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Abstract

The system of Peano Arithmetic is a system more than enough for proving almost all
statements of the natural numbers. We will work with a version of this system adapted
to first-order logic, denoted as PA. The aim of this work will be showing that there
is no equivalent finitely axiomatizable system. In order to do this, we will introduce
some concepts about the complexity of formulas and codification of sequences to prove
Ryll-Nardzewski’s theorem, which states that there is no consistent extension of PA finitely
axiomatized.
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Introduction

Whenever I explain that I am studying a degree in Mathematics people tend to ask me
the same question: What do mathematicians study? Their first thought is that we spend
four years in University learning and developing new techniques for proving theorems,
which is not much far from truth. However, what they never expect is that we, mathe-
maticians, do not have the answers to everything, that there are things that can not been
proved.

Ironically, this is a statement that has already been proved. Formally, is what we know
as Gödel’s incompleteness theorem [4], which states that there is no consistent recursively ax-
iomatized theory T capable of proving all truths about the arithmetic of natural numbers.
In other words, that there are some statements about the natural numbers that are true,
but that can not been proved.

Even though, there is a system more than enough for proving statements about the
natural numbers: the system of Peano Arithmetic. It is a hard work the one of finding a
statement that can not been proved in this system, though it exists.

Peano produced his postulates in 1889 and they were first presented in a short work
under the title "Arithmetices principia nova methodo exposita" - "The principles of arithmetic,
presented by a new method" [6], originally writen in latin. He formulated his axioms with
the objective of giving a clear and rigorous presentation of arithmetic and of mathematics
in general. In fact, he believed that an accurate presentation of arithmetic would avoid
errors and ease the mathematics development.

The system of Peano Arithmetic will be one of the topics addressed in this project, but
I will not use it just as it is, I will introduce a version of the system adapted to first-order
logic, which I will denote as PA. This system consists of 16 axioms that are clearly true in
N and an axiom of induction.

As you will see later, Peano Arithmetic is a system constructed with infinitely many
axioms, since the axiom of induction is not given by a single sentence, but by an axiom
scheme. So, the natural question that comes to mind is the following:

Is there an equivalent finite system?

Obviously, we are not the first to wonder this. In the twentieth century, the polish
mathematician Ryll-Nardzewski asked himself the same question and was even able to
answer it. In 1952, Ryll-Nardzewski published an article in Fundamenta Mathematicae called
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iv Introduction

"The role of the axiom of induction in elementary arithmetic" [7] proving the following stronger
statement:

Theorem (Ryll-Nardzewski’s theorem) No consistent extension of PA is finitely axiomatized.

The main objective of this project will be giving an accurate proof of Ryll-Nardzewski’s
theorem including all the previous concepts and theorems required. To do so, I consulted
mainly three books; two basic manuals, to acquire the essential background in logic [3]
and model theory [2], and Richard Kaye’s book [5], which has been the basis of my project.
Additionally, I also looked up the notes of the subject of Mathematical Logic from my tutor
Enrique Casanovas [1].

Memoir structure

This work is more than just a summary of Richard Kaye’s book, however it is true
that most of the information given can be found there. I spent the last 9 months reading,
understanding, reordering and sometimes even correcting his book in order to write this
project as clear and rigorous as possible. To achieve this, I decided to structure the work
as follows:

The first chapter is a brief introduction to logic and model theory. It was written
to give a background, I hope more than enough, for those which are not familiar with
mathematical logic.

Chapter 2 is probably the most important one, since is where the standard model N and
Peano Arithmetic are presented. Here is where I introduce the theory we will be working
with during the whole project.

In the next chapter, I give one of the most relevant definitions of the project, the defi-
nition of the Σn class, used as a measure of the complexity of formulas and sentences. The
Σn class will appear constantly in the following chapters. The last section of chapter 3 is
dedicated to study the possible extensions of the language LA and its properties. This
section will play an important role in chapter 4.

The main objective of chapter 4 is showing that PA can handle syntax and semantics
adequately to end up giving a definition of truth provable in PA. To achieve this objective,
I introduced first some concepts about codification of sequences.

Finally, the last chapter is the one dedicated to prove Ryll-Nardzewski’s theorem. But
before doing this, I present the set of definable elements of a model and its properties,
which will be essential in the proof of the theorem.



Chapter 1

Preliminaries

In first-order logic, a language L is a collection of three kinds of symbols: function
symbols (F0, F1, . . .), relation symbols (R0, R1, . . .) and constant symbols (c0, c1, . . .). Each
relation and function symbol is related to a natural number n ≥ 1, we call this number
the arity of the symbol. We define then the language L as FL ∪RL ∪ CL for FL the set of
function symbols, RL of relation symbols and CL of constant symbols.

To complement the language we need the following logical symbols: connectives
(¬,∨,∧,→,↔), quantifiers (∀, ∃), variables (x,y,z, ...), brackets and a relation symbol .

