be described by a collective macroscopic wavefunction, i.e. 

they behave as a Bose condensate. 

The information given refers to 4He specifically, but there is another isotope of helium found 

in nature, 3He. The behaviour of the two isotopes differs vastly due to their different nature. 3He 

is a fermion and cannot normally form a Bose condensate. Interestingly, superfluid behaviour is 

observed at temperatures below 0.003 K, when 3He atoms can form pairs that become bosons, 

being able to behave as a condensate [6]. Furthermore, let us note that 3He is ~106 times less 

abundant than 4He [7], which limits its practical applications. 

In 1938 Tisza proposed the two-fluid model, which considers helium as a mixture of a normal 

liquid and a condensate following different behaviours [8]. Three years later Landau extended this 

idea considering the elementary excitations of a quantized liquid, phonons and rotons. The 

superfluid could be described as a fraction being in its fundamental state and another fraction that 

was excited. Landau proposed that below a critical velocity, namely, Landau’s critical velocity, no 

elementary excitations occurred, and a friction-less flow took place. In the case of 4He this velocity 

is around 58 m·s-1 [9]. Note that Landau did not relate superfluidity with Bose condensates at any 
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point. It was Bogoliubov, in 1947, who proved that in a Bose-Einstein condensation there are no 

individual particle excitations but only collective modes, a situation in which superfluidity could 

arise [10]. 

3.2. HELIUM NANODROPLETS 

Due to the extremely low interaction of helium with other substances, helium is a rather bad 

solvent. In fact, the substances will interact significantly more with the surfaces of the container 

and the impurities of the liquid than with the helium itself. Thus, alternatives must be found to use 

helium as a cryogenic agent for atoms or molecules, where these species cannot interact with 

anything else than the helium. This is accomplished removing completely the helium container 

and using helium droplets instead. 

The scheme of a typical apparatus used to generate helium droplets is depicted in Figure 1. 

By creating a pressure difference between the helium compartment and the chamber where the 

nozzle is, a flow of helium will appear. This was first made by Becker in 1961, who already studied 

the dependence of some properties of the droplets with the temperature [11].  

The nozzle must be at very low temperatures in order to obtain helium droplets (roughly 

between 10 and 40 K depending on the pressure difference applied). When the atoms flow 

through the cold nozzle they condensate in aggregates of several thousands of atoms. 

Aggregates travelling through the low pressure chamber undergo evaporative cooling, until an 

equilibrium temperature is reached (0.37 K for 4He and 0.15 K for 3He) [6,9]. The droplets cool 

down to around 1 K within less than 10-8 s, arriving at the steady temperature in about 10-3 s [12]. 

The higher the temperature of the nozzle is the more atoms will evaporate from the droplet and, 

consequently, the smaller the droplets will be.  

Figure 1. Schematic representation of a spectroscopic experiment with helium nanodroplets [13]. 
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Furthermore, since this process is statistical, a distribution of different sizes of droplets will be 

obtained, which can be described by a log-normal distribution (∆𝑁 ≈
⟨𝑁⟩

2
, i.e. the width of the 

distribution is proportional to the size of the droplets). The diameter of the droplets ranges from 1 

to 10 nm, and are usually referred to as nanodroplets. 

Note that, in the case of 4He the temperature of the nanodroplets is significantly below the 

critical temperature. Hence, the droplets are constituted by superfluid helium, and possess some 

interesting properties that will be discussed in the following sections. 

4. OBJECTIVES 

This work aims to provide an introduction to the field of superfluid helium nanodroplets, 

delivering a collection of the most relevant literature from its beginning to the present day. 

Moreover, our main focus will be the chemical perspective of helium nanodroplets and all the 

available experimental and theoretical methodologies available to study them.  

Initially, we will review the most important and generally used experimental techniques. Then, 

the theoretical approaches will be presented. Along these two sections, the chemical processes 

of interest will be described, using practical examples in the explanations of the techniques and 

methods reviewed.   
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5. EXPERIMENTAL TECHNIQUES 

Chemistry is an empirical science; hence, its foundations rely on the information extracted 

from natural processes. The helium nanodroplet field is not different, and over the years, different 

experimental techniques have been designed and optimized in order to probe these systems. 

In this section, the most common and generally used techniques to study the chemical 

phenomena involving helium nanodroplets will be presented and discussed. A general scheme of 

these techniques is presented in Figure 2. 

Figure 2. Scheme of the experimental techniques discussed in this work. 

5.1. DOPING NANODROPLETS 

Liquid helium and helium nanodroplets are remarkable systems, having properties and 

behaviours worth studying by themselves. However, as chemists we may ask ourselves how we 

can take advantage of these properties to find new chemical applications or synthetic routes. 

By introducing other molecules, namely, impurities or dopants, inside the nanodroplets, we 

can study how a very cold and inert matrix affects them. It was 1990 when Scheidemann and 

Toennies reported the first doping experiment, where they found that helium nanodroplets 

(HeNDs) captured single atoms [14]. The same year, the capture of several other species and a 

comparison between three capture methods was published by the same group, which indicated 

that the setup shown in Figure 1 was the optimal [15]. 
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The position of the impurity in the nanodroplet depends on the strength of the interaction 

between the helium and the dopant and the energy required to create a cavity in the droplet. Thus, 

if the capture takes place, the impurity can be fully solvated inside the droplet or reside in its 

surface, leading to a dimple structure. F. Ancilotto et al. [16] provided an equation to predict the 

position of the impurity based on the well depth and position of its interaction potential with helium. 

Once the doping process was readily achievable, the effects of the superfluid helium 

environment on the molecules placed inside could be studied. A number of experimental 

techniques have been developed to examine these systems. 

5.2. MASS SPECTROMETRY 

Mass-spectrometry (MS) is one of the most used techniques in chemistry. Briefly, a sample 

is ionized, usually via electron bombardment. Then, aided by a magnetic field or an electric 

potential field, in case we use circular paths to divert the ions [17] or we use a Time-of-Flight-MS 

(TOF-MS) [18], respectively, the ions are accelerated until they arrive at the detector. The 

acceleration suffered by the ions is proportional to the charge to mass ratio (𝑧 𝑚⁄ ). Since the 

acceleration of each ion of different charge to mass ratio is different, they can be separated and 

identified. 

This technique is used in many fields of science in order to identify the components of a 

sample. However, there are some particularities that must be noted when working with helium 

nanodroplets. When doped nanodroplets are bombarded with electrons a wide variety of 

processes involving ionization can occur. 

Contrarily to a gas sample of molecules being ionized, we have droplets of thousands of 

helium atoms doped with one or more impurities. When the droplet is ionized the charge can be 

localized in the impurity or in the helium. Besides, charge transfer among different species is also 

possible and small ionic clusters can appear. These ions will generate a signal in the detector and 

it is possible that groups of helium atoms form clusters by themselves (Hen), releasing the 

impurities along the way. If it is the impurity that holds the charge, it may form clusters with variable 

number of helium atoms or other reactants, yielding different signals. Furthermore, as the doping 

process is statistical and not all the droplets will have captured the same number of reactants 

from the doping chambers, the detection of nanodroplets containing by-products is unavoidable. 
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The resulting mass spectra are complex and hard to interpret. A common way to facilitate 

their interpretation is to subtract the spectra of the droplets doped with a single reactant, as was 

done, for instance, by S. A. Krasnokutski and F. Huisken (Figure 3) [19]. The peaks due to the 

Hen cluster formation and those of Si have a negative signal, indicating that they were more 

abundant in the Si doped droplets than in the droplets doped with both reactants. Thus, we can 

identify if the reaction takes place and what are the products that are obtained. 

Figure 3. Differential mass spectra obtained from subtracting the Si doped HeND spectrum to the Si 

and O2 doped HeND spectrum. Adapted from [19].  

5.3. HELIUM NANODROPLET DEPLETION 

It has already been mentioned that helium nanodroplets, though very inert, are capable of 

taking and then releasing the energy of the impurities upon capture. In fact, given the proper 

energy exchange mechanism, helium nanodroplets can facilitate the relaxation of excited 

impurities (see section 6.2.4). The excess energy transferred to the helium will be rapidly released 

via evaporation of some helium atoms, reducing the size of the nanodroplet accordingly. Given 

that the energy of evaporation per atom is known (7.2 K per 4He atom [20], where 1 K = 0.695 

cm-1 [21]), the energy released in a process can be estimated. 

This technique, namely, helium nanodroplet depletion, allows probing whether a reaction 

takes place. Note that this is only possible if we find a way to relate a measurable signal with the 

number of atoms of the nanodroplets. The signal can be measured using the pressure due to the 

nanodroplets in the detection chamber, as was done by Krasnokutski and Huisken (Figure 4).  

 



Chemistry involving superfluid helium droplets as a solvent. 13 

 

Figure 4. 1) Raw depletion measurements of pure (black) and Si-doped (red) HeND being doped with 
oxygen. Red dotted-lines and green dashed-lines indicate when the oxygen valve opened and closed 

respectively. The depletion peaks on the opening of the valve are attributed to the excess oxygen on the 
dead volume accumulated when the valve was closed and are not considered. 2) a) Fitting used to perform 

depletion measurements. b) Measurements showing a reaction between Si and O2. c) Measurements 
showing no reaction between N2 and O2. [19] 

If we compare the decrease on the number of atoms of the droplets due to the capture of 

each of the reactants alone and the decrease when both reactants are captured simultaneously, 

it is possible to, not only know if a reaction took place, but also to estimate the energy released 

in the reaction, though this estimation must be approached carefully due to the statistical nature 

of the capture process and the complexity of the process itself. 

Usually, it is best to compare with tabulated thermodynamic data to choose among different 

possible reactions. By comparing their depletion results with previously reported data, 

Krasnokutski and Huisken [22] identified that the reaction of Al with O2 inside HeNDs yielded AlO2 

instead of AlO. Similarly, the same authors [23] used this technique to identify that the reaction of 

carbon atoms with H2 inside HeNDs generated a lineal HCH instead of an angular CH2. This result 

differs of what is found in gas phase and room temperature, hence, the HCH generation 

corresponds to a cold exit channel of the reaction (see next section).  

