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Abstract 38 

Glucose-dependent insulinotropic polypeptide (GIP) beyond its insulinotropic effects may 39 

regulate post-prandial lipid metabolism. While the insulinotropic action of GIP is known to 40 

be impaired in type 2 diabetes mellitus (T2DM), its adipogenic effect is unknown. We 41 

hypothesised GIP is anabolic in human subcutaneous adipose tissue (SAT) promoting 42 

triacylglycerol (TAG) deposition through re-esterification of non-esterified fatty acids 43 

(NEFA) and this effect may differ according to obesity status or glucose tolerance. 44 

Methods: 23 subjects, categorised in four groups: normoglycaemic lean (n=6), 45 

normoglycaemic obese, (n=6), obese with impaired glucose regulation (IGR) (n=6) and 46 

obese, T2DM (n=5) participated in a double-blind, randomised, crossover study involving a 47 

hyperglycaemic clamp with a 240 minute GIP infusion (2pmol kg-1min-1) or normal saline. 48 

Insulin, NEFA, SAT-TAG content and gene expression of key lipogenic enzymes were 49 

determined before and immediately after GIP/saline infusions. 50 

Results: GIP lowered NEFA concentrations in obese T2DM group despite diminished 51 

insulinotropic activity (mean NEFA AUC0-4hr ± SEM, 41992 ±9843 µmol/L/min vs 71468 52 

±13605 with placebo, p=0.039; 95% CI 0.31 to 0.95). Additionally, GIP increased SAT-TAG 53 

in obese T2DM (1.78 ±0.4 vs 0.86 ±0.1 fold with placebo, p=0.043; 95% CI: 0.1 to 1.8). 54 

Such effect with GIP was not observed in other three groups despite greater insulinotropic 55 

activity. Reduction in NEFA concentration with GIP correlated with adipose tissue insulin 56 

resistance for all subjects (Pearson r=0.56, p=0.005). There were no significant gene 57 

expression changes in key SAT lipid metabolism enzymes.  58 

Conclusion: GIP appears to promote fat accretion and thus may exacerbate obesity and 59 

insulin resistance in T2DM. 60 

Key words: GIP, type 2 diabetes, adipose tissue, lipid metabolism, NEFA 61 

 62 
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Introduction 63 

In healthy individuals, glucose-dependent insulinotropic polypeptide (GIP) is secreted from 64 

small intestinal K cells in response to intraluminal carbohydrate, protein and most potently 65 

fat; GIP in turn stimulates (glucose-dependent) pancreatic insulin secretion. However, in 66 

patients with type 2 diabetes mellitus (T2DM), despite preserved GIP secretion (11) the 67 

insulinotropic action of GIP is severely impaired (12, 16, 35).  68 

 69 

GIP has other important extra-pancreatic metabolic functions with receptors expressed in 70 

such tissues as bone, brain, stomach and adipose tissue, where it may modulate post-prandial 71 

lipid metabolism (7). In animal models of obesity-induced insulin resistance, genetic and 72 

chemical  disruption of GIP signaling protects against the deleterious effects of high fat 73 

feeding by preventing lipid deposition, adipocyte hypertrophy and expansion of adipose 74 

tissue mass, and reducing triglyceride deposition in liver and skeletal muscle, maintaining 75 

insulin sensitivity (25, 31). Thus if GIP has a potential pro-adipogenic effect, selective GIP 76 

antagonists may be beneficial in treating obesity and type 2 diabetes mellitus (T2DM) (17). 77 

 78 

There is evidence that plasma GIP concentrations are increased in obesity. Given that dietary 79 

fat consumption chronically stimulates the production and secretion of GIP, inducing K cell 80 

hyperplasia (8, 36), higher GIP concentrations may reflect consumption of an energy dense, 81 

high-fat diet. Early rodent studies demonstrated that a GIP infusion, during an intraduodenal 82 

lipid infusion, decreased plasma triglyceride levels (14) while GIP has been shown to 83 

enhance insulin-induced fatty acid incorporation in rat adipose tissue (9). Thus GIP, mediated 84 

through the adipocyte GIP receptor, is anabolic in adipose tissue promoting fat deposition. 85 

 86 
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It is important to distinguish between direct effects of GIP on fatty acid metabolism and 87 

indirect effects based on its insulinotropic action. Acute GIP infusion in lean healthy males 88 

(with hyperinsulinaemia and hyperglycaemia) increases adipose tissue blood flow, 89 

triacylglycerol (TAG) hydrolysis and FFA re-esterification thus promoting triglyceride 90 

deposition (5, 6). In healthy obese men, acute GIP infusion reduced expression and activity of 91 

11β hydroxysteroid dehydrogenase type 1(11β-HSD1), a fat-specific glucocorticoid 92 

metabolism enzyme that may enhance lipolysis in subcutaneous adipose tissue (SAT) (20). In 93 

addition, it has been suggested that GIP contributes to induction of adipocyte and SAT 94 

inflammation (and thus insulin resistance), increasing production of pro-inflammatory 95 

adipokines such as  monocyte chemoattractant protein-1 (MCP-1) (21), IL-6, IL-1β and 96 

osteopontin (1, 37). Thus from the available animal model and human data, GIP appears to 97 

have a key regulatory role in lipid metabolism and adipose tissue.  98 

 99 

To date, very few studies have investigated the effects of GIP on human adipose tissue and 100 

none have involved subjects with T2DM although the reported presence of functional GIP 101 

receptors on adipocytes strongly suggests GIP modulates human adipose tissue metabolism 102 

