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Nonstructural carbohydrates in cereals have been widely investigated from physiological,
genetic, and breeding perspectives. Nonstructural carbohydrates may contribute to grain
filling, but correlations with yield are inconsistent and sometimes negative. Here we ask if
there are hidden functions of nonstructural carbohydrates, advance an ecological
dimension to this question, and speculate that high concentration of nonstructural
carbohydrates may challenge the osmotic homeostasis of aphids, thus providing a
working hypothesis that connects nonstructural carbohydrates with aphid resistance in
cereals. In the light of this proposition, the amount and concentration of nonstructural
carbohydrates should be regarded as functionally different traits, with amount relevant to
the carbon economy of the crop and concentration playing an osmotic role. We conclude
with suggestions for experiments to test our hypothesis.
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NONSTRUCTURAL CARBOHYDRATES PLAY MANY ROLES IN
PLANTS, BUT ASSOCIATIONS WITH YIELD ARE AMBIGUOUS
AND SOMETIMES NEGATIVE IN CEREALS

Plants accumulate nonstructural carbohydrates during specific developmental stages (Hall et al.,
1989; Dreccer et al., 2009; Slewinski, 2012) and when stresses such as nitrogen deficit, drought, and
low temperature decouple growth and photosynthesis (Barlow et al., 1976; Pontis, 1989; Sadras
et al., 1993; Muller et al., 2011; Körner, 2015). Scheduling harvest in relatively cool and dry periods
and irrigation management to generate mild water stress before harvest illustrate agronomic
practices seeking to shift carbon allocation from structural growth to sucrose accumulation in sugar
cane (Inman-Bamber, 2004). In cereals, nonstructural carbohydrates conspicuously accumulate in
shoots of nitrogen-deficient plants (van Herwaarden et al., 1998; Dreccer et al., 2013; Hoogmoed
and Sadras, 2016; Ovenden et al., 2017; Sadras et al., 2017) and in the shoot and root of plants
exposed to low temperature (Pontis, 1989; Tognetti et al., 1990; Equiza et al., 1997). Nitrogen deficit
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and low temperature also favor the storage of carbohydrates in
woody perennials (Korner, 2003; Kobe et al., 2010). However,
insoluble carbohydrates such as starch typically stored in woody
perennials are osmotically inactive (Korner, 2003), whereas
fructans and sucrose have significant osmotic effects in cereals
(Pontis, 1989; Storlie et al., 1993).

Ecologically, stored carbohydrates have several functions
including buffering the asynchrony between resource supply
and the demand for growth and supporting regrowth after
winter dormancy, fire, herbivory, drought, or frost (Bloom
et al., 1985; Slewinski, 2012; Wang et al., 2017). This involves a
trade-off between loss in competitive advantage from short-term
reserve accumulation and long-term persistence in variable
environments (Bloom et al., 1985).
Frontiers in Plant Science | www.frontiersin.org 2
Agronomically, stored carbohydrates in cereals and other
annuals buffer grain growth especially when stress impairs
photosynthesis after flowering (Bidinger et al., 1977; Jones and
Simmons, 1983; Hall et al., 1989; Ruuska et al., 2006; Saint Pierre
et al., 2010; Slewinski, 2012). Consistent with this role, selection for
yield has indirectly enhanced the concentration of nonstructural
carbohydrates in the shoot of wheat in dry environments of
Australia (Figure 1A). Also consistent with this role, wheat
grain size is relatively stable in response to severe reductions in
source:sink ratio with defoliation or shading (Figure 1B).
However, grain weight is equally stable in response to large
increase in source:sink ratio caused by partial kernel removal
(Figure 1B), leading to the conclusion that the yield of wheat is
dominantly sink-limited during seed filling (Borrás et al., 2004).
D

etar
ht

worg
evitale

R

0.0

0.1

0.2

0.3

E

hp
mylo

mea
H

)a
P

M(
erusserp

cito
mso 0

1

2

F

Dietary sucrose concentration (M)