Furthermore, depletion techniques are used to prove that the reactions take place when the 

reactants are captured by the nanodroplets, previous to the ionization in the mass spectrometry 

measurements, since there are cases where the reactions are induced upon ionization (see 

section 5.5) 

1) 2) 
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5.4. SPECTROSCOPIC TECHNIQUES 

Spectroscopy is widely used to extract information from molecules. In the present case it is 

generally used with two different objectives: to investigate the interaction of the impurities with 

their environment as well as the geometry they present. 

5.4.1. Infrared Spectroscopy 

As previously mentioned, the superfluidity of the liquid helium leads to interesting properties 

in its nanodroplets. The first evidence of these properties was given in 1995 [24], when the IR 

spectrum of an octahedral SF6 molecule embedded in a 4He nanodroplet was recorded (Figure 

5a). The characteristic sharp lines of a freely rotating SF6 molecule were found. This fact could 

be due either to the superfluidity of the matrix or to the very low van der Waals interactions. 

It was in 1998 when J. S. Grebenev et al. [25] recorded the IR spectrum of the OCS molecule 

embedded in 3He/4He nanodroplets with different ratios of the two isotopes. If the sharp rotational 

lines were due to the weak van der Waals interaction they would be observed with 3He as well 

(Figure 5b). 

Figure 5. a) IR spectrum of the SF6 molecule in a HeND. b) IR spectrum of the OCS molecule in HeNDs of 
varying ratios of 3He/4He. Figures from [13,24,25]. 

For a pure 3He droplet, a single broadband was seen, analogous to what would be found in a 

classical solvent. When 4He was gradually introduced into the droplet, the spectrum started to 

show the resolution of the rotational bands until it was almost identical to the freely rotating 

a) 

b) 
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molecule. Hence, the sharp lines of the rotational spectrum were due to the superfluidity of the 

4He droplets and not only as a consequence of the extremely weak van der Waals interactions 

between the impurity and its matrix. 

This does not mean that the interaction of the impurity and the 4He is non-existing. However, 

the little effect that 4He has on the impurity makes it a remarkable spectroscopic matrix. The 

narrow spectral lines and their low shifts with respect to the free molecule make it easy to compare 

them with the results of ab initio calculations, allowing comparisons of different theoretical 

geometries and their spectrum with the experimental results. 

For instance, two isomers were identified as the products of the reaction between the ethyl 

radical and an oxygen molecule inside helium nanodroplets. The authors used IR spectra 

predictions to assign the experimental data obtained [26]. 

Another example is found in the study of the aluminium reaction with HCN, where the origin 

of a small red shift on the spectrum was successfully attributed to the formation of a bent Al-HCN 

product. In this geometry the p-electron of the aluminium was delocalized into the antibonding 

molecular orbitals of the HCN fragment [27].  

The low temperature of helium nanodroplets is also useful to study reactions in very cold 

environments, allowing to simulate the conditions of the interstellar medium. When impurities are 

captured, they are rapidly cooled down to the HeND equilibrium temperature (0.37 K), and in this 

conditions, uncommon products can be found due to the low energy of the reactants. There are 

cases where the reactants cannot overcome the first reaction barrier and are trapped in a pre-

reaction complex that can provide us insight on the initial part of the reaction. In other cases, the 

normal gas phase reaction takes place until it is stopped at some point, providing new cold exit 

channels for the reactions (see reference to [23] in the previous section). 

An example of this is given by J. T. Brice et al. [28] in their study of the reaction between HCN 

and the oxygen atom. A linear O-HCN pre-reaction complex was identified using IR spectroscopy 

and comparison of the results with theoretical calculations. In this case the reaction does not take 

place, since the reactants do not have enough energy to overcome the first barrier.  

Another example of this phenomenon was found by K. Nauta and R. E. Miller [29] when 

studying highly polar molecules in HeND. Self-assembly of HCN linear chains of up to seven 

molecules was found using IR spectroscopy, though HCN molecules tend to form more stable 

cyclic trimeric structures. The linear clusters were trapped in a local minimum due to the very low 
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temperature of the environment, even though a lower energy minimum was available. Here, the 

linear product is a cold channel of the reaction. 

Many cases can be found where IR spectroscopy has been used to study the outcomes of 

reactions taking place inside helium nanodroplets. Some other examples apart from the ones 

already given are [30–32]. 

5.4.2. Photoelectron Spectroscopy and REMPI 

Another highly utilized technique is photoelectron spectroscopy, where the impurities are 

ionized, and information of the system can be extracted by analysing the energy of the ejected 

photoelectrons. Due to the high frequency required to ionize most species using a single photon, 

it is usually best to perform multiphoton ionizations using less energetic light, since many ambient 

species can absorb at high-UV [33]. 

Resonance-enhanced multiphoton ionization (REMPI) uses multiple photons to achieve 

ionization (Figure 6a). The energy of a photon (or the sum of some of them) is equal to the energy 

required to bring the impurity to a highly excited energy state. From that state, another excitation 

will readily ionize the impurity, ejecting a photoelectron that will be detected. The standardized 

nomenclature of (n+1) REMPI, means that n photons are used to excite the molecule and 1 

electron is used to ionize it.  

Figure 6. a) Scheme of REMPI and single photon ionization processes [33]. b) Photoelectron spectra of 
aniline in gas phase (top) and inside HeNDs of different sizes (bottom) [34]. 

Several factors can modify the energy of the photoelectron when comparing it with the gas 

phase REMPI. The energies of the electronic states of the states can be altered due to interactions 

a) b) 
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with the helium, though, equally to the IR spectroscopy case, the shifts are small and usually 

identifiable. Besides, if the impurity is fully embedded in the nanodroplet the ejected photoelectron 

will require to pass through some helium density to arrive at the detector. This process produces 

small and predictable modifications to the photoelectron energy that depend on the nanodroplet 

size.  

This was reported by E. Loginov et al. [34] by studying the photoelectron spectra of aniline 

doped HeND and comparing it with the gas phase analogous. As can be seen in Figure 6b, the 

peaks are blue-shifted due to the dipole interaction of the aniline with the liquid helium. 

Furthermore, the peaks are asymmetrically broadened to lower energies due to the loss of energy 

of the photoelectrons when traversing the helium nanodroplet. Finally, for droplet radii of 38 Å or 

more there is an almost absolute disappearance of low energy electrons. The authors speculate 

that at these low energies the electrons could be trapped in the helium density and eventually 

recombine with the aniline cation. 

The photons are usually generated using a single source. Consequently, they all possess the 

same energy. However, there are cases where two different sources can be used (two-colour 

REMPI). An example of use of this method can be seen in the work of F. Lindebner et al. [35], 

that used two-colour REMPI to detect Cu atoms captured by the nanodroplets. 

If a high ion or photoelectron yield is required, the REMPI technique yields better results than 

single photon ionization. Its use is so widely generalized that it has become a tool in other 

situations that require the ionization of the studied species, such as velocity-map imaging (see 

next section) or mass spectrometry (see section 5.2) 

5.5. PHOTOINDUCED PROCESSES AND PUMP-PROBE TECHNIQUES 

Photoinduced processes are of major importance in many fields of science and are used in a 

large number of applications. Furthermore, they play an essential role in lots of bioprocesses such 

as the photosynthesis in plants or the obtention of vitamin D in humans. The field of helium 

nanodroplets is not an exception to this, and photoinduced processes present interesting 

properties. 

5.5.1. Time-Resolved Photoelectron Detection 

The dynamics of photoinduced processes can be studied using pump-probe techniques. The 

initial excitation, namely, the pump, brings the system to an excited state, and a process begins 
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to occur. We can probe the system using another irradiation delayed by an interval of time. By 

repeating the experiment (always replicating the same conditions) and changing the delay 

between the pump and the probe lasers, the evolution of the system over time can be resolved. 

Note that the probe must be designed to extract information of an observable that changes over 

time once the first excitation has occurred. 

To demonstrate the potential of this technique we can refer to the works of B. Thaler et al. 

[36] and [37]. When indium atoms are excited from the 5s2 5p ( 𝑃1 2⁄ 
2 ) state to the 5s2 6s ( 𝑆1 2⁄ 

2 ) 

they evolve from a heliophillic state, where the atoms are fully immersed in the nanodroplet, to a 

heliophobic state that results in their ejection. Furthermore, the excitation increases the volume 

of the valence orbital of the In atom, causing the bubble placed around the atom to expand due 

to the increased interaction with the surrounding helium (Figure 7a). 

Figure 7b shows the photoelectron energy for laser probe delay times up to 1 ps when the 

initial radiation was of 360 nm, corresponding to the purple arrow in Figure 7a. The ejected 

photoelectron loses energy when increasing the delay time, indicating the speed at which the 

helium bubble surrounding the impurity is expanded. At around 600 fs the energy stabilizes, 

suggesting that the bubble has stopped expanding. 

When studying at a longer time-scale (Figure 7c), i.e. up to 200 ps of delay between the laser 

pump and probe irradiations, an oscillation on the photoelectron energy can be observed. The 

results were fit to the sum of an exponential function and a Gaussian function of time centred 

around the oscillation maximum (𝑡𝑜𝑠𝑐). The oscillation peak corresponds to the bubble contracting 

after the initial fast expansion. In all cases it lies around ~30 ps, although there is slight increase 

of this time when the energy of the initial excitation increases. 

The In+ ion yield recorded in a TOF-MS is depicted, in Figure 7d. It remains constant for 

almost 40 ps, increasing constantly after that. The increase is attributed to the ejection of the In 

atoms from the droplets. The results are fitted to a Heaviside function (accounting for the initial 

plateau with the parameter 𝑡𝑒𝑗𝑒𝑐 ) multiplying an exponential increasing function, and do not show 

a clear tendency, suggesting that the ejection process is independent of the initial excitation 

energy. 