(41). GIP has also been proposed to modulate other adipose tissue depots, and that excessive 103 

GIP secretion may underlie excessive visceral and liver fat deposition (33, 34).  In support of 104 

this, results from a cross-sectional study of Danish men demonstrated an association between 105 

higher levels of GIP (during a glucose tolerance test) and a metabolically unfavourable 106 

phenotype (higher visceral: subcutaneous fat and a higher waist-hip ratio) (32). 107 

 108 

We hypothesized that GIP would have an anabolic action in SAT promoting FFA re-109 

esterification, which we speculated may be mediated either by enhancing lipoprotein lipase 110 

(LPL) expression/activity (a lipogenic enzyme), (15, 26) or by reducing adipose tissue 111 
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triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) expression/activity, two key 112 

lipolytic enzymes. We postulated that this effect may be different according to obesity status 113 

or glucose tolerance. Thus, we set out to determine the acute, in-vivo effects of intravenous 114 

GIP on i) plasma/serum insulin and NEFA concentrations, and ii) TAG content and gene 115 

expression of the key lipid regulating genes, LPL, ATGL and HSL in SAT, in obese 116 

individuals with different categories of glucose regulation (normoglycaemic, IGR and 117 

T2DM) versus lean, normoglycaemic controls.  118 

 119 

Materials and methods 120 

Subjects 121 

We studied 23 Caucasian men, age 49 ± 12.3 years (mean ± SD). Only male subjects were 122 

studied to minimise the influence of sex steroids on lipid metabolism (e.g. considering 123 

menstrual cycle, menopause or hormone replacement therapy). Subjects with severe cardiac, 124 

renal or hepatic disease, endocrine dysfunction, major psychiatric disease, alcohol abuse, and 125 

malignancy were excluded. Subjects were sub-divided into four groups according to 126 

BMI/glucose regulation: i) lean (n=6), ii) obese (n=6), iii) obese with impaired glucose 127 

regulation [obese IGR] (n=6) and iv) obese with (treatment-naive) T2DM [obese T2DM] 128 

(n=5).  129 

 130 

Lean and obese were defined according to a BMI ≤25 and ≥30 kg/m2, respectively. 131 

Allocation to glucose regulation categories was based on recent medical records combined 132 

with a fasting plasma glucose concentration. Obese subjects were allocated to the obese IGR 133 

group if they had one/more of the following: fasting hyperglycaemia, impaired glucose 134 

tolerance on a 75g oral glucose tolerance test (OGTT) or HbA1c in pre-diabetes range (6-135 

6.5% or 42-47 mmol/mol). Obese subjects with T2DM (according to WHO diagnostic 136 
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criteria) (40), and not on pharmacological treatment for diabetes were allocated to obese 137 

T2DM group. Homeostatic model assessment (HOMA-2) was used to estimate whole body 138 

insulin resistance (23);  adipose tissue insulin resistance (Adipo-IR) was calculated from 139 

fasting NEFA (mmol/L) and  insulin (pmol/L) concentration (19). Baseline demographic, 140 

anthropometric and biochemical parameters of all participants are shown in Table 1.  141 

 142 

Ethical approval Ethical approval for this project was obtained from the Northwest Research 143 

Ethics Committee, U.K (REC reference 08/H1001/20). All subjects were studied after 144 

informed and written consent. 145 

 146 

Study protocol  147 

Each subject was studied on two separate occasions, 1-3 weeks apart. After overnight fasting, 148 

subjects were infused with either GIP (2 pmol.kg.-1min-1 in 0.9% saline) or placebo (0.9% 149 

saline alone). GIP was dosed based on the rate infused in previous studies (16, 35, 38) 150 

Subjects were randomly assigned to either GIP/placebo infusion on their initial visit and 151 

received the alternate infusion subsequently. Anthropometric assessments were recorded 152 

during each visit.  Percentage body fat estimation was determined by whole-body 153 

bioelectrical impedance analysis (Tanita Corporation, Tokyo, Japan).  154 

 155 

GIP infusions, hyperglycaemic clamp and blood sampling Intravenous cannulae were 156 

inserted into both antecubital fossae, for blood sampling and infusions (GIP/placebo). GIP 157 

(Polypeptide Laboratories, Strasbourg, France) was sterile-filtered and dispensed by 158 

Stockport Pharmaceuticals (Stepping Hill Hospital, Stockport, U.K). Blood glucose 159 

concentration ~8.0 mmol/l was maintained during a hyperglycaemic clamp using priming 160 

dose of 20% glucose bolus (based on weight and fasting glucose) given in the first 5 minutes 161 

followed by a variable rate infusion of 20% glucose adjusted according to whole blood 162 
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glucose levels measured every 5 minutes on a YSI blood glucose analyser (YSI U.K Ltd). 163 