0.0 0.4 0.8 1.2 1.6

citoib
mysfo

ecnadnub
A

.ps
arenhcu

B
airetcab 0

1

2

3

Year of release

1960 1980 2000

)
%(

noitaived
C

S
W -8

-4

0

4

8

H
AR

R
O

S
TU

R

)
%(

C
S

W

0

10

20
A

C

Concentration of non-structural carbohydrates (%)
20 30 40

)a
P

M(laitnetop
cito

ms
O -2.8

-2.4

-2.0

-1.6

B                      n = 255

Relative change in 
assimilate availability per seed (%)

0 200 400 600

fo
esnopser

evitale
R

)
%(thgie

w
dees

-100

0

100

defoliation
shading
kernel removal

FIGURE 1 | (A) Selection for yield over five decades steadily increased the concentration of water soluble carbohydrates (WSC) in wheat adapted to winter-rainfall
environments of Australia. Inset is the average across varieties in three environments of South Australia (HAR: Hart, ROS: Roseworthy, TUR: Turretfield) and the
scatterplot is the deviation of each variety relative to the environmental mean. The fitted line is the least-square regression (r = 0.66, P < 0.0001). (B) Relationship
between relative change in wheat seed weight and the relative change in potential assimilate availability per seed produced during seed filling in a number of
experiments where source:sink ratio was reduced with defoliation or shading or increased with partial removal of kernels. The lines are the theoretical limits for full
source limitation (y = x, red) and full source limitation (y = 0, black). (C) Correlation between the osmotic potential and concentration of nonstructural sugars (fructan
+ sucrose) of wheat plants in a factorial experiment comparing three cultivars (Froid, Brawny, PI 372129) infested with Russian wheat aphid (Diuraphis noxia) and
uninfested controls. The fitted line is the least-square regression (r = −0.98, P < 0.001). (D) Relative growth rate of the pea aphid Acyrthosiphon pisum as a function
of sucrose concentration in artificial diet. Growth rate is loge(day-8 mass/day-6 mass)/2], with each aphid weighed on day 6 and day 8 to the nearest µg. (E)Osmotic
pressure of the hemolymph of 8-day-old aphids reared on diets with varying concentration of sucrose. (F). Abundance of symbiotic bacteria Buchnera spp. in 8-d-old aphids
on diets of varying concentration of sucrose. Abundance is 10−6 × the number of copies of Buchnera dnak gene per ng total DNA. The fitted curves are (D) cubic polynomial,
(E, F) piecewise models with triangles showing the breakpoint ± standard error. Figures have been drawn using data from the following sources: (A) Sadras and Lawson (2011);
(B) Borrás et al. (2004); (C) Storlie et al. (1993); (D–F) Douglas et al. (2006). The figures have been reproduced with permission by CSIRO Publishing (A), Elsevier (B), Springer
Nature (C) and Company of Biologists, Society for Experimental Biology (Great Britain) (D–F).
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Despite the proven role of nonstructural carbohydrates to
buffer grain growth, the association between yield and
carbohydrate reserves is far from clear (Dreccer et al., 2009;
Dreccer et al., 2013; del Pozo et al., 2016; Hoogmoed and Sadras,
2016; Ovenden et al., 2017; Sadras et al., 2019). In the extensive
and agronomically robust wheat studies comprising 319 breeding
lines and 46 varieties over wide environmental conditions in
Australia (Ovenden et al., 2017) and 384 cultivars and advanced
semi-dwarf lines in rainfed and irrigated environments in Chile
(del Pozo et al., 2016), the correlation between whole-plot
harvested yield and concentration of water soluble carbohydrates
in the shoot at flowering was low and inconsistent, or even
negative. In a set of 16 oat varieties grown in four environments,
grain yield correlated negatively with concentration of water
soluble carbohydrates in the shoot at flowering (Sadras et al., 2019).