A related work was recently published [38] where an heliophilic In2 dimer solvated within the 

droplet was excited to a coherent superposition of vibrational heliophilic states. In addition to the 

ejection of the dimer, the dynamics of its vibrational wavepacket were also studied. 
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Figure 7. a) Scheme showing the pump-probe process and the energy of the relevant states of the impurity 
(In) as a function of the solvation bubble size. b) Photoelectron energy over time when the initial excitation 

is of 360 nm. c) Photoelectron energy over time for different initial excitation energies. Each point 
corresponds to the maximum intensity of the photoelectron energy spectra. d) In+ ion yield over time. b) c) 

and d) were obtained using HeND of 4700 He atoms on average. The inset in c) shows the fit 𝑡𝑜𝑠𝑐 and 

𝑡𝑒𝑗𝑒𝑐  for the different initial excitation energies. Data points for each wavelength in c) and d) are offset for 

better visualization. Adapted from [37]. 

5.5.2. Velocity-Map Imaging 

As explained in previous sections, when ions are generated inside HeND, complex secondary 

processes and species often appear. This does not exclude the possibility of their study, as seen 

with all the examples where the produced ions were measured and analysed (see section 5.2). 

However, it is possible to study systems free of these interferences, as it will be shown with two 

examples at the end of this section. In such specific cases, velocity-map imaging (VMI) technique 

allows to determine the velocities of the species of interest.  

The process starts by ionizing the compound, for instance, using REMPI. Due to the vast 

difference of mass between the electron and the ion generated, it is safe to assume that the 

velocity of the ion is unaltered by this process. A set of electrostatic fields, that act as lenses, 

focus the generated ions into a position-sensible detector. The detector measures the number of 

ions that collide at each point of its surface. The position of the ions detected depend only on their 

mass, their initial velocity and the electrostatic fields driving them to the detector. The 2D image 

a) c) 

d) b) 
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generated in the detector, can be processed using an inverse Abel transform, which yields the 3D 

velocity distribution of the ions at the moment of ionization (Figure 8). The intricacies of the Abel 

transform are far from the aim of this work, but a derivation can be found in pages 4-9 of [39] and 

60-61 of [40]. 

Figure 8. a) VMI instrumental setup. Adapted from [39]. b) Typical velocity distribution obtained from the 
photoinduced desorption of Rb2 dimers from HeND surfaces. Top half of the image corresponds to the raw 
data obtained in the detector and bottom half to the result of the inverse Abel transform. The vertical arrow 

depicts the polarization of the laser used to ionize Rb2 [41]. 

As previously stated, the use of this technique is limited to systems where the ions are, 

somewhat, isolated from helium. This is the case when the impurities are not fully embedded in 

the HeND but reside adsorbed on their surface. A. Sieg et al. [41] studied the Rb2 dimer desorption 

from HeND when excited to heliophobic states. The dimer was irradiated with laser at different 

wavelengths, and the differences between the Rb2+ velocity distributions obtained were analysed. 

The authors concluded that the preferred ejection directions of the dopant were determined by 

the symmetry of the internal states of the molecule and not on the symmetry of the complex 

dopant-droplet. Furthermore, the ejection direction exhibits opposite anisotropies for Rb2 in its 

singlet state than in its triplet state. 

Another idea was used by A. Braun and M. Drabbels [42–44] to study the photodissociation 

of alkyl iodides inside HeND. First, the molecules were excited, which provoked their dissociation. 

Then another irradiation produced the ionization of the fragments, which were then detected. The 

second irradiation was delayed enough (50 ns) to ensure that, by the time of the ionization, the 

fragments had fully escaped from the nanodroplet. VMI was used to measure the kinetic energy 

of the ejected fragments from nanodroplets of different sizes, and an important dependence was 

found for the different molecules considered. Furthermore, VMI allowed to identify the 

recombination of CH3I molecules in HeND of 31 Å of radius and bigger. 

a) b) 
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5.5.3. Time-resolved Ion Yield Detection 

Another process that can be studied in HeND is quantum foam formation. When captured by 

HeND, impurities are surrounded by a solvation layer that, depending on the strength of its 

interaction with the helium, can be of significant density. This layer may act as a barrier, restricting 

the ability of the impurities to interact with each other. In combination with the extremely low 

temperature of the nanodroplets, this may completely hinder reactions from happening, and the 

impurities can form dispersions where they all maintain their identity (see section 6.1.1). 

By excitation the atoms of the foam, it is possible for them to obtain enough energy to break 

the helium barriers separating them, allowing the atoms to strongly interact and aggregate. This 

exact phenomenon was reported by S. Göde et al. [45] when doping HeND with magnesium 

atoms. Then, when the Mg atoms were solvated, a metastable structure of individually solvated 

atoms was obtained. When a pulse of radiation was sent to the doped nanodroplets, the foam 

collapsed in Mg clusters. By performing another excitation, delayed from the previous one, and 

analysing the changes in the ion yield, the time of collapse was found to be ~350 fs. 

5.6. SOFT-LANDING AND TRANSMISSION ELECTRON MICROSCOPY 

To finish the experimental section, let us see a radically different synthetic route available 

thanks to the helium nanodroplets. This method is remarkably interesting in chemistry, particularly 

in the field of materials science, as it allows to synthesize a wide variety of nanostructures. These 

nanostructures are synthesized inside helium droplets and then deposited on a surface using the 

soft-landing approach (where the nanodroplets containing the products collide with a surface). 

The liquid helium spreads and evaporates, acting as a pillow that reduces the impact of the 

impurity with the surface. A theoretical study using time dependent density functional theory (see 

section 6.2.2) by N. F. Aguirre et al. [46] described the soft-landing mechanism that facilitates the 

non-destructive deposition of the clusters. 

Once the product is deposited on a surface it can be characterized. The most common 

technique is transmission electron microscopy (TEM), which allows to directly observe the size 

and shape of the particles obtained. The characteristics of the nanostructures obtained may be 

modified by the reaction conditions, e.g. pressure in the doping chamber, temperature of the 

nozzle that generates the nanodroplets, order of capture of the reagents, etc. 

P. Thaler et al. [47] thoroughly studied the effects of the reaction conditions on the formation 

of Au and Ag clusters inside helium nanodroplets. One of the most interesting observations was 
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found when changing the temperature of the nozzle from which helium is expanded. At a helium 

pressure of 20 bars in its chamber, when the temperature of the nozzle was 7 K the Au clusters 

present spherical shapes. Instead, when the temperature was set to 8 K, the appearance of 

elongated Au clusters is observed, which indicated the existence of a transition temperature 

between the two forms. 

One of the most important potential applications of helium nanodroplets is to provide a new 

synthetic route to metal nanowires. This possibility was first reported by L. F. Gomez et al. in 2012 

when doping HeND with Ag atoms [48]. After the soft-landing deposition of 1000 nm diameter 

droplets, trails of Ag nanorods were observed (Figure 9.1). This was attributed to the formation of 

quantum vortices in the HeND in the moment of their formation that facilitated the ordering of the 

impurities along their axis, generating nanowires that fragmented when deposited.  

D. Spence et al. [49] reported the successful deposition of nanowires without any 

fragmentation in 2014. This was found by sequentially doping HeND with Ag and Si. The formation 

of Si nanowires was found even in small droplets where Ag forms spherical clusters (Figure 9.2a). 

Furthermore, in large nanodroplets Si atoms were found to surround the Ag clusters and fill in the 

gaps between them (Figure 9.2b). With this information two conclusions were presented. The 

appearance of nanorod trails was a specific phenomenon of silver and did not translate to other 

elements. Also, silver did not form nanowires that fragmentated upon collision but separated 

clusters with elongated shape that maintained this structure when deposited. 

Figure 9. 1) Ag trails of nanorods synthesised in 1000 nm diameter HeND [48] 2) a) Si nanowires obtained 
in 250 nm diameter HeND while Ag forms spherical clusters. b) Nanowires and nanorods of Si and Ag 

respectively obtained in 3000 nm diameter HeND. Adapted from [49]. 

  

1) 2) 
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Later in 2014 E. Latimer et al. [50] reported the synthesis of Au, Cr, Ni and Si nanowires using 

the soft-landing method. It was further confirmed that the formation of nanorod trails was a special 

case of Ag, since none of the other compounds utilized displayed such behaviour. 

In summary, HeND proved to be a remarkable tool with a great potential for nanostructure 

synthesis. By adjusting the reaction conditions the obtained products can be largely tuneable, 

allowing to obtain thin cluster films of elements like, for instance, Mg [51], structures of high 

catalytical activity [52] and metallic and non-metallic nanowires among other examples.  
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6. THEORETICAL METHODS 

In the previous sections the remarkable properties of helium have been shown. Furthermore, 

different experimental techniques that have provided several ways to profit them have been 

described. However, science relies on theoretical knowledge as much as on empirical, and solid 

theoretical foundations are required to fully understand such a unique system. 

In this section the main theoretical methods used to describe liquid helium environments and 

the molecules embedded in it will be explained, focusing on chemical systems, which are complex 

in nature. Thus, there will be an emphasis on the methodologies that allow this kind of studies, 

even though there may be others used in different contexts. 

Theoretical methods can be roughly divided in two different groups, static and dynamical 

methods. A general scheme is presented in Figure 10. 

Figure 10. Scheme of the theoretical methods discussed in this work. 

6.1. STATICS 

Static studies provide the starting point of the theoretical studies. They are mainly used to 

elucidate the possible system structures and their energies. The motion equations are not 

propagated over the real time, though it will be shown that a propagation over the imaginary time 

may be useful. 

6.1.1. DFT/QM and DFT/CM 

The chemical systems studied can usually be thought of two distinct parts, the helium 

environment and the dopants placed in it. Thus, due to the different complexity of the two parts it 

is usually convenient to separate their treatment, utilizing the most convenient theoretical 

approach for each of them. 
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Nowadays, the most common way to treat helium is using density functional theory (DFT). 

This approach finds its foundations in the Hohenberg-Kohn theorems, derived in 1964 [53]. In 

essence, it allows to reduce the many-body problem of 𝑁 electrons, which depend on 3𝑁 spatial 

coordinates, to only three spatial coordinates, drastically reducing the computational cost of the 

calculations. 

Hohenberg and Kohn demonstrated that the properties of a non-degenerate ground state of 

a many-electron system are uniquely determined by the electronic density, which depends on 

three spatial coordinates. 

In the field of liquid helium, the functionals used for the energy have the following form. 