Intravenous infusion of GIP/placebo was continued from 30 minutes after initiation of 164 

hyperglycaemic clamp until 240 minutes. 10 ml blood samples were taken at baseline (prior 165 

to hyperglycaemic clamp) and at 15, 30, 60, 120, 180 and 240 minutes following the 166 

initiation of GIP/placebo infusion. To minimise protein degradation, aprotinin was added to 167 

the tubes prior to sample collection. Samples were centrifuged immediately and serum was 168 

stored at -80 degree centigrade until further analysis 169 

 170 

SAT biopsies Subcutaneous adipose tissue (SAT) biopsies were obtained at baseline and after 171 

240 min of the GIP/placebo infusion on the contralateral site. Under local anaesthesia (1% 172 

lidocaine, adrenaline 1:200,000), a small incision was made through the skin and fascia 10cm 173 

lateral to the umbilicus. Adipose tissue samples (50-150 mg wet weight) were collected and 174 

snap frozen in liquid nitrogen and stored at -80o C until further analysis.  175 

 176 

Laboratory analysis  177 

Biochemical analysis Plasma glucose concentration, lipid profile, liver function parameters 178 

and HbA1c were measured using a Cobas 8000 modular analyser (Roche diagnostics, USA). 179 

Blood glucose concentrations during hyperglycaemic clamp were measured using YSI 2300 180 

STAT glucose analyser (YSI U.K Ltd, Fleet, Hampshire, U.K). Serum insulin was measured 181 

by ELISA method (Invitrogen, Fisher Scientific Ltd Loughborough, U.K).  Non-Esterified 182 

Fatty Acids (NEFAs) were measured from plasma by Randox kit on a Biostat BSD 570 183 

analyser (Randox laboratories Ltd, London).  Intact GIP was measured at the University of 184 

Copenhagen, Denmark: the assay is specific for the intact N-terminus of GIP (biologically 185 

active peptide) (13).  186 

 187 
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Subcutaneous Adipose Tissue (SAT) analysis 188 

SAT lipid content. Lysates were prepared by homogenization of fat biopsies in a buffer 189 

containing: 50mM TrisHCL pH=7.5, 150mM NaCl, 1% Triton X-100, and standard protease 190 

inhibitor cocktail (Complete Mini protease inhibitor cocktail, Roche Diagnostics, Germany). 191 

Triacylglycerol (TAG) was quantified by measuring free glycerol output following overnight 192 

lipase treatment at 37ºC (Sigma). The values were normalized according to protein content. 193 

SAT gene expression Gene expression of LPL, ATGL and HSL were quantified through 194 

RNA extraction and real time quantitative PCR. Total RNA was isolated using RNeasy Lipid 195 

Tissue Mini Kit (QIAgen). Real-time quantitative PCR was conducted in triplicate using a 196 

BIORAD CFX-connect real time PCR instrument (BioRAD laboratories) using pre-validated 197 

TaqMan probes (Life Technologies) as follows: endogenous control β-actin 198 

(Hs99999903_m1) and target genes: lipoprotein lipase (lpl, Hs00173425_m1) ATGL 199 

(pnpla2, Hs00386101_m1), hormone sensitive lipase (lipe. Hs00193510_m1). Relative 200 

quantification was carried out using the ΔΔCt method with β-actin gene expression as an 201 

internal control. 202 

 203 

Statistical analysis 204 

Participant demographics, baseline biochemical parameters and blood glucose concentrations 205 

during hyperglycaemic clamp are expressed as mean ± SD; all other results are expressed as 206 

mean ± SEM.  One-way analysis of variance (ANOVA) and Tukey’s t- tests were performed 207 

to compare participant demographics and baseline biochemical parameters between the four 208 

groups in this study. Area under the curve for insulin and NEFA concentrations over 4 hour 209 

period of infusion (AUC0-4hr) were calculated by trapezoidal rule using GraphPad Prism 210 

software. Paired t-tests were performed on changes in gene expression and lipid content 211 

(SAT-TAG) parameters to explore whether the change over the two time points differed 212 
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between GIP and placebo. P value of < 0.05 (two-tailed) was considered to be significant.                 213 

A Pearson product-moment correlation coefficient was computed to assess the relationship 214 

between degree of NEFA reduction and other variables (fasting plasma glucose and Adipose 215 

tissue insulin resistance (Adipo-IR).  216 

A linear mixed-effects model was also used to model insulin secretion and NEFA 217 

concentrations using three time points (baseline, 120 minutes and 240 minutes). Main effects 218 

for the four different groups are included along with a two-way interaction between treatment 219 

and group. This allows that the overall effect of GIP infusion in comparison to the placebo 220 

infusion can be assessed individually for different groups. Results are expressed in estimated 221 

average unit changes in insulin and NEFAs during GIP vs. placebo infusion. 222 

 223 

Results  224 

Baseline characteristics (Table 1) 225 

Patient demographics 226 

Twenty three individuals completed the study protocol in four sub-groups: lean (n=6), obese 227 

