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ABSTRACT  23 

Legumes are an excellent source of nutrients and phytochemicals. They have been 24 

recognized for their contributions to health, sustainability and the economy. Although 25 

legumes comprise several species and varieties, little is known about the differences in 26 

their phytochemical composition and the magnitude of these. Therefore, the aim of this 27 

review is to describe and compare the qualitative profile of phytochemicals contained in 28 

legumes and identified through LC-MS and GC-MS methods. Among the 478 29 

phytochemicals reported in 52 varieties of legumes, phenolic compounds were by far the 30 

most frequently described (n = 405, 85%). Metabolomics data analysis tools were used 31 

to visualize the qualitative differences, showing beans to be the most widely analyzed 32 

legumes and those with the highest number of discriminant phytochemicals (n = 180, 33 

38%). A Venn diagram showed that lentils, beans, soybeans and chickpeas shared only 34 

7% of their compounds. This work highlighted the huge chemical diversity among 35 

legumes, identified the need for further research in this field, and the use of metabolomics 36 

as a promising tool to achieve it.  37 

KEYWORDS: phytochemicals, legumes, qualitative analysis, nutrimetabolomics, 38 

polyphenols 39 
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INTRODUCTION 41 

Legumes have been shown to promote health and reduce the risk of cardiovascular disease 42 

(CVD) as well as that of some cancers, such as colon cancer, among other pathological 43 

conditions. P

1,2
P They also have particular relevance for sustainability and local economies, 44 

as they reduce greenhouse gas emissions, help decrease animal-based protein 45 

consumption and are rooted in communal gastronomies.3 In the last few decades, legumes 46 

have gained popularity worldwide as being a good source of phytochemical compounds. 47 

Phytochemicals are non-nutrient plant-based minor components that differ substantially 48 

in their biochemistry, source distribution and physiological effects. Their biological 49 

activities, such as antioxidant,4 anti-inflammatory5 and antimicrobial6, have also been 50 

described, and it has been suggested that they offer significant meaningful benefits to 51 

human health.4 The vast majority of studies conducted to describe the phytochemical 52 

composition of legumes have focused on only one type of legume7–9 or on a small number 53 

of phytochemicals. The comparison of legumes from a phytochemical profile viewpoint 54 

is essential for distinguishing properties and potential applications of legumes as well as 55 

for enhancing the state of the art and promoting their production, consumption and use. 56 

Therefore, the aim of this review is to describe and compare the qualitative profile of 57 

bioactive compounds contained in legumes for human consumption that have been 58 

identified through LC-MS and GC-MS methods. 59 

In this review, we described the qualitative profile of phytochemicals contained in 60 

legumes for human consumption which had been identified through LC-MS and GC-MS 61 

methods. We followed this description by conducting a comparative analysis between the 62 

different groups of legumes using statistical dichotomous techniques. Finally, a 63 

description of bioactive compounds that could discriminate between legumes was 64 

discussed. 65 



4 
 

VARIETIES AND NUTRITION OF LEGUMES 66 

Definition and types of pulses and legumes. Legumes are the edible seeds of the 67 

Fabaceae or Leguminosae family, the third-largest group of plants (more than 20,000 68 

species and 700 genera). They produce between 1 and 12 grains of various sizes, shapes 69 

and colors within a pod. Having been spread across the world for about 90 million years, 70 

even in regions with extreme weather, their seeds have been used for at least 10,000 years 71 

for both human and animal consumption.10 72 

The Food and Agricultural Organization (FAO) considered pulses a subgroup of legumes 73 

and are defined as “Leguminosae crops harvested exclusively for their grain, including 74 

chickpeas, dry beans, peas and lentils”. This definition excludes legumes harvested for 75 

oil extraction, such as soybeans and peanuts, and those used as vegetables, like green 76 

beans and green peas.10 Specifically, the FAO recognizes the following 11 primary 77 

pulses: dry beans (kidney, pinto, navy, azuki, mung, black gram, scarlet runner, rice bean, 78 

moth and tepary beans), dry broad beans (horse, broad and field bean), dry peas (garden 79 

and field pea), chickpeas, dry cowpeas (cowpea and black-eyed pea/bean), pigeon peas 80 

