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Abstract

We propose a canonical sampling method to refine metadynamics simulations a
posteriori, where the hills obtained from metadynamics are used as a time-invariant
bias potential. In this way the statistical error in the computed reaction barriers is
reduced by an efficient sampling of the collective variable space at the free energy level
of interest. This simple approach could be useful particularly when two or more free
energy barriers are to be compared among chemical reactions in different or competing
conditions. The method was then applied to study the acid dependence of polyalcohol
dehydration reactions in high-temperature aqueous solutions. It was found that the
reaction proceeds consistently via an SN2 mechanism, whereby the free energy of
protonation of the hydroxyl group created as an intermediate is affected significantly
by the acidic species. Although demonstration is shown for a specific problem, the
computational method suggested herein could be generally used for simulations of
complex reactions in the condensed phase.
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We propose a canonical sampling method to refine metadynamics simulations where the

hills obtained from metadynamics are used as a time-invariant bias potential. The

method was applied to study the acid dependence of polyalcohol dehydration reactions in

high-temperature aqueous solutions. It was found that the reaction proceeds via an SN2

mechanism, whereby the free energy of protonation of the hydroxyl group created as an

intermediate is affected significantly by the acidic environment.
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INTRODUCTION

The study of complex reactions in the condensed phase is an important task in computational

chemistry. As chemical reactions are generally rare event phenomena that only occur by

overcoming high free energy barriers, conventional molecular dynamics (MD) simulations

are not proper for studying them. Many different methods have been developed to study

rare events in an efficient manner.1–18

Modern computational techniques have enabled qualitative estimates of high reaction

barriers. For a typical organic reaction with a half-life of 1 hour, the free energy barrier

according to transition state theory (TST) is as high as 30–40 times the thermal energy

kBT , where kB is the Boltzmann constant and T is the temperature. However it is usually

more difficult to compare the relative difference of two or more reactive processes, e.g., the

dependence on different conditions, such as temperature, pressure and acidity. In this case,

a free energy difference of the order of few kBT may become important. When it comes

to a competitive reaction, a small difference in the free energy barrier would be crucial to

determine the product ratio. Therefore, there is a need for an accurate means of determining

free energy barriers.

Metadynamics (MTD)8,19–29 is very useful for complex reactions in the condensed phase,

when the reaction can be characterized by a small number of degrees of freedom Ncv called

collective variables (CVs), q = (q1, · · · , qNcv
). In this method, the landscape of the free

energy surface W (q) can be computed by exploring the CV space efficiently by applying a

history-dependent bias potential that discourages the system from returning to visited places

in the configuration space. For a proper description of chemical bond exchange of reactive

processes, ab initio or semi-empirical MTD, i.e., metadynamics combined with on-the-fly

ab initio or semi-empirical electronic structure calculations, is usually required. For the

computational efficiency of such simulations, the run could be terminated after reaching the

product basin. While this approach does not give access to any information regarding the

free energy landscape of the product, the free energy barrier can be estimated from the

difference in values between the saddle point and the reactant minimum. The escape process

from the reactant basin allows one to identify the reaction mechanism via the change of CVs
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in going from the reactant minimum to the saddle point.

Theoretically, MTD is an exact methodology in the limit of infinitesimally low frequency

and height of the deposited hills. However, in practice, these values are finite and, often, large

enough for an efficient sampling of configuration space. This gives rise to the characteristic

roughness of MTD free energy surfaces, which in turn might lead to a significant source of

error when it comes to determining free energy barriers or differences. For this reason, several

variants of MTD have been recently proposed with the goal of improving the accuracy of

the obtained free energy surfaces. These variants include cleverly designed adaptive schemes

in which the increments of the bias potential become smaller as the simulation goes on,23–26

reweighting techniques applied a posteriori to the MTD simulations,27,30–36 and methods in

which the reweighting is applied on-the-fly and the result of such reweighting is used to

define the adaptive bias potential.28 Improvement of MTD has been also suggested using the

combination with umbrella sampling37,38, adiabatic free energy dynamics39, and temperature

accelerated molecular dynamics40. Despite all these valuable recent efforts, converging the

free energy surface with an error lower than kBT is still computationally demanding in

general.