(n=6), obese IGR (n=6) and obese T2DM (n=5). Waist circumference and percentage body 228 

fat mass were significantly higher in obese, obese IGR, obese T2DM compared to the lean 229 

group. The duration of diabetes in obese T2DM group was 7 ± 5.5 months (mean ± SD), 230 

mean HbA1c of 54 ± 8.5 mmol/mol (7.1 ± 0.8 %) and all participants were naive to oral or 231 

injectable diabetes medications.  232 

 233 

Baseline biochemistry  234 

Plasma glucose and insulin concentrations  235 

As expected, mean fasting glucose was higher in obese IGR and obese T2DM groups 236 

compared to the two other groups. Fasting insulin and HOMA-IR were significantly higher in 237 
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obese, obese IGR and obese T2DM groups vs. the lean group. Adipo-IR was significantly 238 

higher in obese T2DM group vs. lean and obese groups but not vs. obese IGR group (Table 1) 239 

 240 

Metabolic parameters 241 

All subjects in obese IGR and obese T2DM groups had metabolic syndrome based on 242 

International Diabetes Federation 2006 criteria (2) with most consequently treated for 243 

hypertension and dyslipidemia: ACE inhibitors or angiotensin receptor blockers (three 244 

subjects in obese IGR group, five subjects in obese T2DM group), beta-blockers (two obese 245 

IGR, 2 obese T2DM) and calcium channel blocker (one obese T2DM). Three subjects in each 246 

of the above two groups were on statins. Two subjects in the obese group had metabolic 247 

syndrome (one on ACE inhibitors and one a fibrate).  [Table 1]. 248 

 249 

Biochemistry changes during infusions  250 

Blood glucose. The blood glucose concentrations were maintained at ~8.0 mmol/l during the 251 

hyperglycaemic clamp with both GIP and placebo infusions in all four groups (Figure 1A-D). 252 

The whole blood glucose concentrations (mean ± SEM) from measurements at 15 minute 253 

intervals during 4 hour hyperglycaemic clamp in the four groups were: lean, 8.02 ± 0.02 254 

(GIP) vs.8.17 ± 0.14 mmol/l (placebo); obese, 8.0 ± 0.07 (GIP) vs. 8.17 ± 0.07 mmol/l 255 

(placebo); obese IGR group, 8.08 ± 0.11 (GIP) vs. 8.11 ± 0.06 mmol/l (placebo) in and obese 256 

T2DM group, 8.35 ± 0.15 (GIP) vs. 8.46 ± 0.18 mmol/l (placebo).  257 

The volume of 20% glucose (mean ± SEM) infused to maintain the hyperglycaemic clamp 258 

during GIP vs. placebo infusions in the four groups were: lean, 1124 ± 155 mls (GIP) vs.   259 

631 ± 152 mls (placebo); obese, 926 ± 150 (GIP) vs. 462 ± 106 mls (placebo) obese IGR 260 

group, 725 ± 139 (GIP) vs. 398 ± 34 mmol/l (placebo) in and obese T2DM group, 508 ± 72 261 

(GIP) vs. 323 ± 14 mls (placebo). 262 
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Plasma GIP  Fasting plasma GIP concentrations were similar across the four groups for both 263 

visits with higher GIP concentrations achieved during GIP infusions. Plasma GIP (mean ± 264 

SEM) at baseline, 120 and 240 minutes in the four groups are as follows: lean (12.8 ± 1.1, 265 

30.5 ± 4.6,  23.2 ± 2.6 pmol/l with GIP vs. 13.7 ± 2.2, 8.3 ±1.9,  9.7 ± 2.8 pmol/l with 266 

placebo,  obese (15.2 ± 2.9, 38.8 ± 6.9,  21.8 ± 5.3 pmol/l with GIP vs. 13.0 ± 2, 15 ±3.4, 15.2 267 

± 5pmol/l with placebo),  obese IGR (14.2 ± 3.7, 38.2 ± 7, 26.7 ± 4.7 pmol/l with GIP vs. 268 

12.2 ± 2.9, 13.5 ± 2.5, 12.8 ±1.6 pmol/l with placebo), obese T2DM (14.2 ± 2, 51.6 ± 7.2, 26 269 

± 7.2 pmol/l with GIP vs. 14.4 ± 2, 23 ± 9.8, 17.8 ± 6.5 pmol/l with placebo). 270 

 271 

Serum insulin The insulin concentrations (mean ± SEM) during GIP and placebo infusions 272 

along with hyperglycaemic clamp are shown in Figure 2 A-D. Mean AUC0-4hr of insulin 273 

concentrations (µIU/ml/min) was higher with GIP infusion compared to placebo in the 274 

following groups: Lean (49317 ± 6009 vs. 22670 ± 4361; p= 0.01), obese (71956 ± 8860 vs. 275 