(5.22) 𝐸[𝜌𝐻𝑒] =
ℏ2

2𝑚𝐻𝑒
∫ 𝑑𝑹𝐻𝑒 (𝛁√𝜌)

2
+ ∫ 𝑑𝑹𝐻𝑒 ℇ𝑐[𝜌] (6.1) 

Where the helium density is related to the atomic wavefunction of the 𝑁 helium atoms of the 

system, 𝜌𝐻𝑒(𝑹𝐻𝑒) = 𝑁|𝜙𝑜(𝑹𝐻𝑒)|2 = |𝜓𝐻𝑒(𝑹𝐻𝑒)|2 . The first term of (6.1) refers to the 

kinetic energy of the helium, while the other one can be split in two different contributions, the 

potential energy of the particles and another term accounting for the correlation. 

Different forms of this expression can be used, but the most used one in the context of 

superfluid helium is the Orsay-Trento density functional [54]. Depending on the system studied 

different modifications can be made to simplify it if it is necessary to reduce the computational 

cost. 

Provided that there is no impurity, we have to find the helium density that minimizes the energy 

of the system, maintaining the number of atoms constant, which in turn is also given as a 

functional of the density 𝑁 = ∫ 𝑑𝑹𝐻𝑒𝜌𝐻𝑒(𝑹𝐻𝑒). This can be achieved by solving the following 

non-linear Schrödinger-like equation: 

(5.22) [−
ℏ2

2𝑚𝐻𝑒
𝛁2 + 𝑈[𝜌, 𝑹𝐻𝑒]] √𝜌(𝑹𝐻𝑒) = 𝜇𝐻𝑒√𝜌(𝑹𝐻𝑒) (6.2)  

Where 𝑈[𝜌, 𝑹𝐻𝑒] ≡ 𝛿ℇ𝑐 𝛿𝜌⁄  corresponds to an effective potential energy and 𝜇𝐻𝑒 is the 

chemical potential of helium. This equation is solvable by an iterative method and will provide the 

structure of a pure helium droplet of 𝑁 atoms. 

However, as chemists, we are interested in the processes taking place when impurities 

interact inside or on the surface of helium droplets. To study the system of helium droplets with 
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impurities we have to consider the energy of the overall system and minimize it, analogously the 

pure helium droplet case. The energy of a helium droplet with a dopant 𝑋 is given by: 

) 
𝐸[𝜌𝐻𝑒 , 𝜙] =

ℏ2

2𝑚𝐻𝑒
∫ 𝑑𝑹𝐻𝑒 (𝛁√𝜌)

2
+ ∫ 𝑑𝑹𝐻𝑒 ℇ𝑐[𝜌] +

ℏ2

2𝑚𝑥
∫ 𝑑𝒓𝑋 |𝛁𝜙(𝒓𝑋)|2

+ ∬ 𝑑𝑹𝐻𝑒𝑑𝒓𝑋|𝜙(𝒓𝑋)|2𝑉𝐻𝑒−𝑋(|𝑹𝐻𝑒 − 𝒓𝑋|)𝜌(𝑹𝐻𝑒) 

(6.3) 

Where equation (6.3) is equal to equation (6.1) plus the kinetic energy of the dopant (atom or 

molecule) and the interaction potential energy between the dopant and the helium. Upon 

minimization with respect to the helium density and the impurity wavefunction, two coupled non-

linear Schrödinger-like equations can be found. 

(6.22) [−
ℏ2

2𝑚𝐻𝑒

𝛁2 + 𝑈[𝜌, 𝑹𝐻𝑒] + 𝑈𝐻𝑒−𝑋(𝑹𝐻𝑒)] 𝜓𝐻𝑒
(𝑹𝐻𝑒) = 𝜇𝐻𝑒𝜓𝐻𝑒

(𝑹𝐻𝑒) (6.4)  

(6.22) [−
ℏ2

2𝑚𝑋
𝛁2 + 𝑈𝑋−𝐻𝑒(𝒓𝑋)] 𝜙(𝒓𝑋) = 𝐸𝜙(𝒓𝑋) (6.5)  

Where 𝐸 is the lowest eigenvalue of the energy of the impurity, 𝑈𝐻𝑒−𝑋  is the interaction 

potential energy of helium with the impurity and 𝑈𝑋−𝐻𝑒 is the interaction potential energy of the 

impurity with helium. 

 𝑈𝐻𝑒−𝑋(𝑹𝐻𝑒) = ∫ 𝑑𝒓𝑋 |𝜙(𝒓𝑋)|2𝑉𝐻𝑒−𝑋(|𝑹𝐻𝑒 − 𝒓𝑋|) (6.6)  

 𝑈𝑋−𝐻𝑒(𝒓𝑋) = ∫ 𝑑𝑹𝐻𝑒 𝜌(𝑹𝐻𝑒)𝑉𝐻𝑒−𝑋(|𝑹𝐻𝑒 − 𝒓𝑋|) (6.7)  

Equations 6.4 and 6.5 are coupled as the 𝑈𝐻𝑒  and 𝑈𝑋  terms include the impurity 

wavefunction and the helium density, respectively. The solution of these equations will lead to the 

helium and the impurity wavefunctions simultaneously, where the wavefunction of the helium is 

related to its density by 𝜓𝐻𝑒(𝑹𝐻𝑒) = √𝜌𝐻𝑒(𝑹𝐻𝑒)𝑒𝑖𝜃 and 𝜃 is the global phase of the helium 

wavefunction. 

This methodology can be generalized for an arbitrary number of impurities and is the basis of 

the DFT/QM structure calculations. Furthermore, it can be modified to treat the impurities 

classically, as we will see in section 6.2.2. 

6.1.1.1. Imaginary Time Propagation 

Equations (6.4) and (6.5) are usually solved using the Imaginary Time Propagation (ITP) 

method [55]. The solutions to the time-dependent Schrödinger equation (TDSE), Ψ(𝑟, 𝑡), can be 

written as: 
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(6.22) 𝑖ℏ
𝜕𝜓(𝑟, 𝑡)

𝜕𝑡
= 𝐻̂𝜓(𝑟, 𝑡) →  𝜓(𝑟, 𝑡) = ∑ 𝑐𝑘𝜙𝑘𝑒

−𝑖𝐸𝑘𝑡

ℏ

∞

𝑘

 (6.8) 

(6.22) 𝐻̂𝜙𝑘 = 𝐸𝑘𝜙𝑘 (6.9) 

Where the solution, Ψ(𝑟, 𝑡) , of the TDSE is expressed as a linear combination of the 

eigenfunctions obtained from solving the time-independent Schrödinger equation (TISE). If we 

now consider the change 𝑡 ≡ −𝑖𝜏, namely, a Wick rotation, we can rewrite the equations in (6.8) 

obtaining: 

 
(6.22) 

ℏ
𝜕𝜓(𝑟, 𝜏)

𝜕𝜏
= −𝐻̂𝜓(𝑟, 𝜏) → 𝜓(𝑟, 𝜏) = ∑ 𝑐𝑘𝜙𝑘𝑒

−𝐸𝑘𝜏

ℏ

∞

𝑘

 (6.10) 

Note that the TDSE in imaginary time, (6.10), converges to the ground state function in the 

limit where 𝜏 → ∞, as all the other terms from the wave function decay exponentially faster due 

to their higher energy levels. The ITP method yields the ground state wave function only if the 

initial guess has a non-zero projection on the ground state, i.e. ⟨𝜓0|𝜓(𝑟, 0)⟩ ≠ 0. In general, 

equation (6.8) is integrated numerically until convergence, but other methodologies involving the 

time propagation operator method can be used too [56,57]. 

The ITP method is widely used by the groups that perform structure investigations. For 

instance, J. Eloranta has used DFT/QM and DFT/CM to study liquid helium with different dopants. 

An example of this is his study of the solvation of neon atoms in bulk superfluid helium [58]. 

The neon wave functions are approximated to spherical densities positioned at the centre of 

each atom, and the helium density is treated with the DFT approach. To solve the equations the 

ITP method is used. Using this methodology but treating the impurities classically, J. Eloranta 

could compare the results obtained by the two approaches, quantum and classical. 

From calculations performed at different Ne-Ne distances, the minimum energy path of the 

reaction of the neon atoms could be obtained (Figure 11a). The potential energy surface (PES) 

is dramatically modified from the obtained in gas phase. Furthermore, clear differences appear 

between the DFT/QM method and the DFT/CM method which, evidently, does not account for the 

zero-point energy. The appearance of local maxima and minima along the Ne-Ne coordinate 

allowed Eloranta to predict the existence of neon quantum foams (see section 5.5.3), where the 

neon atoms do not form a dimer. Instead, they exist independently surrounded by the helium 

solvation shell and form adducts of long bonding distance. 
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Figure 11. a) Energies along the Ne-Ne coordinate. b) Helium densities along the Ne-Ne coordinate in the 

minimum (Ne-Ne distance of 12.8 Bohr) and maximum (Ne-Ne distance of 10.5 Bohr) energies. [58] 

Besides, the DFT/QM and DFT/CM methodologies provide the structure of the liquid helium 

in the presence of the dopant. The helium density along the Ne-Ne coordinate in the maximum 

and minimum energies is shown in Figure 11b. The presence of helium between the two neon 

atoms in the local minimum is clear, which insinuates the existence of a stable Ne-Ne adduct, 

with a 12.8 Bohr bond distance, where the two atoms are surrounded by helium density. To 

continue the reaction process the atoms require enough energy to remove the helium density that 

separates them, which may not be possible at the very low temperatures of the nanodroplets. 

Even though in the previous example the wave function of the dopant was approximated to a 

spherical density, it can be determined by solving equations (6.4) and (6.5), as he did in his study 

on the solvation of fluorine atoms [59]. Applying this methodology Eloranta has studied different 

dopants. In some cases, he predicted that impurities could reorder establishing large bond 

distance crystal structures [60]. 

6.1.2. DFT/ab initio 

Instead of working with wave packets to describe the impurity, the standard quantum 

chemistry approach can be used. The DFT/ab initio approach relies on solving the Schrödinger 

equation, which can only be done analytically for the one-electron systems. Consequently, a 

number of methods have been developed to solve more complex problems. A brief overview of 

the usual way of working is given next. 