In this paper, we propose a method of refining the free energy estimate using the

approximate W (q) obtained from conventional MTD simulations. As shown in Figure 1

schematically, it is a post-process for conventional MTD to upgrade the bias potential by

canonical sampling. We start from the W (q) set from upon reaching the transition state or

from just prior to reaching the transition state. This allows us to explore the CV space q

at the free energy level where the reaction takes place. Next, we perform a biased sampling

in the reactant basin where W (q) is regarded as a time-invariant bias potential. Here we

add an artificial wall potential that has high values at the entrance of the product basin

and zero values in the reactant basin, so as not to affect the sampling. The sampling can

be performed by any kind of equations of motion that generates the canonical ensemble,

i.e., thermostatted MD or MTD in the absence of the hills deposit. The resulting density

distribution ρW (q) is then used to upgrade W (q). After some iterations of this procedure,

the bias potential should converge to the negative value of the free energy within the region

of q from the reactant basin to the transition state. Eventually, the sampling becomes almost
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uniform in this region from which one can judge the convergence. Unlike conventional MTD,

the sampling is done always with a fixed W (q) at the last upgrade, so the unbiasing can

be done without any approximate assumptions. Thus the final error could be less than kBT

after sufficient sampling, in principle.

In this study, we use the refined MTD to estimate the free energy barrier for dehydration

of polyalcohols in high-temperature aqueous solutions. The dehydration reaction of

polyalcohols is seen as an important step for the conversion of biomass into cyclic ethers.

High-temperature water has attracted attention from a viewpoint of green chemistry because

of the advantages of being less toxic, cheaper, and easier to handle than organic solvents.41–43

The reaction barriers in aqueous media are sensitive to temperature, pressure and acidity,

which opens up the possibility of optimizing the reaction conditions. In previous experiments,

it was reported that the rate of polyalchohol dehydration can be accelerated significantly

under acidic conditions.44–46 Recently, the reaction rates of polyalcohol dehydration in

high-temperature water and carbonated water has been studied systematically by an

experimental group of Shirai, Yamaguchi, et al.47–52 Accordingly our research group has been

working on elucidating the mechanism of this reaction from a standpoint of computational

chemistry.53,54 From the analysis of dehydration of simple polyalcohols, i.e., 2,5-hexanediol

(HDO) and 1,2,5-pentanetriol (PTO), we proposed that the main reaction is dominated by a

protonation-assisted SN2 pathway. However we have not yet proved the acidity dependence

that has been observed experimentally. In this study, our aim is to compute the free energy

barriers for the dehydration reaction of 2,5-HDO in different acidic solutions in order to

verify that the proposed SN2 reaction mechanism shows such an acidity dependence.

THEORY

Consider a situation where the negative value of the free energy surface, W (q), has been

obtained approximately after a conventional MTD simulation, and we wish to refine the

quality of that W (q). In this case, running an isothermal simulation in the presence of a
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time-invariant bias potential W (q) would generate a canonical distribution

ρW (q) ∝
∫

dre−β(V (r)+W (q))δ(Q(r)− q)

∝ e−βW (q)ρ(q) (1)

where β = kBT , Q(r) is the set of CVs given as a function of atomic coordinates r, V (r) is

the potential energy of the system, and

ρ(q) ∝
∫

dre−βV (r)δ(Q(r)− q) (2)

is the canonical distribution in the absence of the bias potential. Now suppose that the biased

simulation gave ρW (q) as the probability distribution of finding the CVs at q = Q(r). Then,

the Helmholtz free energy surface defined by A(q) ≡ −β−1 ln ρ(q) can be estimated as

A(q) ≈ −W (q)−∆W (q) (3)

where the unbiasing correction is, apart from a redundant constant,

∆W (q) = β−1 ln ρW (q). (4)

The relationship in Equation (3) becomes exactly equal when the amount of sampling is

infinitely large.