(pigeon pea and cajan pea), lentils, Bambara beans (Bambara groundnut and earth pea), 81 

vetch (spring/common vetch), lupins and other “minor” pulses (hyacinth or lablab, jack 82 

or sword, winged, velvet, guar and yam beans).11 In order to homogenize the concepts, 83 

we will use in this review the more generic term “legumes” to refer to both pulses and 84 

legumes for human consumption: soybeans, peanuts, chickpeas, lentils, beans and peas 85 

(Table S1). 86 

Legumes are considered an essential superfood, not only thanks to their desirable 87 

nutritional profile and health properties but also to their great influence and power in two 88 

other key human aspects: the environment and society. 89 

Nutritional composition and health effects. Recent studies have brought to light the 90 
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relationship between a regular consumption of legumes and the prevention of some 91 

chronic diseases (Table 1). A daily intake of legumes is associated with a decreased risk 92 

of CVD, especially coronary heart disease (CHD).13 In fact, legumes consumption leads 93 

to the reduction of various CVD risk factors, such as LDL cholesterol,14,15 total 94 

cholesterol,15 blood pressure,13 body weight,16,17 glycemic index (GI),18,19 insulin 95 

resistance20 and C-reactive protein,21 among other metabolic syndrome risk factors.22 This 96 

is due to several compositional traits of legumes, specifically their amount of potassium,23 97 

magnesium24 and soluble fiber,25 along with their cholesterol-free condition1 (Table 1). 98 

Findings also suggest an inverse association between the intake of legumes and the risk 99 

of prostate cancer.26 One possible explanation for this could be their phytoestrogen 100 

content.27 Additionally, maternal consumption of legumes during pregnancy may have a 101 

protective effect on acute lymphoblastic leukemia in children.28 Furthermore, it has been 102 

suggested that consuming legumes could reduce the risk of breast cancer,29 due mainly to 103 

their flavonol, flavone and isoflavone content,30–33 although evidence is still limited.34 As 104 

regards endometrial cancer, findings of a meta-analysis suggest a weak inverse 105 

association between consumption of isoflavones from soy products and legumes and 106 

endometrial cancer risk.35 Although previous meta-analysis and systematic reviews36 107 

supported the notion that a high intake of legumes was also associated with a low 108 

incidence of colorectal cancer due to their high fiber content,25 an update of the evidence 109 

of the WCRF-AICR (World Cancer Research Fund–American Institute for Cancer 110 

Research) Continuous Update Project states that legume intake is not associated with 111 

colorectal cancer risk37 (Table 1). 112 

Finally, having a low GI and fat content, as well as a high fiber content, increases satiety38 113 

and helps stabilize blood sugar and insulin levels. This makes legumes ideal for weight 114 

management.16,17 115 
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On the other hand, it seems that legumes consumption has no effect either on stroke risk 116 

or diabetes risk.13 Despite this, legumes can possibly have effects on their biomarkers. In 117 

the case of stroke risk, this can be explained by the amount of potassium they contain23 118 

and their capacity to reduce glycemic load,39 whereas in the case of diabetes risk, this 119 

seems to be due to the replacement of animal protein for vegetable protein effect,19 as 120 

well as for the improvement of longer-term glycemic control markers and the reduction 121 

of metabolic syndrome risk factors.18,22 122 

This beneficial role of legumes could be explained by their desirable nutritional and non-123 

nutritional profile. 27TLegumes 27T have a high amount of complex carbohydrates and fiber, 124 

thereby offering an average low-energy density of 1.3 kcal/g.1 They are also known for 125 

being poor in sodium and rich in other minerals, like potassium, zinc, calcium and iron.1,40 126 