The Hamiltonian operator of a system of 𝑛 electrons and 𝑁 nuclei can be expressed as: 

(6.22) 𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑁 + 𝑉̂𝑒−𝑁 + 𝑉̂𝑒−𝑒 + 𝑉̂𝑁−𝑁 = (6.11) 

a) b) 
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Where 𝐻̂ is written in atomic units, the 𝑇̂ terms are the kinetic energy operators and the 𝑉̂ 

terms are the interaction potential energy operators between the particles indicated by subscripts.  

The Hamiltonian operator does not depend explicitly on time, and this allows us to separate 

the wave function as two parts 𝜓(𝒔𝑒, 𝒔𝑁; 𝑡) = 𝜓(𝒔𝑒, 𝒔𝑁)𝑒−𝑖𝐸𝑡 ℏ⁄ , where 𝒔𝑒 = (𝒓1, … , 𝒓𝑛) 

and 𝒔𝑁 = (𝑹1, … , 𝑹𝑁) are the spatial coordinates of the electrons and nuclei respectively. The 

spatial-dependent wave function satisfies the TISE, that is, 𝐻̂𝜓 = 𝐸𝜓. 

To solve this equation further approximations are usually required. The Born-Oppenheimer 

(BO) approximation takes the global wavefunction as a product of an electronic and a nucleic 

wavefunction, where the electronic wave function depends parametrically on the nuclei positions, 

𝜓(𝒔𝑒 , 𝒔𝑁) = 𝜓𝑒(𝒔𝑒; 𝒔𝑁)𝜓𝑁(𝒔𝑁). In essence, it is assumed that, as the electrons move much 

faster than the nuclei, they can instantaneously adapt to them, allowing to write two TISE as: 

(6.22) [𝑇̂𝑒 + 𝑉̂𝑒−𝑁 + 𝑉̂𝑒−𝑒]𝜓𝑒(𝒔𝑒; 𝒔𝑁) = 𝐸𝑒(𝒔𝑁)𝜓𝑒(𝒔𝑒; 𝒔𝑁) (6.12) 

(6.22) [𝑇̂𝑁 + 𝑉̂𝑁−𝑁 + 𝐸𝑒(𝒔𝑁)]𝜓𝑁(𝒔𝑁) = 𝐸𝜓𝑁(𝒔𝑁) (6.13) 

Where 𝐸𝑒(𝒔𝑁)  is the electronic energy at a given nuclei geometry 𝒔𝑁  and 𝑉̂𝑁−𝑁 +

𝐸𝑒(𝒔𝑁) = 𝑈(𝒔𝑁)  is interpreted as the effective potential energy term of the nuclei, which 

includes two repulsive terms due to the nucleus-nucleus and the electron-electron interactions, 

an attractive term due to the electron-nucleus interactions and the kinetic energy of the electrons. 

The nuclear interaction potential energy is readily given by 𝑉𝐴𝐵 = 𝑍𝐴𝑍𝐵 𝑟𝐴𝐵⁄ . 

Equation (6.12) can’t be analytically solved and many approximation methods have been 

developed, which can be roughly divided in two major groups: the variational and perturbational 

methods. Thorough explanation of these methods will not be provided here unless they are of 

special interest for our main topic. Nevertheless, all the cited works provide information on the 

methods and adaptations used, and more general content can be found in references [61,62] or 

other quantum chemistry books. 

There are many examples of DFT/ab initio calculations in the literature and, usually, these 

studies are carried out in parallel with experimental works to gain further insight in possible 

structures of the products, as was explained in section 6.4 [26–28,30,63–65]. 

De Lara-Castells and Hauser performed a study following this methodology where they tried 

to find an explanation for the following phenomenon. Cesium dimers, which are heliophobic and 
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stay on the surface of the droplets, were found to be embedded inside the helium nanodroplets 

when a fullerene molecule (C60) was added. It was guessed that the dimers reacted with C60, 

which resides inside the droplet, even though their reactivity was not as high as in the gas phase. 

Then, the resulting ionic pair was strongly solvated and found inside the nanodroplet [66]. 

De Lara-Castells and Hauser [67] initially calculated the PES for C60 with Cs and Cs2 in the 

gas phase, first allowing for full electron transfer and then fully constraining it (Figure 12a and 

Figure 12b, solid lines). Next, the helium density was considered by minimizing the helium 

structure at different dopant distances and calculating its energy (Figure 12c). The positive energy 

found when the dopants approach is the energy required to remove the solvation layers 

surrounding the dopants. 

If the helium is assumed to be inert regarding the electron transfer between the dopants, the 

gas phase PES can be corrected by adding the energy due to the helium environment and, 

likewise, for the case where the interactions between the dopants are fully covalent (Figure 12a 

and Figure 12b, dashed lines). 

It is noticeable that in the case where the electron transfer is assumed to be unmodified by 

the helium, the corrected PES are bonding in all cases, including the atomic Cs one. Contrarily, if 

the electron transfer is fully quenched the PES obtained are entirely repulsive. 

Figure 12. Interaction potential energies between C60 (a) and a Cs atom and Cs2 T-conformation allowing 

charge transfer, (b) and a Cs atom and Cs2 T-conformation constraining charge transfer. Solid lines are 

gas phase calculations and dashed lines are corrected by the helium environment as shown in (c). [67] 

The authors conclude that the electron transfer process, although significantly quenched, can 

take place through the liquid helium separating both dopants. Further investigation was carried 

out in a subsequent study [68]. Helium correlation was added to the PES calculations via the 

a) 

b) 

c) 
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second order Møller-Plesset (MP2) perturbation method and the reaction path and reaction 

probabilities where calculated, finding a good agreement with the experimental data. 

This example, altogether with Eloranta’s studies explained before, show how static 

calculations are used to gain insight in the processes taking place inside helium nanodroplets. 

Furthermore, static studies are fundamental in dynamical studies as well (see section 6.2), where 

they are used to obtain the initial conditions of the system. 

6.1.3. Path Integral Monte Carlo 

There have been great efforts from the scientific community to obtain fully quantum 

mechanical results. To do so the path integral Monte Carlo (PIMC) method is used. Interested 

readers on this method are referred to the D. M. Ceperley review on PIMC for condensed helium 

[69] and to the R. Rodriguez-Cantano et al. review on PIMC applied to doped helium clusters [70]. 

The PIMC can be used to simulate superfluid bosonic systems. This method solves 

Feynman’s path integrals, which provide a direct way of calculating thermodynamic properties of 

the system. The computational requirements of these calculations are significantly higher than 

those of the DFT approach. Thus, the clusters that can be studied can contain up to 40 helium 

atoms. 

Due to this limitation the PIMC method is not useful to predict structures of large helium 

droplets but can provide a good insight on the small clusters that can be found, for instance, when 

helium droplets are doped with some ionic impurities. The experimental and theoretical study by 

R. Perez de Tudela et al. [71] is a good example of this. The aim of the study was to elucidate 

how Cs+ ions are solvated. By means of TOF-MS the most stable HeNCs+ clusters were identified. 

Interpreting the spectra and with aid of theoretical structural and energy calculations it was found 

that the first solvation shell contained 17 helium atoms and was particularly rigid. 
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6.2. DYNAMICS 

The aim of dynamical calculations is to find the evolution of a system over time and simulate 

it as truthfully as possible. In the previous section, it has been shown how solving the TISE allowed 

to find the energy of a system in the ground state. By this procedure, minimum energy paths can 

be obtained. However, real systems may not follow these paths, instead, depending on the 

amount of energy that the reactants have, different outcomes may occur that cannot be predicted 

by non-dynamical approaches. 

Take, for instance, the Ne-Ne interaction potential energy shown in Figure 11. It was 

calculated by minimizing the structure of the helium cluster at different Ne-Ne distances, as 

explained before. In other words, if we wanted to interpret it dynamically, we would have to 

assume that neon atoms move so slow that helium can instantly adapt to their movement, in an 

analogous way to the BO approximation for electrons and nuclei. 

This approximation may or may not be justified depending on the conditions of the system. In 

capture chambers dopants travel at hundreds of meters per second and collisions with helium 

occur rather violently. Thus, an energy transfer from the dopant to the helium takes place, and 

the droplet is excited (phonons, rotons and ripplons). Evidently, this kind of processes will not be 

accounted for in the minimum energy path approximation and other methods must be used. 

6.2.1. TDDFT/QM 

Due to the complexity of the systems, fully quantum dynamical calculations are beyond the 

present computational possibilities. Instead, the usual procedure uses time dependent density 

functional theory (TDDFT) to describe helium and the QM or CM methods to describe the 

impurities, being CM the most commonly used. 

Dynamic calculations can be formulated by generalizing the following example. Let us 

consider a droplet of 𝑁 atoms and an atom impurity that collides with it, that is, a capture process. 

To find the equations governing the time motion of the system we can minimize the quantum 

action of the system, which is given by: 

 
𝒜[𝜓𝐻𝑒 , 𝜙𝑋] = ∫ 𝑑𝑡 {𝐸[𝜓𝐻𝑒 , 𝜙𝑋] − 𝑖ℏ ∫ 𝑑𝑹𝐻𝑒𝜓𝐻𝑒

∗
𝜕

𝜕𝑡
𝜓𝐻𝑒

− 𝑖ℏ ∫ 𝑑𝒓𝑋𝜙𝑋
∗

𝜕

𝜕𝑡
𝜙𝑋} 

(6.14) 
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Where 𝐸[𝜓𝐻𝑒 , 𝜙𝑋] is the total energy of the system and is analogous to (6.3). As stated, 

now we must minimize the action by performing variations of the wave functions 𝜓𝐻𝑒 and 𝜙𝑋. 

This leads to two coupled non-linear Schrödinger-like equations: 

(6.2
2) 

𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐻𝑒 = [−

ℏ2

2𝑚𝐻𝑒
𝛁2 + 𝑈𝐻𝑒−𝑋(𝑹𝐻𝑒) +

𝛿ℇ𝑐

𝛿𝜌
] 𝜓𝐻𝑒 (6.15) 

(6.2
2) 

𝑖ℏ
𝜕

𝜕𝑡
𝜙𝑋 = [−

ℏ2

2𝑚𝑋
𝛁2 + 𝑈𝑋−𝐻𝑒(𝒓𝑋)] 𝜙𝑋 (6.16) 

Where the interaction potentials 𝑈 have been defined in equations (6.6) and (6.7). Note that 

the equations found are general for any system of a droplet with one impurity. Furthermore, the 

operators acting on the wave functions are, obviously, identical to the ones found in the static 

case for a single doped droplet. However, in the current case, we are interested in the propagation 

of the wave functions over the real time. 