In conventional MTD, the free energy is described as a sum of Gaussian functions (hills)

to obtain a smooth surface. In the same way it would be convenient also to describe the free

energy correction ∆W (q) as a sum of hills from the histogram of distributions, which will be

shown below. In this way the refinement of ∆W (q) could be done in an iterative manner by

carrying out biased simulations with the upgraded bias potential, as shown by the schematic

in Figure 2. Note here that the bias potential is shifted incrementally until convergence is

attained. This meets our purpose to estimate the free energy barrier since it allows sampling

at the same free energy level for the reaction of interest. This is in contrast to conventional

MTD where the free energy level is continuously elevated during the simulation. The more

sampling we perform, the better quality we obtain for the free energy surface.

We now describe our implementation to compute the free energy correction described by

Ngrid grid points assuming the form

∆W (q) =

Ngrid∑
j=1

hje
− 1

2
t(q−qj)σ−2(q−qj) (5)
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where hj is the height of the hill centered at the jth grid point in the CV space. For

simplicity it is assumed that the hills have a common width for all the grid points, and they

are the elements of the diagonal matrix, σ = diag(σ1, · · · , σNcv
). Let ∆Wi = ∆W (qi) be

the histogram obtained at the ith grid point qi. To optimize the set of heights of the hills,

h =
(
h1, · · · , hNgrid

)
, we impose a condition that the mean-square deviation

E =
1

Ngrid

Ngrids∑
i=1

Ngrid∑
j=1

hje
− 1

2
t(qi−qj)σ−2(qi−qj) −∆Wi

2

(6)

is minimized. Then dE/dh = 0 leads to a linear equation

Ngrid∑
i=1

Ckihi = bk (7)

where we have defined

bk =

Ngrid∑
i=1

(∆Wi) e
− 1

2
t(qi−qk)σ−2(qi−qk) (8)

and

Cki =

Ngrid∑
j=1

e−
1
2(t(qi−qj)σ−2(qi−qj)+t(qj−qk)σ−2(qj−qk)). (9)

In conventional MTD, W (q) is expressed as a sum of Gaussian hills, see Equation (12) in

the next section. Thus, according to Equation (3), adding ∆W (q) of Equation (5) results

in a new set of Gaussian hills.

Equation (7) can be solved numerically, e.g., using the LAPACK library55 (DSYSV or DGESV).

The grid points should cover the CV space where the histogram is non-zero, but they do not

need to be regular. The value of |σ| should be set greater than half of the grid spacing to

make the W (q) surface smooth. For large grid sizes with high-dimensional CVs, evaluation

of Cki matrix could be a computational bottleneck. In that case, the summation of Cki

matrix can be done only for the grid points j where qj are close to both qk and qi, within a

certain cutoff distance that is set much larger than |σ|. For angular CVs, periodic boundary

should be applied to Equations (8) and (9) to obtain the set of heights h.
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SIMULATION METHOD

The refined MTD has been applied to the dehydration reaction of 2R,5R-HDO in

high-temperature aqueous solutions. The simulations were carried out in the thermodynamic

conditions of 523 K and 20 MPa in accordance with experiments using pure and carbonated

water. The simulated system contained one 2R,5R-HDO (C6H14O2) molecule and 30 H2O

molecules, either with or without acidic species (H2CO3, H2SO4 or HCl) added to it. It was

confirmed previously that the system size effect on the free energy barrier is small for this

system since the reaction takes place locally involving several water molecules in the vicinity

of HDO.53 The atoms were placed in a cubic box with a volume of (11.38 Å)3, which was

preliminarily determined from classical molecular dynamics simulations in the NPT ensemble

at 20 MPa and 523 K using the OPLS all atom force field.56 Periodic boundary condition was

applied to the system to represent the bulk aqueous solution. On-the-fly electronic structure

calculations of the Born-Oppenheimer forces were done with a semi-empirical approach based

on the self-consistent-charge density-functional tight-binding (SCC-DFTB) method57–59

using the 3ob Slater-Koster parameter set.60,61 The massive Nosé-Hoover chain (MNHC)

thermostat technique62–65 was used to control the system efficiently. The simulations were

conducted using a combination of the PIMD66,67 and DFTB+68,69 software packages.