45921 ± 10065; p=0.1) and obese IGR groups (61884 ± 6653 vs. 20061 ± 3140; p=0.001) 276 

respectively.  In T2DM group, the AUC0-4hr of insulin during GIP infusion was not different 277 

from placebo (25151 ± 4103 vs. 20913 ± 5514; p= 0.28) [Figure 2 E].  278 

The change in insulin concentration over 240 minutes, compared to baseline values, differed 279 

by 63, 70 and 121 µIU/ml with GIP infusion vs. placebo in lean, obese and obese IGR groups 280 

respectively. In obese T2DM group, there was only a 9 µIU/ml increase in insulin 281 

concentration with GIP vs. placebo infusion (Figure 2F) 282 

 283 

Plasma Non-Esterified Fatty Acids (NEFAs) Circulating NEFAs (mean ± SEM) reduced 284 

from baseline during both GIP and placebo infusions in all four groups under hyperglycaemic 285 

clamp conditions (Figure 3A-D). Mean AUC0-4hr for NEFAs were not different with GIP vs. 286 

placebo in lean and obese groups (15234 ± 1610 vs.15520 ± 1884; p= 0.9 in lean group and 287 
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22345 ± 4644 vs. 28770 ± 6057; p= 0.42 in obese group respectively) [Figure 3E]. NEFAs in 288 

obese IGR group appear to be lower with GIP (Figure 3C), but the mean AUC0-4hr (21119 ± 289 

1882 vs. 32573 ± 3638; p=0.055; 95% CI 0.42 to 1.01) and reductions on a linear mixed 290 

model were not statistically significant (Figure 3 E, F). Whereas in obese T2DM group the 291 

mean AUC0-4hr of NEFAs (µmol/L/min) was significantly lower with GIP infusion compared 292 

to placebo (41992 ± 9843 vs. 71468 ± 13605; p= 0.039; 95% CI 0.31 to 0.95) and            293 

there was 82.6 µmol/L reduction in NEFAs from baseline to 240 minutes with GIP infusion 294 

compared to placebo (95% CI, -139, -26; p = 0.004) [Figure 3 E, F].  295 

The degree of reduction in NEFA (∆NEFA) with GIP infusion across all subjects (n=23) 296 

correlated positively with fasting plasma glucose (Pearson r = 0.44, p = 0.03) and Adipo-IR 297 

(Pearson r = 0.56, p = 0.005) (Figure 4). 298 

 299 

Serum triacylglycerol concentration There were no significant alterations in serum 300 

triacylglycerol (TAG) concentrations with either GIP or placebo in any of the four groups 301 

(data not shown). 302 

 303 

Subcutaneous Adipose Tissue (SAT) changes  304 

SAT triacylglycerol (TAG) content The changes in lipid content after 240 minutes of GIP vs. 305 

placebo infusion relative to respective baselines on each visit are shown in Figure 5. In the 306 

obese T2DM group, the SAT-TAG content increased 1.78 ± 0.4 fold (mean ± SEM) from 307 

baseline with GIP infusion compared to 0.86 ± 0.1 fold with placebo (95% CI:0.1,1.8; 308 

p=0.043). The changes in TAG content in the other three groups were not statistically 309 

significant (data shown in Figure 5) 310 
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Gene expression of enzymes involved in lipid metabolism. The changes in mRNA 311 

expression (LPL, ATGL and HSL) in SAT after 240 minutes of GIP vs. placebo infusion 312 

relative to respective baselines on each visit are shown in Figure 6.    313 

     314 

LPL, The LPL mRNA expression in the T2DM group was 1.25 fold higher from baseline 315 

with GIP infusion compared to 0.94 fold change with placebo but this was not statistically 316 

significant (p=0.27). In the other three groups the changes in LPL mRNA expression with 317 

GIP and placebo were comparable (Figure 6A). 318 

 319 

 ATGL In the T2DM group, ATGL mRNA expression was higher with GIP infusion 320 

compared to placebo (1.5 vs. 1.1 fold; p=0.12) but this was not statistically significant. In the 321 

other three groups the changes in ATGL gene expression with GIP versus placebo were 322 

comparable (Figure 6B).  323 

 324 

HSL The changes in HSL gene expression with GIP did not differ significantly compared to 325 

placebo in all four groups (Figure 6C). Fold change data for the three enzymes in all four 326 

groups is shown in Figure 6D. 327 

 328 

Discussion  329 

We demonstrate that acute GIP infusion, during fasting, under hyperglycaemic conditions, 330 

reduced serum/plasma NEFAs, concomitantly increasing SAT triacylglycerol (TAG) content 331 

in obese patients with T2DM. This anabolic effect was not observed in the lean, obese or 332 

obese patients with IGR. In contrast, while GIP was able to stimulate insulin secretion in the 333 

lean, obese or obese patients with IGR, its insulinotropic action was not observed in obese 334 

patients with T2DM. Thus, in obese patients with T2DM, there is a dissociation of the effects 335 
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on GIP on beta cells and adipocytes, with blunted insulinotropic but preserved lipogenic 336 

actions respectively.  337 

 338 

Expression of the GIP receptor (GIPR) is somehow glucose dependent and down regulated in 339 

response to hyperglycaemia (24). In patients with T2DM the blunted incretin effect 340 

(involving both incretin hormones, GLP-1 and GIP) may in part be due to reduced islet cell 341 

expression of GIP receptors (GIPR) secondary to chronic hyperglycemia  (16, 29, 35, 39). 342 

The physiological role of GIP in adipose tissue in T2DM remains unclear although adipose 343 