Legumes are an excellent source of protein (20‒30 % of their energy value), relatively 127 

low in tryptophan and sulphur-containing amino acids, such as methionine and cysteine, 128 

but rich in lysine.1,40 Moreover, they do not contain gluten. Their predominant fatty acid 129 

is linoleic acid,40 and vitamins A, E and B are notably abundant.1 Legumes also contain a 130 

high variety of phytochemicals and other minor components that have significant 131 

meaningful benefits for human health: α-galactosides, phytosterols, tocopherols, 132 

saponins, alkaloids and phytic acid, as well as carotenoids and (poly)phenolic 133 

compounds.1,41–47 Recent literature has shown that canning and household cooking 134 

significantly differ in their effects on nutritional composition and bioactive content of 135 

legumes, and even have contrary effects on different types of legumes.48 Agronomic, 136 

storage, processing, food formulation, as well as bioaccessibility and bioavailability of 137 

the phytochemicals are also factors involved in the ultimate health outcomes of 138 

consumption of leguminous foods. 139 

Despite the many health benefits of legumes, their cultivation and intake has been 140 
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cautiously handled due to the presence of some bioactive compounds, such as phytic acid, 141 

covicine, glucosinolates, protease and amylase inhibitors, as they can act as anti-nutrients. 142 

Anti-nutritional factors may cause toxicity or interfere with the digestion and absorption 143 

of certain dietary components, causing adverse physiological effects (for example, 144 

flatulence, favism, lathyrism, small intestine damage and growth depression).41 This is 145 

especially important since several legumes cause concern, particularly in areas 146 

characterized by poverty and malnutrition where a single type of legume can be ingested 147 

in high amounts. However, most anti-nutrients can still be reduced or removed by thermal 148 

processing (boiling, steaming, roasting, autoclaving, dry heating), storage, irradiation, 149 

soaking, de-hulling, milling, fermentation and germination. 41,49 150 

 151 

QUALITATIVE ANALYSIS OF PHYTOCHEMICALS IN LEGUMES 152 

The qualitative profile of a large variety of legumes was obtained by applying the 153 

systematic search referred to in the Supporting Information. A list of different varieties 154 

of legumes and their phytochemicals was obtained after revising the literature.  155 

Types of legumes. All the legumes reported on in this review are shown in Table S1. The 156 

biggest group of legumes were beans, where 16 varieties belonged to Phaseolus vulgaris: 157 

black, brown, cream, white, red, small red, cranberry, yellow, black Jamapa, red and 158 

white kidney, pinto, brown string, yellow wax, pink and common beans. Two more kinds 159 

of beans of the same genus were runner (P. coccineus) and butter bean (P. lunatus) (Table 160 

S1). Moreover, from the Vigna genus, nine different beans could be considered: black-161 

eyed bean and red cowpea (V. unguiculata), mungo bean (V. mungo), rice bean (V. 162 

umbellata), moth bean (V. aconitifolia), black and green mung bean (V. radiata), and 163 

green and red adzuki bean (V. angularis). Finally, broad bean (Vicia faba), horse gram 164 
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(Macrotyloma uniflorum), hyacinth bean (Lablab purpureus), black and red sword bean 165 

(Canavalia gladiata), jack bean (Canavalia ensiformis), white lupin bean (Lupinus 166 

albus), blue lupin bean (Lupinus angustifolius), yellow lupin bean (Lupinus luetus) and 167 

morama bean (Tylosema esculentum) are also part of this group (Table S1). From Lens 168 

culinaris, commonly known as lentils, seven varieties were considered. They were beluga 169 

or black, brown, green, yellow, grey, red and tan lentils. Also, yellow and black 170 

chickpeas (Cicer arietinum), green, black and yellow soybeans (Glycine max), and 171 

peanuts (Arachis hypogaea) have been reported. Peas were grouped in three different 172 

species: green and yellow pea (Pisum sativum), snowpea (Pisum sativum var. 173 

saccharatum) and pigeon pea (Cajanus cajan).  174 

Phytochemical foodprint of legumes. The search gave a total of 478 phytochemicals 175 

described in legumes. The biggest group was condensed tannins (n = 90), which 176 

represented 19%, followed by flavonols (n = 79), isoflavones (n = 64) and phenolic acids 177 