Three CVs (Ncv = 3, q1 = d, q2 = ϕ, q3 = n) were chosen based on minimum energy

path analysis of a microsolvated model of 2R,5R-HDO.53 As shown in Figure 3, d is the

difference in C2-O7 and C2-O8 distances, which represents the exchange of bond breaking and

formation upon the ether ring formation, ϕ is the dihedral angle of O7-C2-C3-C4 atoms which

characterizes the conformation of 2R,5R-HDO molecule, and n is the hydrogen coordination

number of the O7 atom which represents the protonation of the O7H hydroxyl group. Note

that the C2-O7 bond is not included in n. We used the sum of rational functions for this

n =
∑
j∈H

1−
(

rj7
rb

)6
1−

(
rj7
rb

)12 (10)

where the bond length parameter is rb =1.4 Å. Unlike our earlier works,53,54 we did

not employ artificial wall potentials in the large d regions to restrict the conformational

sampling. Instead, the whole sampling, including the conformational change of 2R,5R-HDO,
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was undertaken using the refined MTD. Artificial wall potential at d < 0 was employed in

the refinement stage to prevent sampling from the product region.

The pseudo-Hamiltonian of conventional MTD was given by

H =

Nw∑
k=1

Hsys

(
r(k),p(k)

)
+

Ncv∑
i=1

Nw∑
k=1


(
p
(k)
i

)2
2µi

+
κi

2

(
q
(k)
i −Qi

(
r(k)
))2

+W (q(t), t) +Hbath (11)

where the first term is the Hamiltonian with respect to theNw copies of the molecular system,

Hsys

(
r(k),p(k)

)
, where k is the index of the copy. Each of them represents the sum of kinetic

energy of atoms and the Born-Oppenheimer potential calculated with the DFTB method,

V
(
r(k)
)
. The second term is the kinetic energy of fictitious particles (Nw walkers), where

p
(k)
i , q

(k)
i and µi are the momentum, the position and the mass of the walker, respectively,

for the CV component i and the walker k. The third term is a harmonic potential that binds

the position of the walker to the actual CV value, Qi

(
r(k)
)
, where κi is the force constant.

The fourth term is a history-dependent bias potential expressed as the sum of hills deposited

to the places where all the walkers have visited until time t, i.e.,

W (q(t), t) =
∑
τ<t

Nw∑
k,l=1

h exp

− Ncv∑
i=1

1

2

(
q
(k)
i (t)− q

(l)
i (τ)

σi

)2
 , (12)

where h and σi are the hill height and the hill width, respectively. The fifth term is the

contribution from the MNHC thermostats. In our implementation, a Nosé-Hoover chain is

coupled to each degree of freedom of the atoms and for each walker, and it is also coupled to

each degree of freedom of the fictitious particle on the CV space for each walker. Thus, the

total number of MNHC thermostats is (3N +Ncv)NwL where L(= 4) is the chain length.

First, conventional MTD simulations were undertaken using Nw = 12 walkers with the

length 94–348 ps each (i.e., 1.1–4.2 ns in total) with the step size ∆t = 0.25 fs until the

reaction basin was filled. To speed up the calculation, the hill size was set initially to (h,

σ1, σ2, σ3) = (1.0 kcal mol−1, 0.05 Å, 10◦, 0.1), and was diminished finally to (0.2 kcal

mol−1, 0.05 Å, 10◦, 0.1). Following the setup by Ensing et al.20 the fictitious mass was set as

µi = kBT
(

τcv
1.5σi

)2
where τcv = 40 fs, and the force constants were set as κi = µi

(
2π
τfc

)
where

τfc = 10 fs. A new hill was deposited at a time interval of τcv for each walker.
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In the refinement stage, the histogram in the CV space was collected from the DFTB MD

simulations in the presence of the MTD bias potential. MNHC thermostats were employed

for the efficient sampling in the canonical ensemble. The MD simulations were conducted

for 12 individual trajectories each being 309–828 ps long (i.e., 3.7–9.9 ns in total), with the

step size ∆t = 0.25 fs. Equation (7) was solved using the regular grid points of 31× 30× 31

with the spacing of 1.5 times the width parameters σ = (0.095 Å, 8.0◦, 0.067) covering all

the visited places in the CV space within the reactant basin.