GIPR expression may be similarly down regulated in insulin resistant human subjects and 344 

may represent  a compensatory mechanism to reduce fat storage in insulin resistance, 345 

considering the interference of NEFAs on insulin signal transduction (10, 22). However, 346 

energy dense, high fat diets in obese individuals with T2DM could result in exaggerated fat 347 

storage (through exaggerated GIP release) even in the absence of adequate insulin secretion. 348 

Although we did not measure GIPR, the lipogenic action of GIP at the adipocyte appears to 349 

be more pronounced in T2DM (Figure 5). Studies in patients with NAFLD suggests elevated  350 

GIP secretion is also associated with intra-hepatocellular lipid deposition (33).  351 

 352 

Several factors may explain the differential ability of GIP to increase NEFA re-esterification 353 

in SAT in obese T2DM subjects versus other groups. In lean, obese and obese individuals 354 

with IGR, where insulin secretion is potently stimulated and adipose tissue insulin sensitivity 355 

is preserved (lower Adipo-IR), insulin independently suppressed lipolysis, lowering NEFAs 356 

perhaps leaving GIP’s effects trivial. However, in T2DM when insulin secretion is impaired 357 

and adipose tissue is insulin resistant (high Adipo-IR), the effect of GIP assumes greater 358 

importance, promoting lipid accumulation in adipocytes. This is consistent with animal data. 359 

GIP does not promote fat accumulation in adipocytes with normal insulin sensitivity, with 360 
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GIPR-/- mice showing similar adiposity to wild-type on control diet (31). However, under 361 

conditions of diminished insulin action, using IRS1 deficient mice, when the effects of GIP 362 

are examined (by disrupting GIP signaling, GIP−/− vs. GIPR+/+) GIP was shown to promote 363 

SAT and VAT expansion and decrease fat oxidation with greater SAT and VAT mass and 364 

lower fat oxidation in IRS-1−/−GIPR−/− vs. IRS-1−/−GIPR+/+ mice (42).  365 

 366 

A few human studies examined the metabolic effect of an acute GIP infusion in lean and 367 

obese individuals but none reported in people with T2DM. In studies to date, the effects of 368 

GIP have been examined under different experimental conditions to those here, for example 369 

during concomitant intralipid infusion and/or with hyperinsulinaemic-hyperglycaemic clamp 370 

conditions and measuring arteriovenous concentrations of metabolites. These data 371 

demonstrated that in lean people, GIP in combination with hyperinsulinaemia and 372 

hyperglycemia, increased adipose tissue blood flow, glucose uptake, and FFA re-373 

esterification, thus resulting in increased abdominal SAT-TAG deposition (4-6). The same 374 

group showed that in obese and IGR subjects GIP infusion did not have the same effect on 375 

adipose tissue blood flow or TAG deposition in adipose tissue (3). However, the independent 376 

contributions of insulin vs. GIP to these metabolic effects are difficult to dissect although GIP 377 

per se appeared to have little effect on human subcutaneous adipose tissue in lean insulin 378 

sensitive subjects, with an effect only apparent when GIP was co-administered with insulin 379 

during hyperglycemia. Thus it would appear that there are direct and indirect effects of GIP.  380 

 381 

During nutrient excess, lipogenesis is stimulated via lipoprotein lipase (LPL), hydrolysing 382 

circulating lipoprotein-derived triglycerides and promoting NEFA esterification into TAG 383 

and storage within lipid droplets of adipose tissue. During periods of fasting, mobilisation of 384 

NEFAs from fat depots relies on the activity of key hydrolases, including hormone-sensitive 385 
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lipase (HSL) and adipose triglyceride lipase (ATGL). In SAT, insulin stimulates NEFA 386 

esterification  by enhancing lipoprotein lipase (LPL), and inhibits  lipolytic process (18). The 387 

majority of the animal studies have shown that GIP potentiates the role of insulin in 388 

regulation of LPL, and NEFA incorporation into adipose tissue (9, 15, 27, 31). GIP enhanced 389 

LPL gene expression in cultured subcutaneous human adipocytes through pathways involving 390 

protein kinase B and AMP-activated protein kinase (26, 28). Trying to determine the 391 

molecular mechanism by which SAT-TAG content changed, we measured SAT mRNA 392 

expression of LPL, ATGL and HSL; surprisingly, we observed no significant changes in 393 

expression to account for altered serum NEFAs or SAT-TAG content. This may represent a 394 

time-course phenomenon (changes in gene expression with GIP in human adipose tissue may 395 

occur over a longer interval). This speculation is consistent with the slow temporal onset of 396 

the molecular responses in adipose tissue in animal studies. GIP infusion may affect enzyme 397 

activity rather than gene expression and therefore results may differ if 398 

activity/phosphorylation was measured. To better appreciate the physiological effects of GIP 399 

administration on human SAT, stable isotope studies to determine dynamic changes in fat 400 

metabolism with serial tissue biopsies are required.  401 

 402 

All studies were performed under hyperglycaemic clamp conditions to achieve comparable 403 

hyperglycaemia and to mimic post-prandial increases in GIP and insulin. The peak GIP 404 

concentrations achieved in our study during GIP infusions were comparable to levels 405 

achieved elsewhere (3).  We believe the changes in NEFAs and SAT lipid content in our 406 

obese T2DM are more likely due to the effect of GIP, particularly in the absence of excess 407 

insulin secretion. Reductions in NEFA correlated positively with fasting glucose and        408 