With these equations we can study any process involving a single doped helium droplet. The 

initial conditions will control what process will take place. In the case of a capture the initial 

conditions will be a pure helium droplet of 𝑁 atoms and an impurity wave packet directed to the 

droplet with an appropriate initial velocity distribution. 

This procedure, titled TDDFT/QM, was followed by A. Vilà et al. [72] to study the dynamics of 

the pick up process of neon atoms by helium nanodroplets. In this case, the movement of the 

impurity was restricted to the z-axis to focus in the zero angular momentum case. 

In Figure 13a, snapshots of the temporal evolution of a neon atom with an initial velocity 

distribution of 〈𝑣0〉 = 500 𝑚 · 𝑠−1 are depicted, as an example of the results obtained with the 

described approach. From the moment of the collision the droplet shows multiple waves that travel 

through the liquid. The energy received by the droplet upon collision is liberated via evaporation 

of some helium atoms. At the time of 118.45 ps the first solvation layer is visibly formed around 

the impurity, since the droplet has liberated enough of the excess energy. Interferences in the 

neon wave packet are also observed in the moment of the collision but disappear once the atom 

is inside the droplet. 
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Figure 13. a) Snapshots showing the temporal evolution of the capture of a neon atom, 〈𝑣0〉 = 500 𝑚 ·

𝑠−1. b) Expected value of the velocity of neon as a function of time. c) Same as b) with different scale. [72] 

The expected value of the velocity of the impurity over time for different initial conditions is 

shown in Figure 13b and Figure 13c. Note how, after the fast initial drop due to the impact, there 

are oscillations caused by the waves generated in the droplet, which are reflected on its surface 

and collide back with the impurity. After ~20 ps, the velocities stabilize and exhibit plateaus of 

almost constant velocity before stopping and changing direction. The plateaus correspond to 

intervals of time where the impurity travels below the Landau critical velocity and there is no 

friction between the impurity and the helium. When the neon atom arrives at the surface of the 

nanodroplet the anisotropy of the environment, and thus, the interaction potential energy, pulls it 

back to the centre. In A. Vilà et al. work [72], the calculation is propagated to the order of only a 

hundred picoseconds. 

As stated before, the impurity was restricted to move on the z-axis only and, thus, the effect 

of the angular momentum is not considered. The backflow term and the non-local contribution to 

the helium correlation energy functional have been neglected, though this is the standard 

procedure when using the Orsay-Trento functional. The position and the momentum space of 

b) c) 

a) 
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both the helium density and the neon impurity was discretized using a cartesian grid, which was 

more or less dense depending on the initial velocity of the impurity. The higher the energy of the 

system, the denser the grid must be. Additionally, numerical methods must be applied in order to 

solve the coupled Schrödinger-like equations. The authors provide further technical information 

in the publication. [72] 

The TDDFT/QM methodology was developed by the same group in 2015. It was initially 

applied to the study of the Cl2 molecule photodissociation inside a helium nanodroplet. The 

quantum interferences originated in the wave packets upon collision with the walls of the cavity 

around the molecule, the relaxation of helium after the collision and the effect of the mass of the 

atoms were also investigated. [73–76] 

The study of the capture process has been used as an example of application of this 

methodology because it was extended by M. Blancafort-Jorquera et al. by using the TDDFT/CM 

approach [77], making the comparison between the two approaches possible.  

6.2.2. TDDFT/CM 

The TDDFT/CM method follows the same steps as the analogous TDDFT/QM method. First, 

the quantum action of the system must be found, and this is given for any impurity by: 

 𝒜[𝜓𝐻𝑒 , 𝒓𝑋] = ∫ 𝑑𝑡 {𝐸[𝜓𝐻𝑒 , 𝒓𝑋] − 𝑖ℏ ∫ 𝑑𝑹𝐻𝑒𝜓𝐻𝑒
∗

𝜕

𝜕𝑡
𝜓𝐻𝑒 − 𝑚𝑋 (

𝑑𝒓𝑋

𝑑𝑡
)

2

} (6.17) 

Next, the action must be minimized by taking variations to 𝜓𝐻𝑒 and 𝒓𝑋. This leads to two 

coupled non-linear Schrödinger-like equations that govern the motion of the system: 

 𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐻𝑒 = [−

ℏ2

2𝑚𝐻𝑒
𝛁2 + 𝑉𝐻𝑒−𝑋(|𝑹𝐻𝑒 − 𝒓𝑋|) +

𝛿ℇ𝑐

𝛿𝜌
] 𝜓𝐻𝑒 (6.18) 

 𝑚𝑋𝑹̈𝑋 = − 𝛁[∫ 𝑑𝑹𝑋𝜌𝐻𝑒 𝑉𝐻𝑒−𝑋(|𝑹𝐻𝑒 − 𝒓𝑋|)]  (6.19) 

In Figure 14a, the velocity of the Ne atom over time is depicted [77]. Overall, the results are 

remarkably similar to those found in the TDDFT/QM approach (Figure 13c). After the fast 

decrease and initial oscillations of the velocity upon collision plateaus are found, where the atoms 

travel at a constant speed through the droplet. When the surface is reached, the atom is stopped 

and pulled back in the opposite direction. 

Due to the decrease of computational requirements because of the impurity being treated 

classically, the effect of the angular momentum could be taken into account. This was 

accomplished considering an initial impact parameter (𝑏) different from 0 (𝑏 is defined as the 
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distance from the centre of mass of the nanodroplet to the trajectory of the impurity before 

collision). The trajectories of the dopants colliding with a nanodroplet are shown, in Figure 14b. 

After the collision, almost elliptical trajectories were found for all impact parameters, except for 

those where the impurity is not captured. 

Figure 14. a) Velocity of neon atoms as a function of time. b) Trajectories of neon atoms with 𝑣0 =

500 𝑚 · 𝑠−1 and impact parameter in Å of 0 (red), 7 (blue), 14 (green), 17 (magenta), 20 (black), 27 

(orange) and 34 (yellow). [77] 

Besides, in cases where the angular momentum of the system is high enough, the 

appearance of quantum vortices is induced, which proved to be a noteworthy tool for chemical 

synthesis (see section 5.6). 

From the comparison of the results obtained by the two methods, it follows that quantum 

behaviour is of slight importance here (note that neon is the lightest noble gas atom that can be 

captured by nanodroplets). Thus, if treating this system using classical mechanics yields 

essentially the same results than the quantum approach, the method ought to be usable for 

heavier elements as well, as the quantum effects of the translational degrees of freedom will be 

even less significant. 

When applied to more than one impurity, the TDDFT/QM and TDDFT/CM methods allow to 

study the dynamics of chemical reactions. A similar study to the previously described allowed to 

investigate the importance of quantum effects in chemical reactions inside helium nanodroplets. 

A. Vilà et al. used the TDDFT/QM approach to study the reaction dynamics between two neon 

atoms (Ne + Ne@HeND) [78]. In the study, a neon atom was picked up by a single-doped helium 

droplet, which was in its ground state with the neon atom placed in its centre. The equations of 

motion were found, as in the other examples, by minimizing the quantum action of the system, 

b) a) 
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which was described by the helium wave function, 𝜓𝐻𝑒, a wave packet describing the relative 

motion of the two atoms, 𝜑𝑟𝑒𝑙(𝑟, 𝑡), and the centre of mass of the two atoms, 𝑅𝐶𝑀: 

 𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐻𝑒 = [−

ℏ2

2𝑚𝐻𝑒
𝛁2 + ∫ 𝑑𝑟 |𝜑𝑟𝑒𝑙|2𝑉𝐻𝑒−𝑁𝑒2

(𝑟, 𝑹𝐻𝑒 , 𝑅𝐶𝑀) +
𝛿ℇ𝑐

𝛿𝜌
] 𝜓𝐻𝑒 (6.20) 

 
𝑖ℏ

𝜕

𝜕𝑡
𝜑𝑟𝑒𝑙 = [−

ℏ2

2𝜇𝑁𝑒2

𝛁2 + 𝑉𝑁𝑒2
(𝑟) + ∫ 𝑑𝑟 𝜌𝐻𝑒𝑉𝐻𝑒−𝑁𝑒2

(𝑟, 𝑹𝐻𝑒 , 𝑅𝐶𝑀)] 𝜑𝑟𝑒𝑙 (6.21) 

 
𝑀𝑅̈𝐶𝑀 =  −

𝜕

𝜕𝑅𝐶𝑀
[∬ 𝑑𝑟𝑑𝑹𝐻𝑒 𝜌𝐻𝑒|𝜑𝑟𝑒𝑙|2𝑉𝐻𝑒−𝑁𝑒2

(𝑟, 𝑹𝐻𝑒 , 𝑅𝐶𝑀)] (6.22) 

In this treatment the impurities have been restricted to move only on one axis and their centre 

of mass is treated classically. Snapshots of a calculation where the colliding neon atom has an 

initial average velocity of 〈𝑣0〉 = 300 𝑚 · 𝑠−1 are presented in Figure 15. The initial snapshots 

are identical to what was found for the pick up process, excepting the neon atom already placed 

inside the nanodroplet. At 19 ps a very dense layer of helium is found separating the two Ne 

atoms. This density is displaced due to the high energy of the recently captured atom, which 

allows the reaction to take place. In the end the Ne2 dimer travels through the nanodroplet as a 

single atom would do, and the relative distance between the two atoms behaves like a harmonic 

oscillator with a modified interaction potential due to the helium environment. 

M. Blancafort-Jorquera et al. [79] extended this study using the TDDFT/CM approach, i.e. 

considering the impurities classically. Similar to the quantum-classical study of the Ne atom 

capture process, angular momenta different from zero could be introduced via an impact 

parameter of the colliding neon atom. 