RESULTS

Numerical test

Before proceeding to production simulations, we tested the performance of the refined MTD

introduced in the previous section. Since we would like to use a simple diatomic model that

imitates the C-O dissociation involved in the polyalcohol dehydration reaction, we designed

a Lennard-Jones potential function scaled by a cosine function,

V (r) = ϵLJ

[(σLJ

r

)12
− 2

(σLJ

r

)6] [
− cos

(
πr

σLJ

)]
+ ϵLJ, (13)

with ϵLJ = 40.0 kcal/mol and σLJ = 1.40 Å. As depicted in Figure 4(a), this function has

a minimum at 1.40 Å and a maximum at 2.43 Å with a potential barrier of 41.9 kcal/mol.

Assuming one-dimensional CV with respect to the interatomic distance q = r = |rC − rO|,

the free energy function is exactly given by

A(r) = V (r)− β−1 ln
(
4πr2

)
. (14)

with a free energy barrier of 40.8 kcal/mol at 523 K, as shown in Figure 4(a). The second

term of the Equation (14) arises from the volume element with respect to r.

First, a conventional MTD calculation using Nw = 4 walkers was carried out at 523

K with the hill-width σ = 0.026 Å, the hill-height h = 0.2 kcal/mol, and the time scales

τcv = 40 fs, τfc = 10 fs. The run was terminated after about 137 ps when one of the walkers

first crossed the maximum point in A(r) at r = 2.39 Å. This is to focus on the sampling at

the free energy level around 40 kcal/mol near the transition state of the reaction. The free

10



energy curve estimated as the sum of hills at that time, A(r) ≈ −W0(r), is shown in Figure

4(b). Then isothermal MD calculation at 523 K was conducted for 4 trajectories with 75 ps

each in the presence of the bias potential W0(r) and an artificial wall to prevent from visiting

the product region, r > 2.39 Å. From the histogram of ρW0
(r) the refined free energy curve

A(r) ≈ −W1(r) was computed according to Equation (3), which is shown in Figure 4(c).

The MD calculation was continued with the upgraded bias potential W1(r) for an additional

1.5 ns. The free energy curve A(r) ≈ −W2(r), which was further refined by the histogram

of ρW1
(r), is shown in Figure 4(d).

Figure 4(b)-(d) clearly shows that the refinement works well as we expected. When

compared with the exact solution, the root-mean-square error (RMSE) and the maximum

absolute error (MaxAE) were found 1.15 and 2.37 kcal/mol, respectively, in conventional

MTD, while the RMSE and MaxAE dropped significantly to 0.43 and 1.05 kcal/mol (0.16

and 0.50 kcal/mol), respectively, in the first (second) refinement of MTD. Note that the

errors after final refinement became smaller than the thermal energy, kBT = 1.04 kcal/mol

at 523 K, at least for this test case. The performance in the production simulation will be

also confirmed in the next section.

Simulation results

Three-dimensional (3D) free energy profiles A(d, ϕ, n) of the aqueous solutions of 2R,5R-HDO

were obtained from the DFTB MTD simulations. For the clarity of our results, they are

displayed by means of a two-dimensional (2D) subspace. Here we take the subspace of the

free energy minimum with respect to the reduced CV as

Aϕ(d, n) = min
ϕ

A(d, ϕ, n), An(d, ϕ) = min
n

A(d, ϕ, n). (15)

These subspaces contains both the minimum and saddle points on the 3D free energy surface

since the primary reactive mode is parallel to the CO bond-exchange variable, d. In Figures

5 and 6, Aϕ(d, n) and An(d, ϕ) are shown where the origin is chosen to the value at the

transition state (the minimum on the d = 0 lines). Thus, the darker colors on the free

energy surface mean that the energy basin is deeper.