(n = 63), which represented 17%, 13% and 13%, respectively. The following have also 178 

been reported: 5 α-galactosides, 33 saponins, 6 phytosterols, 2 lignans, 1 coumestan, 3 179 

tocopherols, 12 alkaloids, 6 stilbenes, 4 dihydrochalcones, 2 pterocarpans, 31 flavones, 180 

20 flavanones, 4 flavanonols, 17 flavanols, 1 hydrolysable tannin, 21 anthocyanidins, 11 181 

carotenoids and 3 other compounds (Table 2 and Table S3). Therefore, phenolic 182 

compounds were the major family of phytochemicals described in legumes, with 405 of 183 

them (85%). The second-biggest family was saponins, with 33 constituents (7%) (Table 184 

2 and Table S3). 185 

In regard to phytochemical families and legume groups, the literature showed that phytic 186 

acid, saponins, phytosterols, tocopherols, lignans, phenolic acids, isoflavones, flavonols 187 

and flavanols have been identified in all kinds of legumes, whereas carotenoids were 188 

found in lentils, chickpeas, beans and soybeans but not in peas or peanuts (Table 2 and 189 
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Table S3). Ciceritol, an α-galactoside, has been determined in all legumes except 190 

peanuts,41,50 whilst anthocyanidins were found in lentils, beans and soybeans.51–57 191 

Moreover, alkaloids were only identified in beans and peas,7,58–61 but flavanonols were 192 

found in beans and peanuts.7,8,54,62,63 Since dihydrochalcones, pterocarpans, hydrolysable 193 

tannins and brazilin had only previously been described in beans,7,54,64,65 to the best of our 194 

knowledge no raffinose family of oligosaccharides (RFO) in peanuts and no coumestans 195 

in peas have been determined before. Finally, soybeans had no stilbenes, flavones or 196 

squalene, and chickpeas lacked flavanones and condensed tannins. 197 

In addition, Table 2 also shows the particular composition of each group of legumes, with 198 

beans being the group with the most compounds identified (n = 276, 58%), followed by 199 

peanuts, soybeans and lentils (n = 120, 112 and 101, respectively), while only 60 and 66 200 

chemicals were reported in chickpeas and peas, respectively. 201 

Qualitative cluster analysis of legumes. In this review, we decided to use visualization 202 

tools to evidence the state of the art of the phytochemicals in legumes. A heatmap analysis 203 

was constructed by using MetaboAnalyst 3.066 employing the qualitative data (Figure 1, 204 

Figure S1, Figure S2, Table S3). This heatmap shows the distribution of bioactive 205 

substances, according to each legume, that were or were not determined in them. In 206 

parallel with the heatmap, Table S4 shows the 372 discriminant compounds, marked in 207 

red in Figure 1, that were determined in the specific legumes. The group with the highest 208 

number of discriminant compounds (n = 180) was beans, representing around 38% of all 209 

compounds. Flavonols were the main phytochemicals that allowed beans to be 210 

discriminated from other legumes (e.g. quercetin 3-O-xylosyloglucoside67 and 211 

faralatroside54). The next groups of legumes in terms of proportion were peanuts and 212 

soybeans, where 18% and 14% (n = 85 and n = 69), respectively, of their compounds 213 

allowed them to be discriminated from the other legumes. Peanuts stand out for 214 



10 
 

condensed tannins (e.g. prorobinetidin and prodelphinidin8) and soybeans for isoflavones 215 

(e.g. daidzein O-di-hexoside and genistein O-hexoside68). There were 27 specific 216 

compounds from lentils (Table S4), with carotenoids (e.g. 9-cis-lutein and 9-cis-217 

zeaxantin69) being the most prevalent, amounting to 6% of the total. Otherwise, chickpeas 218 

and peas had only a very few unique compounds, with each amounting to only 1% of all 219 

specific compounds (n = 6 and n = 5, respectively).  220 

Therefore, given that some phytochemicals have only been determined or identified in 221 

one type of legume, such as canthoxanthine in chickpeas, glycitin and derivates in 222 

soybeans, several alkaloids such as lupanine and angustifoline in beans and morin in peas 223 