Adipo-IR in all the subjects across the four groups suggesting the effects of GIP are more 409 

pronounced in hyperglycaemic and insulin resistant states. We recognise that higher ∆NEFA 410 
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would be expected in subjects with higher fasting NEFA levels however correlation with 411 

Adipo-IR was only seen with GIP but not with placebo infusion (Figure 4). 412 

 413 

Studying four distinct groups (with differing BMI and glucose tolerance) facilitates 414 

evaluation of the differential effects of GIP in insulin sensitive and resistant individuals. 415 

However, we acknowledge limitations including small group sizes and the degree of obesity: 416 

there was limited pilot data in humans prior to initiation of this study and subsequently 417 

published human studies on GIP infusion had small number of subjects (3-5).  Findings from 418 

our study may differ in less severely obese individuals. Lean subjects were younger 419 

compared to others and may have increased insulinotropic activity to GIP (30)  but there was 420 

no  significant difference in Insulin AUC between the groups except in obese T2DM. 421 

Unrecognised interactions between anti-hypertensive or lipid modifying medication and 422 

effects of GIP cannot be excluded.   423 

 424 

In conclusion, we demonstrate that in obese patients with T2DM, acute GIP infusion in a 425 

fasting state, during hyperglycaemia, lowers serum NEFA and increases the SAT lipid 426 

content despite reduced insulinotropic activity. In lean, obese and obese with IGR, despite the 427 

intact insulinotropic response to GIP no lipogenic effect was observed. This anabolic effect of 428 

GIP further exacerbates obesity and insulin resistance.  429 
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Figure legends 591 

 592 

Figure 1: Study protocol showing the duration of hyperglycaemic clamp and the time point 593 

for the start of GIP / placebo infusions. The of blood glucose concentrations (Mean ± SEM) 594 

at 15 minute intervals for the duration of hyperglycemic clamp during placebo and GIP visits 595 

are shown in A lean individuals, B obese, individuals, C obese individuals with IGR, D obese 596 

individuals with T2DM.  597 

 598 

Figure 2: Serum insulin concentrations (mean ± SEM) during 4 hour infusions of GIP vs. 599 

placebo (with hyperglycaemic clamp) are shown in  A lean individuals, B obese, individuals, 600 

C obese individuals with IGR, D obese individuals with T2DM. The time points for baseline 601 

blood sampling* and start of GIP/placebo infusions are shown on the X axis. E AUC0-4hr for 602 

insulin concentrations during the 4-hour infusion of GIP versus placebo for the above four 603 

groups (p values: *0.01; ** 0.001). F Linear mixed model analysis showing the increase in 604 

insulin concentrations with GIP compared to placebo infusion over 240 minutes, confidence 605 

intervals (CI) and p values 606 

 607 

Figure 3:  Plasma NEFA concentrations (mean ± SEM), during 4 hour infusions of GIP vs. 608 

placebo (with hyperglycaemic clamp) are shown in A lean individuals, B obese individuals, 609 

C obese individuals with IGR, D obese individuals with T2DM. The time points for baseline 610 

blood sampling* and start of GIP/placebo infusions are shown on the X axis. E AUC0-4hr for 611 

NEFA concentrations during the 4-hour infusion of GIP versus placebo for the above four 612 

groups (p values: * <0.05). F Linear mixed model analysis showing the decrease in NEFA 613 

concentrations with GIP compared to placebo infusion over 240 minutes, confidence 614 

intervals (CI) and p values. 615 

 616 

Figure 4:  A, B The correlation between plasma fasting glucose and changes in NEFA at 240 617 

minutes from baseline (∆ NEFA 0-240 min) during placebo and GIP infusions. C, D The 618 

correlation between Adipo-IR and changes in NEFA at 240 minutes from baseline                619 

(∆ NEFA 0-240 min) during placebo and GIP infusions. Pearson’s r is represented as r and p 620 

value (two tailed) with statistical significance * (<0.05) and ** (<0.01) 621 

 622 

 623 
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Figure 5: A Fold changes (mean ± SEM) in subcutaneous adipose tissue (SAT) 624 

triacylglycerol (TAG) content after 240 min GIP vs. placebo infusion relative to the baseline 625 

on the same day in lean individuals, obese individuals, obese individuals with IGR and obese 626 

individuals with T2DM. B Fold change values, confidence intervals (CI) and p values 627 

 628 

Figure 6: Fold changes (mean ± SEM) in SAT gene expression of A LPL B ATGL and C 629 

HSL after 240 min of GIP vs. placebo infusion relative to baseline on the same day in lean 630 

individuals, obese individuals, obese individuals with IGR and obese individuals with T2DM, 631 

D Fold change values, confidence intervals (CI) and p values. 632 

 633 

Figure 7: In healthy people, GIP acts on its receptors on beta cells and adipocytes to promote 634 

insulin secretion (insulinotropic action) and lipid deposition (adipogenic action) (left figure). 635 