Theory and empirical evidence for a myriad of trade-offs
between nonstructural carbohydrates and other fundamental
traits explain the weak, inconsistent or even negative
correlations with yield. According to the current theory of cereal
yield formation, these trade-offs arise in a species-specific critical
period when ear survival, floret survival within ears, determination
of potential grain size, and root growth overlap with active
accumulation of nonstructural carbohydrates (Sadras and
Denison, 2009; Slafer et al., 2014). During this period yield is
mainly source limited, and empirical evidence supports the
antagonistic relationship between accumulation of nonstructural
carbohydrates with tillering, ear, and grain number per m2 (Lopes
and Reynolds, 2010; Dreccer et al., 2013; del Pozo et al., 2016;
Sadras et al., 2017; Okamura et al., 2018) and root biomass (Lopes
and Reynolds, 2010). For example, the low yield of rice variety
Momiroman (608 g m−2) in comparison to Teqig (897 g m−2) was
partially related to a large amount of nonstructural carbohydrates
remaining in the crop at maturity (115 g m−2 in Momiroman, 24 g
m−2 in Teqig) (Okamura et al., 2018). There is also a trade-off
between remobilization of stored carbohydrates supporting grain
fill and the retention of carbohydrates in stem that contributes to
lodging resistance (Kashiwagi and Ishimaru, 2004; Kashiwagi
et al., 2006; Kashiwagi et al., 2016; Zhang et al., 2017).
Nonstructural carbohydrates therefore buffer grain weight but
do not contribute consistently to yield and involve significant
and widespread trade-offs compromising root and shoot growth
and reproduction. Hence the question: does selection for
agronomic adaptation unintentionally increase concentration of
nonstructural carbohydrates because there are hidden advantages
of this trait?
HIGH CONCENTRATION OF
NONSTRUCTURAL CARBOHYDRATES
CHALLENGES THE OSMOTIC
HOMEOSTASIS OF APHIDS

Theroleofosmoticstressonplant-herbivore interactionshasreceived
attention in entomology (Downing, 1978; Fisher et al., 1984;
Frontiers in Plant Science | www.frontiersin.org 3
Dixon, 1988; Storlie et al., 1993; Rhodes et al., 1997; Douglas
et al., 2006; Alkhedir et al., 2013; Jiang et al., 2016). However, the
ecological role of nonstructural carbohydrates mediated by their
osmotic effect (Figure 1C) has been largely ignored in crop
science. Aphids (Hemiptera, Aphidoidea) are the most
important insect pests in temperate agriculture (Minks and
Harrewijn, 1987), and cereal breeding programs are
particularly concerned with aphids as vectors of plant viruses
(Trebicki et al., 2017). It is plausible that plant breeders would
discard genotypes that favor build-up of aphid populations and
feature symptoms of viral diseases (Richards, 1997).

Primarily associated with the concentration of nonstructural
carbohydrates (Figure 1C), the osmotic potential of the host
plant’s phloem sap could be greater than the osmotic pressure of
the aphid hemolymph, thus challenging the water balance of the
insect. In an early study with Myzus persicae grown on sea aster
(Aster tripolium), Downing (1978) found that the osmotic
pressure of the excreted honeydew was comparable to that of
the hemolymph, thus demonstrating the aphid’s ability to reduce
the osmotic pressure of the ingested sap. Fisher et al. (1984) later
verified that M. persicae maintained similar osmolality in
hemolymph and excreted honeydew with a 2.2-fold variation in
the osmolality of the diet (10 to 30% sucrose w/v). Sitobion avenae
and Schizaphis graminum, but not Rhopalosiphum padi, reduced
the concentration of total soluble carbohydrates in the phloem sap
of wheat after feeding for 72 h (Liu et al., 2020). Polymerization of
dietary sugars to oligosaccharides, chiefly the trisaccharide
melezitose, is a widespread osmoregulatory mechanism in aphids
(Fisher et al., 1984; Rhodes et al., 1997). Further, a filter chamber
involved in osmoregulation has been considered adaptive for
aphids feeding regularly on a diet of high osmotic potential
(Rhodes et al., 1997).