(Table S4), future analytical needs should be oriented toward validating whether these 224 

compounds are exclusive to these legumes or whether legumes have not been fully 225 

analyzed. For instance, although the literature is extensive in this field, recently other 226 

works have revealed the presence of some phytochemicals in different legumes by 227 

applying untargeted metabolomic approaches to foodprint them,70 indicating that this is a 228 

niche area to study.  229 

Additionally, in our qualitative review, we identified a total of 14 phytochemicals that 230 

were distributed among all groups of legumes. These compounds were α-tocopherol,69,71–231 

75 β+γ-tocopherol,52,69,71–76 β-sitosterol,71–74,77,78 campesterol,71–74,77,78 232 

stigmasterol,71,73,74,77,78 biochanin A,8,63,79–81 formononetin,7,63,79,80 daidzein,63,79–81 233 

genistein,7 , 6 8 , 7 2 , 7 9 – 8 1  genistin,80–82 epi-catechin,8,9,52,63,72,83–88 phytic acid, 41,61,64,89–94 234 

secoisolariciresinol79,95 and soyasaponin Bb,96–98 which are basically phytosterols and 235 

isoflavones. Consequently, none of them are shown in the heatmap.  236 

Principal component analysis of phytochemical composition of legumes. Principal 237 

component analysis (PCA) was applied to the data to highlight qualitative differences and 238 

similarities between legumes (Figure 2). Principal component 1 (PC1) was responsible 239 
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for 44.2% of the variance, whereas PC2 and PC3 explained 23.7% and 17.8%, 240 

respectively. The most qualitative difference was obtained between beans and the other 241 

legumes (PC1). In addition, peanuts and soybeans also had quite a different profile from 242 

the other legumes. They are positioned in the bottom-left and top-left corner, respectively, 243 

of the PCA score plot. In fact, 65% of the compounds determined in beans were 244 

exclusively identified in them, whilst in the case of soybeans and peanuts, the proportion 245 

was 62% and 71%, respectively. On the other hand, chickpeas, lentils and peas have quite 246 

a central position in the PCA score plot (Figure 2). Only 27% of the compounds reported 247 

in lentils were specifically identified in them, while in the case of chickpeas and peas, the 248 

proportion was 10% and 8%, respectively. The PCA score plot revealed a close cluster 249 

between lentils, chickpeas and peas, where 35 compounds were shared only among them 250 

(Figure 2B), representing 32% of the chemicals found in peas, 35% of the compounds 251 

reported in chickpeas and 21% of the phytochemicals identified in lentils (Table S5). 252 

Most of them were phenolic acids, isoflavones and flavonols. Additional score plot 3D 253 

showed that lentils were separated from chickpeas and peas in the PC3 (Figure 2C).  254 

Venn diagram analysis. A Venn diagram of the four groups has been created with the 255 

most well-known, widely considered11 and popular legumes (lentils, beans, chickpeas and 256 

soybeans) for better interpretation and visualization of the data. The obtained diagram99 257 

allows us to visualize the proportion of the number of phytochemicals by group (Figure 258 

3). Lentils, soybeans, beans and chickpeas had 26 shared compounds (7%), mainly 259 

isoflavones. Lentils and soybeans were the only ones in which soyasaponin Bd 260 

(isoflavone) was identified, while sinapic, chlorogenic and cinnamic acids (phenolic 261 

acids), luteolin 8-C-glucoside (flavone), myricetin 3-O-rhamnoside, quercetin 3-O-262 

galactoside (flavonols) and β-carotene were identified in beans and chickpeas. Both 263 

chickpeas and lentils contained gentisic acid (phenolic acid). There was no specific 264 
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compound shared between soybeans, beans and chickpeas or between soybeans, lentils 265 

and chickpeas either.  266 

 267 

CONCLUSIONS AND FUTURE PERSPECTIVES 268 

In the present work, a phytochemical foodprint of 478 phytochemicals from 52 varieties 269 

of legumes has been extracted from literature. This foodprint includes 405 phenolic 270 

compounds (which constitute the main group of phytochemicals), 33 saponins, 12 271 

alkaloids, 11 carotenoids, 6 phytosterols, 5 α-galactosides, 3 tocopherols, phytic acid, 272 

brazilin and squalene. Metabolomic techniques have been used for the first time for 273 

visualizing qualitative differences between legumes. Beans are the most widely analyzed 274 

legumes globally and have the highest number of their own phytochemicals (n = 180, 275 