In obesity, with consumption of an energy-dense, higher fat diet, there is enhanced insulin 636 

secretion (which may help overcome peripheral insulin resistance) and increased lipid 637 

deposition (which will further enhance fat storage) (middle figure). In T2DM, the effects of 638 

GIP on beta cell are impaired with reduced insulin secretion; the effects on the adipocyte 639 

seem to be preserved further promoting lipid deposition (right figure). 640 

 641 

 642 

 643 

 644 
 645 
 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
                             655 



Table 1 Baseline demographic, anthropometric and biochemical parameters (mean ± SD).  
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 P value for statistically significant difference vs. Lean group is indicated as * (<0.05); ** (<0.01); *** (<0.001); **** (<0.0001) and p value for significant difference  
vs. obese group is indicated as ∆ (<0.05).  ≠ Non Esterified Fatty Acids (NEFA), ¥ Homeostasis Model Assessment-Insulin resistance (HOMA-IR), §Adipose tissue insulin 
resistance (Adipo-IR)	

      Lean 
     (N=6) 

   Obese 
   (N=6) 

 Obese IGR 
   (N=6) 

  Obese T2DM 
     (N=5) 

Age (years) 35 + 7  47 + 12  57  + 8* 57 + 8 * 

BMI (kg/m2) 24  + 1  40  + 8** 37  + 5*  45  + 13***  

Waist Circumference (cm) 94 ± 5 129 ± 19** 124 ± 14** 140 ± 17*** 

Body fat mass (%) 18 ± 3 38 ± 6**** 31± 16**** 46 ± 6**** 

Systolic BP (mmHg) 131 ± 15 136 ± 14 141 ± 3 135 ±12 

Diastolic BP (mmHg) 78 ± 8 73 ± 5 72 ± 6 76 ± 14 

Alanine transaminase (U/L) 21 ± 6 27 ± 21 30 ± 17 24 ± 11 

Fasting cholesterol (mmol/l) 5.2 ± 0.7 5.0 ± 0.3 3.9 ± 0.6* 4.3 ± 1.0 

HDL (mmol/L) 1.3 ± 0.3 1.1 ± 0.1 0.9 ± 0.2* 0.8 ± 0.1* 

LDL (mmol/L) 3.4 ± 0.9 3.2 ± 0.5  2.5 ± 0.8 2.8 ± 0.9 

Triglycerides (mmol/l) 1.1 ± 0.1 1.5 ± 0.3 1.9 ± 1.5 1.5 ± 0.5 

Fasting plasma glucose (mmol/l) 5.3 ± 0.3 5.1 ± 0.9 6.0 ± 0.7 6.8 ± 1.1* ∆ 

Fasting Insulin (µIU/ml) 11.9  +2.6  30.5  +14.4*  38.3  + 12.5**  36.9  + 9.1** 

Fasting NEFAs≠ (µmol/L) 352 ± 118 312± 123 421± 115 494 ± 150 

HOMA-IR¥  1.6 ± 0.3 3.8 ± 1.8* 4.8 ± 1.4** 4.9 ± 1.2** 

Adipo-IR§ (mmol/L/pmol/L) 24.5 ± 8.1   54 ± 23.7 95.9 ±37.8** 115.7 ± 51.2**∆ 

HbA1c (mmol/mol)        -       -  44 ± 2.3  54 ± 8.5 
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Groups Fold change (mean ± SEM) in                 
SAT-TAG content relative to baseline  

95% CI p-value 

           Placebo             GIP   

Lean 1.08 ± 0.16 1.03 ± 0.18 (-0.5, 0.6) 0.84 
Obese 1.03 ± 0.14 0.93 ± 0.19 (-0.43,0.62) 0.65 
Obese IGR 1.05 ± 0.12 1.12 ± 0.14 (-0.56,0.4) 0.73 
Obese T2DM 0.86 ± 0.1 1.78 ± 0.38 (0.1,1.8)    0.043* 

B	



Figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fold change (mean ± SEM) in SAT gene expression relative to respective baselines on each visit 
 

                                              LPL                   ATGL                       HSL 
Groups Placebo GIP               P value Placebo GIP               P value Placebo GIP                P value 

Lean 1.8 ± 0.4  1.2 ± 0.2  0.38 1.6 ± 0.3  1.3 ± 0.2  0.71  1.7 ± 0.6  1.2 ± 0.2  0.42  
Obese 1.2 ± 0.1  1.3 ± 0.1  0.49 1.3 ± 0.2  1.3 ± 0.2  0.96  1.9 ± 0.6  1.8 ± 0.3  0.93  
Obese IGR 0.9 ± 0.1  1.1 ± 0.2  0.64 1.1 ± 0.1  1.2 ± 0.2  0.90  0.9 ± 0.1  1.5 ± 0.3  0.16  
Obese T2DM 0.9 ± 0.1  1.4 ± 0.2  0.27 1.1 + 0.1  1.5 ± 0.1  0.12  1.1 ± 0.2  1.0 ± 0.2  0.62  
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