Figure 15. Snapshots of a neon atom colliding with a single-doped helium nanodroplet for an initial 

average velocity of 〈𝑣0〉 = 300 𝑚 · 𝑠−1. [78] 



38 Sanchez Ambros, Eloi 

 

Figure 16. a) Average value of the distance between the neon wave packets vs time in the TDDFT/QM 

approach [78]. Distance of the neon atoms vs time with b) 𝑏=0 Å and c) 〈𝑣0〉 = 800 𝑚 · 𝑠−1, both in the 

TDDFT/CM approach. [79] 

We can see a comparison of the results obtained using the TDDFT/CM and TDDFT/QM 

methods in Figure 16. Figure 16a corresponds to the TDDFT/QM approach, and shows that a 

dimer of bond distance 3.29 Å is obtained as a product regardless of the initial velocity. Contrarily, 

in the case where the impurities are treated classically (Figure 16b) the product obtained in the 

case of 〈𝑣0〉 = 210 𝑚 · 𝑠−1 corresponds to an adduct of bond distance equal to 5.45 Å. This 

pseudodimer is originated due to the lack of energy of the atoms to push away the helium density 

that separates them. Thus, a clear difference is found between the two approaches. The quantum 

approach predicts a slightly lower energy transfer from the colliding impurity to the liquid, making 

it easier to push away the helium density located between both atoms. 

Furthermore, cases with angular momentum different from zero at 〈𝑣0〉 = 800 𝑚 · 𝑠−1 can 

be seen in Figure 16c. The appearance of the pseudodimer of bond distance equal to 5.45 Å is 

found again for impact parameters of 8, 12 and 16 Å. Interestingly, for 𝑏=4 Å another product is 

found. In this case the neon atoms are both fully and independently solvated, separated from 

a) 

b) c) 
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each other by ~9.14 Å. We can conclude that the system behaves in a non-monotonic way, 

making it difficult to extract clear tendencies on the outcome of the reaction. The waves generated 

in the liquid helium at the moment of collision may collide back to the impurities, changing their 

trajectories in ways hard to predict. 

The introduction of angular momentum effectively reduces the velocity of the atoms in the 

reaction coordinate, making it harder to remove the helium density that separates them. In fact, 

there was not a single case where the impact parameter was different from zero that resulted in 

the 3.29 Å dimer. Moreover, the appearance of quantum vortices was reported in cases where 

the angular momentum was high enough, likewise to the capture scenario. 

These dynamic results are in line with the static calculations reported by J. Eloranta (Figure 

11, see section 6.1.1), which suggested the existence of neon adducts and quantum foams. Due 

to the very low temperature of the helium nanodroplets together with its capacity of rapidly 

releasing the excess energy, metastable products separated by layers of helium density can be 

found. 

Dynamic calculations allow to find both the reaction products and reaction times. Furthermore, 

the microscopic mechanism of the reaction and the processes leading to its outcome can be 

thoroughly studied, e.g. the generation of waves and vortices in the helium due to the energy 

transfer mechanism upon collision. 

Using the hybrid approach involving TDDFT for helium and classical mechanics for impurities 

several processes have been studied. In fact, this approach is the most common to perform 

dynamic simulations involving superfluid helium. 

F. Coppens et al. [80,81] studied the formation and dynamics of RbHeN exciplexes, which are 

complexes generated in excited states of the impurity. By considering excitations to different 

electronic states of the rubidium atoms, which reside in the surface of the droplets, two different 

desorption regimes where found. One occurred in 30 ps, while the other one was found to take 

around 700 ps. In combination with experimental results, the authors were able to identify which 

excitations corresponded to each of the regimes. Besides, further excitations to heliophilic states 

were found to fall back to the droplet. 

A similar process is the ejection of heliophilic atoms when excited to heliphobic states. This 

was studied by D. Mateo et al. [82] and the results obtained agree qualitatively with the 
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experimental results. Besides, they were able to predict the shifts observed in the spectroscopic 

results by static calculations. 

Apart from the experimental investigation on the dynamics of the In atom ejection upon 

excitation [36,37] (see section 5.5.1), the authors included a theoretical study where the 

TDDFT/CM method was used to obtain further insight on the microscopic mechanism. The 

simulations were able to reproduce the bubble expansion, oscillations, ejection of the atom and 

the energy of the photoelectrons produced after ionization with the probe laser.  

Another work by Coppens et al. [83] aimed at the effects of quantum vortices in the capture 

of several Ag atoms. It was found that the vortices trapped the atoms once they were travelling at 

low velocities, altering significantly the trajectories of the atoms. In some cases, the atoms were 

brought together, in others they were drifted apart. An example of snapshots of one of their 

calculation can be seen in Figure 17. 

Figure 17. Snapshots of a nanodroplet with 6 quantum vortices and 6 Ag atoms being captured. [83] 

Major differences were found when comparing the capture dynamics of heliophilic (Xe) and 

heliophobic (Cs) atoms. In the xenon case, a solvation layer was rapidly formed while in the other 

case this structure was not formed. When xenon atoms had enough initial speed to go through 

the droplet they carried with them some helium density. Again, this differed completely from the 

cesium case [84]. 

6.2.2.1. Ehrenfest Approximation 

Overall, the TDDFT/CM method has proven to be a solid tool for studying processes involving 

doped helium nanodroplets. Treating the impurities classically does not exclude the possibility of 

working with different electronic states. In fact, it is common to account for several states using 

the Ehrenfest molecular dynamics approach. 

Briefly, the Ehrenfest method describes the movement of the nuclei due to a potential resulting 

from the superposition of the different electronic states involved, which are averaged by 

coefficients that depend on time. Consequently, by analysing the changes of these coefficients 
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over time the transitions between the electronic states can be studied. A derivation of this method 

can be seen in section 3 of [85].  

An example of use of this method is given by Y. Seki et al. [86] in a study of the ejection of a 

silver atom upon excitation from a low temperature cluster of 500 helium atoms. Ring polymer 

molecular dynamics were combined with the Ehrenfest approach, although the superfluid 

description of helium was not possible. By using this approach, they were not able to predict the 

final electronic state of the silver after the ejection, as their results did not match the experimental 

findings. However, the final Ag velocity distributions obtained roughly agreed with the experiment. 

6.2.3. Instantaneous Helium Adaptation Approximation 

A further approximation which can be done in dynamical calculations consists on assuming 

that the helium density instantly adapts to the impurity movement. In this approach the helium 

environment is treated as an energy correction in the interaction potential between the reactants. 

A. W. Hauser et al. [87] followed this procedure to study the collision times of two impurities 

captured by a helium droplet, specifically, the Cu, Ag and Au atoms were considered. The helium 

environment was taken as a perturbation to the interaction potentials of the metals. This 

procedure is analogous to the one used in the study of the spatial quenching of the electron 

transfer reaction (Figure 12, see section 6.1.2). Besides to the inter-atomic interaction, the 

confinement potentials of the impurities were found by static calculations of singly doped droplets 

at different distances from the centre (Figure 18a). 

Once the corrected interaction potentials and the confinement potentials were found, the 

Newton’s equations of motion could be solved: 

(52) 𝑚𝑀𝒓̈𝑀 = −𝛁[𝑉𝑀−𝑀′(|𝒓 − 𝒓′|) + 𝑉𝑀−𝐻𝑒(𝒓)]  (6.23) 

(52) 𝑚𝑀𝒓̈′𝑀 = −𝛁[𝑉𝑀−𝑀′(|𝒓′ − 𝒓|) + 𝑉𝑀−𝐻𝑒(𝒓′)]  (6.24) 

Where 𝒓 and 𝒓′ are the position vectors of the two impurities. The potential inducing the 

movement of each atom is given by the interaction with the other dopant (𝑉𝑀−𝑀′ ) and its 

interaction with the droplet (𝑉𝑀−𝐻𝑒 ). The simplification of the procedure allowed to perform 

thousands of calculations with random initial positions and with nanodroplets of up to 10000 

helium atoms.  

The approximations rely on the immediate adaptation of the helium density to the movement 

on the impurities, which only makes sense when the impurities travel below the Landau critical 
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velocity. Thus, in the simulation, the dopants are limited to go slower than 58 m·s-1. The physical 

interpretation is simple, when this velocity is exceeded, friction will appear between the helium 

and the impurity, reducing its velocity until the Landau regime is reached again. 

An example of the trajectories of the impurities through the droplet are shown in Figure 18b. 

Note how the trajectories are qualitatively equal to those showed in Figure 14b. 

The distribution of the results obtained in the 10000 simulations performed for two copper 

atom impurities in a 5000 helium atoms droplet are shown in Figure 18c. Peaks with a periodicity 

of 130 ps are observed, which is the time it takes for a particle to traverse the nanodroplet at the 

Landau velocity. This relation was found in larger and smaller nanodroplets as well, leading to 

larger and smaller intervals respectively. 

Figure 18. Result for a nanodroplet of 5000 helium atoms: a) Confinement potential. b) Trajectories of 

two Cu atoms. c) Results of 10000 simulations showing time collisions between two Cu atoms. A long tail 

beyond 3000 ps was cut for clarity. [87] 

6.2.4. Basis Set Expansion 

Now that the approximations that transform a quantum problem into a classical one have been 

explained, we can show a different way to simplify the quantum problem. There are some cases 

where further development of the motion equations that govern the system may transform them 

into others that can be propagated in a more efficient and accurate way. 

a) b) 

c) 
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If the process studied can be thought as one of the basic quantum mechanical problems (in 

essence, a harmonic oscillator or a rigid rotor) it may be possible to use the eigenfunctions of 

these systems as a basis to describe the problem of interest. To display how this idea may be 

applied we take as an example the work of M. Blancafort-Jorquera et al. on the rotational 

relaxation of a dimer inside a helium nanodroplet [88]. 