38% of the total), followed by peanuts (n = 85, 18% of the total), soybeans (n = 69, 14% 276 

of the total) and lentils (n = 27, 6% of the total), with the proportion being 1% for 277 

chickpeas and peas. The qualitative PCA suggested that beans had the most differentiated 278 

profile, while lentils, chickpeas and peas revealed a central and close position with a high 279 

number of shared compounds. In addition, the Venn diagram showed that lentils, 280 

chickpeas, soybeans and beans shared only 7% of their determined compounds.  281 

This work has allowed us to identify several niches to be developed in this field. In 282 

particular, future research directions should be aimed at establishing an exhaustive 283 

approach to uncovering the whole profile of some legumes, since our review indicates 284 

that there are meaningful differences between legumes. This is the case for peas and 285 

chickpeas, whose phytochemical profile is numerically far below the other legumes’ 286 

foodprint.  287 

It is recommended that future research should work toward increasing our knowledge 288 
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about the underrepresented groups of phytochemicals, such as tocopherols and other 289 

nonpolyphenolic compounds, in order to obtain more complete phytochemical profiles of 290 

legumes. Identification of these phytochemical profiles will enable their synergistic effect 291 

on bioavailability to be studied, along with the mechanism of action and biological 292 

function, and finally enhance our understanding of the health benefits and suitability for 293 

human consumption of each type of legume. This new knowledge will also be useful for 294 

quantifying these phytochemicals and for obtaining biomarkers of compliance, as well as 295 

enabling better quality control of legume-based foods. 296 

 297 

 298 

 299 

ABBREVIATIONS USED 300 

CHD: coronary heart disease; CVD: cardiovascular diseases; FAO: Food and Agriculture 301 

Organization; GI: glycemic index; PCA: principal component analysis; RoM: ratio of 302 

means; RFO: raffinose family of oligosaccharides; WCRF-AICR: World Cancer 303 

Research Fund–American Institute for Cancer Research 304 
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SUPPORTING INFORMATION DESCRIPTION 320 

Research and visualization methodology, binomial and common name of each legume 321 

reported in the review (Table S1), legend of phytochemicals (PC) numbers with their 322 

corresponding names of phytochemicals (Table S2), families and phytochemicals 323 

described in legumes (Table S3), potential discriminant phytochemicals of each group of 324 

legumes according to the bibliographic search (Table S4), phytochemicals shared 325 

between legumes (Table S5), qualitative heatmap of the phytochemicals distributed in 326 

legumes (detailed version; Figure S1) (PDF) and original overview of the qualitative 327 

heatmap file from MetaboAnalyst 3.0 (Figure S2). 328 
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TABLES 820 

Table 1. Potential health effects of legumes consumption. 821 

Disease 
Legumes consumption 

effect 
Mechanism of action 

CVD a 

RR (95% CI) = 0.92 (0.85‒

0.99)13 

 

Positive effect on CVD risk 

Relation with specific nutrients and components found 

in legumes: 

↑ K+23 ↑ Mg+2 24 ↑ fiber25 cholesterol-free 

Relation with various cardiometabolic risk factors found 

in non-soy legumes: 

- ↓ LDL cholesterol14,15 ↓ total cholesterol15 ↓ blood pressure13 

↑ weight management16,17 ↓ glycemic index18,19 ↓ metabolic 

syndrome risk factors22 

CHD b 

RR (95% CI) = 0.90 (0.83‒

0.99)13 

 

Positive effect on CHD risk 

Relation with specific nutrients and components found 

in legumes: 

↑ K+23 

Relation with various cardiometabolic risk factors found 

in non-soy legumes: 