In Figure 5, the free energy surfaces Aϕ(d, n) and An(d, ϕ) are shown for the case of
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2R,5R-HDO in H2CO3 solutions. The two figures, 5(a) and 5(b), are displayed to compare

the quality of the free energy surfaces obtained before and after the refinement of conventional

MTD. The smoothness of the free energy surfaces clearly reflects the improvement by the

refinement. The refined MTD was able to remove the roughness with less spurious peaks and

valleys in the surface. The difference of free energy profiles, Figures 5(a) and (b), is shown

in Figure 5(c). In the unrefined MTD, the RMSE (MaxAE) with respect to negative free

energy region of Aϕ(d, n) and An(d, ϕ) were estimated to be 1.5 and 1.6 kcal/mol (3.8 and 7.3

kcal/mol), respectively. Figure 6(a-c) shows the results of the 2D subspaces, Aϕ(d, n) and

An(d, ϕ), in the HCl solution, in the H2SO4 solution and in pure water, respectively, obtained

from the refined MTD. Compared with our earlier works using conventional MTD,53,54 the

refined MTD has significantly improved the quality of free energy surface.

The regions colored in black/brown are the deepest regions in the free energy, which

correspond to the most stable structures of 2R,5R-HDO in the aqueous solution. Those

regions are located at d ≃ 4.1 Å, meaning that the HDO molecule is in the extended

conformation, and at n ≃ 1.2, meaning that the hydroxyl group of the molecule is in the

neutral form (n ≥ 1 because the hydroxyl group creates hydrogen bonds with surrounding

water molecules). It can be seen that the 2R,5R-HDO favors the conformations with three

dihedral angles about ϕ ≃ 60◦, 180◦, and 300◦. A shallow minima found at d ≃ 2.3 Å indicates

the contracted conformation of the 2R,5R-HDO. As time evolves, the MTD simulation

explores from the lower free energy regions colored in orange to the higher free energy regions

colored in yellow. Conventional MTD runs were terminated when we observe an escape from

the CV range (d ≤ 0 Å) after visiting the highest free energy region in grey. After that, the

free energy surface was refined by the MD runs sampling the whole CV space in color. The

saddle point of the free energy surface thus obtained at d = 0 Å corresponds to the transition

state whereby the O· · ·C–O → O–C· · ·O bond exchange occurs before forming an ether ring

of cis-2,5-dimethyltetrahydrofuran (DMTHF). The transition state at specific conformation

90◦ < ϕ < 270◦, indicate that the reaction takes place via the SN2 reaction. This result

is consistent with the high stereoselectivity of this reaction confirmed experimentally.48 For

the acidic solutions, the coordination number n ≃ 2.0 at the transition state implies that

the reaction involves the protonation of hydroxyl group.

12



As to the reaction process just mentioned, the DFTB simulations were able to reproduce

the results of our earlier Car-Parrinello MD (CPMD) simulation based on density functional

theory (DFT).53 However, a difference between DFT and DFTB was seen in the protonation

mechanism of the hydroxyl group. The protonation occurs via a Grotthuss relay mechanism

among water in the case of DFT, while the proton was mostly captured from the acid group

in the case of DFTB. We believe this is an artifact of DFTB3 with the 3ob parameter set,

which unfortunately could not also be removed by applying the D3 dispersion correction.70

In spite of this, the DFTB simulations were able to capture qualitatively correct features of

the free energy profiles as compared with the DFT simulations. This was the case in our

previous work on the dehydration of PTO as well.54

In Table 1, we summarize the results of the computed free energy barriers ∆A for

the dehydration reaction of 2R,5R-HDO. Here the statistical error is estimated from the

mean-square deviation of the block averages of ∆A with respect to three thirds of the MD

trajectories in the refinement stage. The ∆Adftb values obtained from the present DFTB

simulation of the aqueous HCl solutions was 35.4±0.4 kcal/mol, in reasonable agreement with

the value ∆Acpmd = 36 kcal/mol obtained in our previous CPMD simulation. Note here that