The aim of the study was to investigate the dynamics of the rotational relaxation process of a 

previously excited homonuclear diatomic molecule inside a helium droplet. The governing 

equations of the system, which are analogous to (6.15) and (6.16), are:  

𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐻𝑒 = [−

ℏ2

2𝑚𝐻𝑒
𝛁2 + ∬ sin 𝜃 𝑑𝜃𝑑𝜙𝑉𝐻𝑒−𝑋2

(𝜃, 𝜙, 𝑹𝐻𝑒)|𝜑𝑋2
(𝜃, 𝜙)|

2
+

𝛿ℇ𝑐

𝛿𝜌
] 𝜓𝐻𝑒 (6.25) 

𝑖ℏ
𝜕

𝜕𝑡
𝜑𝑋2

= [−
ℏ2

2𝐼
𝐿̂2 + ∫ 𝑑𝑹𝐻𝑒 𝑉𝐻𝑒−𝑋2

(𝜃, 𝜙, 𝑹𝐻𝑒)𝜌(𝑹𝐻𝑒)] 𝜑𝑋2
 (6.26) 

Where 𝐼 = 𝜇𝑋2
𝑟𝑒𝑞,𝑋2

2  and 𝐿̂ is the angular momentum operator. These equations refer to a 

helium droplet described by 𝜓𝐻𝑒(𝑹𝐻𝑒) and a dimer of reduced mass 𝜇𝑋2
 with a bond length 

constant and equal to 𝑟𝑒𝑞,𝑋2
 described by 𝜑𝑋2

(𝜃, 𝜙).  

If we write the wave function of the dimer as 𝜑𝑋2
(𝜃, 𝜙) = ∑ 𝑐𝑗,𝑚𝑗

𝑌𝑗,𝑚𝑗
, where 𝑌𝑗,𝑚𝑗

 are the 

spherical harmonics, we can modify (6.25) and (6.26) to obtain: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓𝐻𝑒 = [−

ℏ2

2𝑚𝐻𝑒
𝛁2 + ∑ 𝑐𝑖,𝑚𝑖

∗ 𝑐𝑗,𝑚𝑗
𝑉𝑖,𝑚𝑖,𝑗,𝑚𝑗

𝑖,𝑚𝑖,𝑗,𝑚𝑗

(𝑹𝐻𝑒) +
𝛿ℇ𝑐

𝛿𝜌
] 𝜓𝐻𝑒 (6.27) 

𝑖ℏ
𝜕

𝜕𝑡
𝑐𝑖,𝑚𝑖

= 𝐸𝑟𝑜𝑡,𝑖,𝑚𝑖
𝑐𝑖,𝑚𝑖

+ ∑ 𝑐𝑗,𝑚𝑗
𝑉𝑖,𝑚𝑖,𝑗,𝑚𝑗

𝑗,𝑚𝑗

 (6.28) 

Where 𝑖 = 1,2, … , 𝑛, 𝑚𝑖 = −𝑖, … ,0, … , 𝑖, and 𝑛 determines how many basis functions we 

are using and: 

 𝑉𝑖,𝑚𝑖,𝑗,𝑚𝑗
(𝑹𝐻𝑒) = ∬ sin 𝜃 𝑑𝜃𝑑𝜙 𝑉𝐻𝑒−𝑋2

(𝜃, 𝜙, 𝑹𝐻𝑒)𝑌𝑖,𝑚𝑖

∗ (𝜃, 𝜙)𝑌𝑗,𝑚𝑗
(𝜃, 𝜙) (6.29) 

 𝑉𝑖,𝑚𝑖,𝑗,𝑚𝑗
= ∬ sin 𝜃 𝑑𝜃𝑑𝜙 𝑑𝑹𝐻𝑒𝑉𝐻𝑒−𝑋2

(𝜃, 𝜙, 𝑹𝐻𝑒)𝜌(𝑹𝐻𝑒)𝑌𝑖,𝑚𝑖

∗ (𝜃, 𝜙)𝑌𝑗,𝑚𝑗
(𝜃, 𝜙) (6.30) 

The molecular wave function is a lineal combination of spherical harmonics, which are the 

solutions of the rigid rotor system (i.e., the free molecule), and its value will be determined at each 

moment of the evolution by the coefficients 𝑐𝑖,𝑚𝑖
, that depend on time. Physically, we can interpret 

this approach as the helium environment perturbating an otherwise freely rotating molecule. 
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Calculations were performed considering a sudden excitation from 𝑗 = 0 and 𝑚𝑗 = 0 to a 

higher rotational state and, then, the system was left to evolve to observe how it returned to the 

ground state. Hydrogen (H2) and five more isotopes were considered (D2, T2, Qa2, Qi2 and Sx2), 

where the first two are deuterium and tritium and the last three are hypothetical molecules with 

rotational constants of 1 4⁄ , 1 5⁄  and 1 6⁄  the rotational constant of hydrogen. This made 

possible to study the effect of the rotational constant in the relaxation process. 

As stated previously, the rotational relaxation process may require quite a lot of time to take 

place. Thus, optimizing the calculations is of the utmost importance. Previous calculations were 

used to understand which factors are truly important and to which extent. 

For instance, the size of the nanodroplet has a major impact in the computational resources 

needed, and a study of its effect was performed. The structures of nanodroplets of different sizes 

are depicted in Figure 19a. It is readily seen how the second solvation layer changes very slightly 

from 100 to 125 helium atoms. As the rotational relaxation was predicted to be mostly affected by 

the interaction of the dopant with the closest solvation layers, adding more than a hundred helium 

atoms was not necessary, as their effect on the process would be minimal. A dynamical test was 

performed in Figure 19b to verify that the effect of the helium environment is small when more 

than 100 atoms are considered in the calculation. 

Once the initial conditions for each calculation were found by static calculations, equations 

(6.27) and (6.28) were propagated over the real time and the evolution of the system could be 

found. The relaxation of the molecules to the 𝑗 = 0, 𝑚𝑗 = 0 state when excited to the 𝑗 =

2, 𝑚𝑗 = 0 level is illustrated in Figure 20a. It is noticed that, the smaller the rotational constant, 

the faster the molecule relaxes to the ground state.  

Figure 19. a) Helium radial density of the T2 embedded in nanodroplets of 𝑁 atoms. b) Populations of 

T2(𝑗 = 0, 𝑚𝑗 = 0, solid lines) and T2(𝑗 = 2, 𝑚𝑗 = 0, dashed lines) in droplets of 𝑁 atoms over time. [88] 

b) a) 
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Figure 20. Populations of the rotational levels: a) molecules in the relaxation process from 𝑗 = 2, 𝑚𝑗 = 0 

(dashed lines) to 𝑗 = 0, 𝑚𝑗 = 0 (solid lines). b) Sx2 in the relaxation process from the 𝑗 = 6, 𝑚𝑗 = 0 to 

the ground state. Adapted from [88]. 

When the molecules were excited to higher energy states it was found that their metastability 

increased as the energy level increased (Figure 20b). The process of relaxation takes place 

almost in a cascade mechanism, where the de-excitation occurs via sequential steps. However, 

there is no metastability in the intermediate energy levels and each level begins to be populated 

before the previous de-excitation is completed. 

Completely different results were found by A. Vilà et al. [89] where the same methodology 

was applied to the vibrational relaxation. In this case, the relaxation follows a true cascade 

mechanism, where the de-excitation takes place in steps and metastable states are found in all 

intermediate levels. In addition, it was found that the higher the excited state the faster the 

relaxation is, diverging again from the rotational process. 

In both relaxations, the excess of energy of the molecule was transferred to the helium when 

it relaxed to lower energy levels (some helium density evaporated, releasing with it this energy 

excess). The differences between the rotational and vibrational relaxation processes were 

attributed to the very different nature of the motions involved. When exciting the molecule to higher 

vibrational states the amplitude of the oscillations increases, facilitating its interaction with the 

surrounding solvation layers and diminishing its lifetime. In contrast, the metastability of the 

rotational states increases the higher their energy is, and the authors concluded that the energy 

transfer from the molecule to the helium becomes harder as the angular velocity increases. 

Employing the basis set of an analytically solvable quantum mechanical process can be of 

use in doped superfluid helium studies, since the perturbation suffered by the impurities is small. 

Moreover, this approach optimizes the use of computational resources to a point where studies 

b) a) 
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of processes of the order of several nanoseconds are viable while maintaining the quantum nature 

of the dopants. 

6.2.5. Path Integral Centroid Molecular Dynamics 

A radically different method from the previously explained is the path integral centroid 

molecular dynamics (PICMD). Only two examples of use in helium nanodroplets were found in 

the literature. T. Takayanagi and M. Shiga [90,91] studied the photodissociation of Cl2 embedded 

in a droplet and the dynamics of KHeN exciplexes. 

In PICMD all the atoms of the system are considered semi-classically. Besides, the 

calculations in the literature simulate the system at 4 K. Hence, it does not account for the 

superfluidity of the liquid helium, which is expected to be one of the most important properties 

defining the behaviour of the system. 
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7. CONCLUSIONS 

The chemical research involving superfluid helium nanodroplets has increased significantly 

during the last ten years. The development of synthetic methods to obtain complex nanostructures 

that are otherwise hard (or impossible) to obtain has been an important factor to understand this 

trend. 

From the physical chemistry point of view, the application of fast pump-probe laser techniques 

has allowed to obtain a quite deep insight on the microscopic mechanisms and other dynamic 

properties of processes taking place in helium nanodroplets. 

Thanks to the low interaction of the helium droplets with the dopants, theoretical structure 

calculations have provided a remarkable tool to elucidate the results of spectroscopic 

measurements.  

Theoretical methods to investigate the dynamics of different physical and chemical 

phenomena occurring in Helium nanodroplets have been available only for the last five years. 

Due to the complexity of these systems, hybrid methods must be used, where the impurities 

(atoms or molecules) are described using quantum or classical mechanics and the helium 

nanodroplets are always considered using time dependent density functional theory. 

The development of new experimental techniques in combination with the advances in 

theoretical simulations will allow to study doped helium nanodroplets extensively, yielding new 

knowledge on these systems about which there are still many questions to answer. 
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9. ACRONYMS 
CM Classical mechanics QM Quantum mechanics 

DFT Density functional theory REMPI Resonance-enhanced multiphoton ionization 

HeND Helium nanodroplet TDDFT Time dependent density functional theory 

ITP Imaginary time propagation TDSE Time dependent Schrödinger equation 

MS Mass spectrometry TEM Transmission electron microscopy 

PES Potential energy surface TISE Time independent Schrödinger equation 

PICMD Path integral centroid molecular dynamics TOF Time of flight 

PIMC Path Integral Monte Carlo TOF-MS Time of flight mass spectrometry 

    
    
    
    
    
    
    
    
    
    
    





 

 