↓ glycemic index18,19 

Prostate 

cancer 

RR (95% CI) = 0.85 (0.75‒

0.96]26 

Positive effect on prostate 

cancer risk 

Relation with specific nutrients and components found 

in legumes: 

↑ phytoestrogens27 

Colorectal 

cancer 

RR (95% CI) = 0.91 (0.84‒

0.98)36 

 

colorectal cancer: RR (95% 

CI) = 1.00 (0.95‒1.06)37 

colon cancer: RR (95% CI) = 

0.97 (0.83‒1.15)37 

rectal cancer: RR (95% CI) = 

0.99 (0.78‒1.25)37 

 

Controversial effects on 

colorectal cancer risk 

Relation with specific nutrients and components found 

in legumes: 

↑ fiber25 

Stroke 

RR (95% CI) = 0.98 (0.86‒

1.11)13 

 

No effects on stroke risk but 

possible effects on markers of 

stroke risk 

Relation with specific nutrients and components found 

in legumes: 

↑ K+23 

 

Relation with various cardiometabolic risk factors 

found in non-soy legumes: 

↓ glycemic load39 

Diabetes 

 

RR (95% CI) = 0.93 (0.83‒

1.05)13 

 

No effects on diabetes risk 

but possible effects on 

markers of diabetes  

Replacement animal protein for vegetable protein improves 

glycemic control of diabetes19 

 

Relation with various markers of glycemic control (HbA R1Rc 
c and fructosamine)18 

 

Relation with various diabetes risk factors found in 

non-soy legumes: 

↓ metabolic syndrome risk factors22 

Satiety and 

food intake  

RoM d (95% CI) =  1.31 

(1.09‒1.58) 38 

 

Positive effects on acute 

Relation with specific nutrients and components found 

in legumes: 

↓glycemic index 38 ↓fat content 38 ↑fiber38 
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satiety Relation with various risk factors found in non-soy 

legumes: 

blood sugar and insulin levels stabilization12 
aCVD: cardiovascular disease, bCHD: coronary heart disease, cHbAR1Rc: glycated hemoglobin; 822 
dRoM: ratio of means   823 
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Table 2. Number of phytochemicals (and percentage) of each group of legumes in 824 
relation to their family. 825 
 826 

Phytochemical 

classes 

Total 

(%) 

Lentils 

(%) 

Beans 

(%) 

Chickpea

s (%) 

Peas 

(%) 

Soybeans 

(%) 

Peanuts 

(%) 
Ref 

 

phytic acids 1 (0.2) 1 (1) 1 (0.4) 1 (2) 1 (2) 1 (1) 1 (1) 
41,61,64,8

9–94 

 

RFO - 

galactosides  
5 (1) 4 (4) 5 (2) 4 (7) 4 (6) 4 (4) 0 (0.0) 

41,59,64,1

00–105 

 

saponins 33 (7) 4 (4) 18 (7) 2 (3) 9 (14) 71 (63) 2 (2) 96–98,106 
 

phytosterols 6 (1) 5 (5) 5 (2) 6 (10) 5 (8) 4 (4) 3 (6) 
71–

74,77,78 

 

tocopherols 3 (0.6) 3 (3) 3 (1) 3 (5) 3 (5) 3 (3) 2 (2) 
52,69,71–

76 

 

carotenoids 11 (2) 8 (8) 1 (0.4) 3 (5) 0 (0.0) 1 (1) 0 (0.0) 
52,69,74,9

0 

 

alkaloids 12 (3) 0 (0.0) 12 (4) 0 (0.0) 1 (2) 0 (0.0) 0 (0.0) 7,58–61 
 

P

o

l

y

p

h

e

n

o

l

s  

N

o

n

-

f

l

a

v

o

n

o

i

d  

stilbenoids 6 (1) 2 (2) 2 (1) 1 (2) 1 (2) 0 (0.0) 2 (2) 
7,8,63,72,1

07 

 

lignans 2 (1) 2 (2) 2 (1) 2 (3) 1 (2) 1 (0.9) 2 (2) 79,95 

 

coumestans 1 (0.2) 1 (1) 1 (0.4) 1 (2) 0 (0.0) 1 (0 9) 1 (0.8) 79,95 

 

phenolic 

acids 
63 (13) 18 (18) 48 (17) 11 (18) 13 (20) 1 (0 9) 15 (13) 