∆Acpmd is computed for a system of protonated solution, where the effect of counter anions

were replaced by a uniform background charge. On the other hand, the DFTB simulation

predicts a substantially lower barrier of ∆Adftb = 26.3±1.0 kcal/mol for the aqueous H2SO4

solution. The low barrier is consistent with the finding of an early experiment44 that the

2R,5R-HDO dehydration proceeded in sulfuric acid at a temperature as low as 293 K. In fact,

at this temperature the experimental barrier roughly estimated from TST with the rate of 1

per hour becomes as low as 22.4 kcal/mol. However, in the same experiment it was reported

that the reaction in sulfuric acid lead to a racemic mixture of cis- and trans-2,5-DMTHF

suggesting an SN1 mechanism. This is in contrast to the SN2 mechanism found in this

computational study, in spite of the difference in temperature and pressure conditions (573

K, 20 MPa). The peculiarity of sulfuric acid is an issue to be addressed in the future.

The computed values were compared with the experimental free energy barrier, ∆Aexptl.

This was estimated from the measurement of the half life of 2R,5R-HDO, τexptl ≈ 30 minutes,
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combined with the TST reaction rate,

kexptl = 2
kBT

h
exp

(
−
∆Aexptl

kBT

)
=

ln 2

τexptl
, (16)

where h is the Planck constant. The factor 2 in the second equality arises from the fact that

the reaction can proceed in two equivalent pathways leading to the same cis-2,5-DMTHF

product with either O7 or O8 oxygen. In the case of the H2CO3 solution, ∆Adftb = 39.6±0.3

kcal/mol agrees surprisingly well with ∆Aexptl = 40.0 kcal/mol. The ∆Adftb values for

the HCl solution was lower than that for the H2CO3 solution by 4.1 ± 0.4 kcal/mol. This

is consistent with experimental results from different research groups which showed that

the reaction of 2,5-hexanediol and 1,4-butanediol is accelerated by aqueous solutions as the

acidity is stronger.44–46,48,50 On the other hand, ∆Adftb values for pure water, 50.6 ± 0.8

kcal/mol, was much higher than that for the H2CO3 solution. This is also consistent with

the experimental observation that the reaction in the H2CO3 solution is at least 50 times

faster than that in pure water.48

Why is the free energy barrier lower for strong acidic solutions? Comparing the free

energy profiles in Figures 5 and 6, a notable difference can be found in the regions (d, n) ≈

(2.0 Å, 2.0) and (d, n) ≈ (4.0 Å, 2.0), which correspond to the protonation of the hydroxyl

group in the confined and extended conformations, respectively. The free energy barrier is

significantly damped in the H2SO4 solution when those regions become stable minima. Thus,

the value of free energy barrier is probably linked to the stability of the protonated state of

HDO in the acidic aqueous solutions.

At the end of this section, we show the typical molecular configurations taken from the

present DFTB MTD simulations. Figures 7 and 8 are the results from the simulations of

H2CO3 solutions and pure water, respectively. In the aqueous H2CO3 solution, it is found

that the reaction proceeds in the following manner. At the equilibrium state, 2R,5R-HDO

is in its extended conformation. Then at the transition state 2R,5R-HDO is protonated in

the confined conformation. Finally the ether ring is formed to become cis-2,5-DMTHF. The

reaction processes of the aqueous HCl and H2SO4 solutions were found to be in the SN2

mechanism, and were similar to the case of the aqueous H2CO3 solution.

The transition state configuration in pure water is different from that in acidic water.
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Specifically, the C–OH bond is broken without protonation in pure water. This can be seen

in Figure 6(c) that the coordination number is n ≈ 1.4 when d = 0, in contrast to the

case of acidic solutions, n ≈ 2.0. Yet, the transition state in pure water leads to the same

product, namely cis-2,5-DMTHF. These results demonstrate the possibility that polyalcohol

dehydration in high-temperature water follows different pathways depending on the presence

of excess protons. Thus we speculate that the anomalous acidity dependence on the reaction

kinetics as discussed in experiments45,46 is ascribed to the multiple pathways competing with

each other.