The mean population size of the aphid S. avenae declined
with increasing concentration of water soluble carbohydrates in
cocksfoot (Dactylis glomerata), and this effect was attributed to
osmotic stress on the aphid (Alkhedir et al., 2013). Conversely,
mediated by an increase in leaf turgor, higher osmotic potential
of cotton leaves favored Aphis gossypii body weight, fecundity,
and population abundance, albeit slightly (Jiang et al., 2016).
These contrasting responses of aphids to nonstructural
carbohydrates may suggest nonlinear relationships between
insect fitness and host-plant sugar concentration and osmotic
potential. However, in both studies osmotic and C:N ratio were
confounded; the influence of plant C:N ratio on insect survival
and fitness is well established (Mattson, 1980). Douglas et al.
(2006) provide robust, direct evidence of nonlinearity in the
response of aphids to diet’s sugar concentration. The relative
growth rate of 6- to 8-day-old final instar larvae of pea aphid
(Acyrthosiphon pisum) varied nonlinearly with sucrose
concentration in artificial diets (Figure 1D). The relative
growth rate was impaired by reduced feeding reflecting the
importance of sucrose as a phagostimulant at low dietary
sucrose concentrations and by osmoregulation failure at high
concentrations. Up to a threshold of 1.06 ± 0.21 M sucrose in the
diet, the osmotic pressure of the aphid’s hemolymph was
June 2020 | Volume 11 | Article 937
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maintained, but above this threshold the breakdown of
osmoregulation was apparent (Figure 1E). Furthermore, the
abundance of symbiotic bacteria Buchnera spp., critical in
providing essential amino acids to the aphid, collapsed after a
threshold of 0.87 ± 0.18 M sucrose in the diet (Figure 1E). Both
the threshold for osmoregulation of aphid hemolymph and the
threshold for survival of symbiotic bacteria were close to the
onset of declining relative growth rate (Figure 1D) providing a
putative causal link between osmotic stress and insect fitness.
With concentration of nonstructural carbohydrates over 30% not
uncommon in cereals (Storlie et al., 1993; Ovenden et al., 2017;
Sadras et al., 2019), the osmotic potential of the plant (Figure
1C) could be stressful for aphids (Figures 1D–F) (see also Fisher
et al., 1984).
IS IT POSSIBLE THAT SELECTION FOR
RESISTANCE TO APHIDS MIGHT
UNINTENTIONALLY FAVOR HIGH
CONCENTRATION OF NONSTRUCTURAL
CARBOHYDRATES IN CEREALS?

Based on the lack of clear association between nonstructural
carbohydrates and yield—the primary breeding target—and the
effect of nonstructural carbohydrates on fitness of aphids, we
speculate that selection for resistance to aphids might
unintentionally favor high concentration of nonstructural
carbohydrates, even at the expense of other agronomic traits.
In the light of this proposition, the amount and concentration of
nonstructural carbohydrates should be regarded as functionally
different traits, with amount relevant to the carbon economy of
the crop, and concentration playing an osmotic role. The
hypothesis that nonstructural carbohydrates in cereals can
affect the fitness of aphids via osmotic stress can be tested
experimentally. Factorial experiments combining cereal
phenotypes and aphid species and clones can be designed
against a putative curve of insect fitness and behavior against
Frontiers in Plant Science | www.frontiersin.org 4
host-plant osmotic potential (cf. Figure 1D). Cereal phenotypes
with contrasting concentration of nonstructural carbohydrates
can be generated with genetic or environmental sources of
variation, or both. Assays to quantify insect fitness (Bohidar
et al., 1986) and feeding behavior (Givovich and Niemeyer, 1995)
in response to specific cereal phenotypes can be combined. To
rigorously test our hypothesis, we need to further: (a) test the
degree of correlation between concentration of nonstructural
carbohydrates in the whole plant, as usually assessed in crop-
focused research, and the concentration of nonstructural
carbohydrates in phloem as perceived by aphids, and (b)
untangle the potential confounded effects of osmotic potential
and C:N ratio of plant tissues; the role of N-based osmolytes also
deserves attention.
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