7,8,72,84,9

0,107–

113,9,114,

52–

54,56,62,6

3,67 

 

hydrolysabl

e tannins 
1 (0.2) 0 (0.0) 1 (0.4) 0 (0.0) 1 (2) 0 (0.0) 0 (0.0) 64,65 

 

P

o

l

y

p

h

e

n

o

l

isoflavones 64 (13) 10 (10) 11 (4) 13 (22) 7 (11) 9 (8) 6 (5) 

7,8,63,68,7

2,79–

82,115–

117 

 

dihydro-

chalcones 
4 (0.8) 0 (0.0) 4 (1) 0 (0.0) 0 (0 0) 0 (0.0) 0 (0.0) 7,54 

 

pterocarpan

s 
2 (0.4) 0 (0.0) 2 (0.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 7,54 
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  827 

s  

F

l

a

v

o

n

o

i

d 

s 

flavones 31 (6) 9 (9) 19 (7) 3 (5) 6 (9) 0 (0.0) 6 (5.) 

7,8,53,54,5

6,62,63,72,

85,95,107,

111,113,11

8 

 

flavonols 79 (17) 13 (13) 64 (23) 8 (13) 5 (8) 8 (7) 6 (5) 

7–9,52–

57,62,67–

69,72,84,8

5,95,107,1

10,111,113

,115,118–

120 

 

flavanones 20 (4) 1 (1) 12 (4) 0 (0.0) 3 (5) 4 (4) 3 (3) 

7,8,53,54,6

8,110,113,

118 

 

flavanonols 4 (0.8) 0 (0.0) 3 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 2 (2) 
7,8,54,62,6

3 

 

flavanols 17 (4) 7 (7) 16 (6) 1 (2) 5 (8) 1 (0. 9) 3 (3) 

7–

9,52,54,63,

69,72,83–

88,110,113 

 

condensed 

tannins 
90 (19) 10 (10) 23 (8) 0 (0.0) 0 (0.0) 1 (0.9) 65 (54) 

7–

9,52,61,64,

85,86,88,1

07,112,121

–124 

 

anthocyanid

ins 
21 (4) 2 (2) 21 (8) 0 (0.0) 0 (0.0) 2 (2) 0 (0.0) 

52–

56,67,84,8

5 

 

brazilin 1 (0.2) 0 (0.0) 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 7,8 
 

squalene 1 (0.2) 1 (1) 1 (0.4) 1 (1.7) 1 (1.5) 0 (0.0) 1 (0.8) 7,8 
 

  
TOTAL 

478 

(100) 
101 (100) 

276 

(100) 
60 (100) 

66 

(100) 
112 (100) 

120 

(100) 
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FIGURES 828 

Figure 1. Qualitative heatmap of the phytochemicals distributed in lentils, chickpeas, 829 

beans, peas, soybeans and peanuts. Overview (red: presence; green: absence). For a 830 

detailed version, please see Figure S1. 831 

Note. The phytochemical name of each PC-number code is shown in Table S2. Detailed 832 
information is also stated on Table S3 and Table S4. Legume groupings with less than four 833 
common compounds are not displayed in this figure.  834 

 835 

 836 

 837 

 838 

 839 

  840 
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Figure 2. PCA score plot 2D (A), loading plot (B) and PCA score plot 3D (C). 841 

 842 
 843 
 844 
   845 
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Figure 3. Venn diagram analysis of qualitative data in beans, chickpeas, lentils and 846 
soybeans.  847 

Note. Bold numbers mean the total amount of phytochemicals on beans, chickpeas, lentils and 848 

soybeans and phytochemicals shared by each legume combination. In brackets, the percentage of 849 

phytochemicals over total number of phytochemicals. 850 
  851 
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