CONCLUSION

In this paper, we have proposed a refinement of MTD simulations a posteriori to help reduce

the error of free energy barriers of reactive processes. Making use of the hills obtained from

the MTD as a time-invariant bias potential, a canonical sampling is performed at the same

free energy level as the reaction barriers. This method was used to study the dehydration

reaction of HDO in high-temperature water with a focus on the acid dependence. It was

found that the acid species affects significantly the free energy profile of the SN2 reaction

pathway, which can be traced back to the protonation free energy of hydroxyl group in

hydrated environment. This result provides a theoretical foundation for the experimental

observations that the rate of this reaction is accelerated by the acidity without losing the

R/S stereoselectivity.

Finally, it is worth pointing out that the refined MTD was very helpful in this study.

For the calibration of the acid dependence, it is essential to estimate accurately the free

energy barriers which can differ from each other only by few kBT . This method works as

a post-processing, making a full use of the data from conventional MTD simulations that

usually have taken a large computation effort to obtain already. Importantly, the method

is simple but robust, and does not require any changes to existing software for conventional

MTD simulations. Our method allows the refinement of the bias obtained from any other

variants of MTD, such as the well-tempered metadynamics.
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Figure 1: A schematic figure for conventional MTD and its refinement. The bias potentials

are depicted for those after (a) conventional MTD in blue, (b) the first refinement in pink,

and (c) the second refinement in orange.

Figure 2: Computational procedure of the refined MTD method.

Figure 3: The structure of 2R,5R-HDO molecule in the extended conformation. The atoms

related to the CVs, d, n and ϕ, are colored in yellow, green and blue, respectively.

Figure 4: Tests on a diatomic model. (a) The functions V (r) and A(r), and the comparison

of A(r), and the free energy curves (b) obtained from conventional MTD, (c) refined at the

first iteration and (d) refined at the second iteration.

Figure 5: Calculated free energy surfaces An(d, ϕ) (left panels) and Aϕ(d, n) (right panels)

of 2R,5R-HDO in the H2CO3 solution obtained from (a) conventional MTD and (b) refined

MTD. Figure (c) shows the difference of Figures (a) and (b).

Figure 6: Calculated free energy surfaces An(d, ϕ) (left panels) and Aϕ(d, n) (right panels)

of 2R,5R-HDO in (a) the HCl solution, (b) the H2SO4 solution, and (c) pure water obtained

from refined MTD.

Figure 7: Dehydration process of 2R,5R-HDO in H2CO3 solution: (1) HDO is in its extended

conformation. (2) HDO is its confined conformation and the OH group is protonated. (3)

The C-O and O-C bonds are exchanged. (4) The ether ring of cis-2,5-DMTHF is formed.

After this, the proton bonded to the ether will be released to water to complete the reaction.

Figure 8: Dehydration process of 2R,5R-HDO in pure water: (1) HDO is its confined

conformation. (2) The CO bond is elongated when the OH group is surrounded by water.

(3) The OH− ion is eliminated by water. (4) The ether ring of cis-2,5-DMTHF is formed.

After this, the proton bonded to the ether will be released to water to complete the reaction.
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Figure 1, Kondo et al., J. Comput. Chem.
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Figure 2, Kondo et al., J. Comput. Chem.
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Figure 3, Kondo et al., J. Comput. Chem.
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Table 1. Free energy barrier ∆A of 2R,5R-HDO dehydration in kcal/mol.

solution DFTB (this work) CPMD1 experiment2

H2SO4 26.3± 1.0

HCl 35.4± 0.4

H2CO3 39.6± 0.3 40.0

pure water 50.6± 0.8 44.1 <

protonated water 36

1CPMD calculation from Reference53.

2Measurement of half life of HDO from Reference48 (30 minutes in H2CO3,

and more than 25 hours in pure water) is combined with the TST, Eq.16.
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