=

for equality. We denote the set of variables as V .

A term of L is a finite sequence of variables, function symbols and constants of L
constructed with the following rules:
• Any constant c ∈ CL is a term.
• Any variable x ∈ V is a term.
• If t1, . . . , tn are terms and F ∈ FL is an n-ary function symbol, then F(t1, . . . , tn) is

also a term.
We write t(x̄) with x̄ = (x0, . . . , xn) to say that all the variables that appear in the term

t are in x̄.

An atomic formula of L is a finite sequence of terms and relation symbols constructed
with the following rules:
• If t1 and t2 are terms of L then t1

.
= t2 is an atomic formula.

• If t1, . . . , tn are terms and R ∈ RL is an n-ary relation symbol, then R(t1, . . . , tn) is an
atomic formula.

Finally, a formula of L is a finite sequence of atomic formulas, connectives and vari-
ables given by the following rules:
• Any atomic formula is a formula.
• If ϕ and ψ are formulas and ∗ ∈ {∨,∧,→,↔}, then (ϕ ∗ ψ) is a formula.
• If ϕ is a formula then ¬ϕ is a formula.
• If ϕ is a formula and x ∈ V then ∀xϕ and ∃xϕ are formulas.

1



2 Preliminaries

When a quantifier Q = {∀, ∃} appears in an L-formula ϕ it is always followed by a
variable x ∈ V and a subformula ψ. We denote the subformula Qxψ as the scope of the
quantifier Q and we say then that all appearances of the variable x in the subformula Qxψ

are bounded by this quantifier. If one appearance of a variable in the formula ϕ is not
bounded we say that this variable is free. We write then ϕ(x̄) with x̄ = (x0, . . . , xn) to say
that all free variables of the formula ϕ are in the list x̄.

Sometimes we will reduce the set of connectives to (¬,∧) and the set of quantifiers to
(∃) defining the others by the sentences (ϕ ∨ ψ) := ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) := ¬(ϕ ∧ ¬ψ),
(ϕ ↔ ψ) := (¬(ϕ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬ϕ)) and ∀xϕ := ¬∃x¬ϕ for ϕ and ψ L-formulas and
x ∈ V . We will use this notation to reduce the cases in induction proofs.

A universe A for L is a nonempty set such that each n-ary L-function symbol F cor-
responds to a function FM : An → A on A, each m-ary L-relation symbol R, to a relation
RM ⊆ Am on A and each constant symbol c, to a constant cM ∈ A. This correspondences
are given by a function I mapping the symbols of L to relations, functions and constants
in A. Now we can define a model for L as a pair M = 〈A, I〉. We also denote A as
the domain of M. In the practice we will use the same notation for the model as for the
domain.

Given an L-term t(x̄) with x̄ = (x0, . . . , xn) and some ā = (a0, . . . , an) ∈ M for a model
M for L, we define the value of t(x̄) at ā by:
• tM[ā] = cM for cM the interpretation of c in M, if t = c for c ∈ CL.
• tM[ā] = ai, if t = xi for i ∈ {0, . . . , n}.
• tM[ā] = FM(tM

1 [ā], . . . , tM
m [ā]) where FM is the interpretation of the symbol F in M, if

t = F(t1, . . . , tm) for F ∈ FL an m-ary function symbol and t1(x̄), . . . , tm(x̄) terms.

We say then that an L-formula ϕ(x̄) with x̄ = (x0, . . . , xn) is true in M with the
assignation ā = (a0, . . . , an) ∈ M for M a model for L and write it as M � ϕ(ā) if it
satisfies the following rules:
• If ϕ is an atomic formula t1

.
= t2 for terms t1(x̄) and t2(x̄), then M � ϕ(ā) iff

tM
1 [ā] = tM

2 [ā].
• If ϕ is an atomic formula R(t1, . . . , tm) for R ∈ RL an m-ary relation symbol and

t1(x̄), . . . , tm(x̄) terms, then M � ϕ(ā) iff RM(tM
1 [ā], . . . , tM

m [ā]) where RM is the interpreta-
tion of R in M.
• If ϕ is ψ1 ∧ ψ2 for ψ1 and ψ2 L-formulas then M � ϕ(ā) iff M � ψ1(ā) and M � ψ2(ā).
• If ϕ is ¬ψ for an L-formula ψ then M � ϕ(ā) iff M 6� ψ(ā).
• If ϕ is ∃xiψ for an L-formula ψ and i ∈ {0, . . . , n} then M � ϕ(ā) iff exists some

b ∈ M such that M � ψ(a0, . . . , ai−1, b, ai+1, . . . , an).
• If ϕ is ∃yψ for an L-formula ψ and y 6∈ {x0, . . . , xn} then M � ϕ(ā) iff exists some

b ∈ M such that M � ψ(a0, . . . , an, b).
We also say then that M satisfies ϕ with the assignation ā. We can extend this definition

to a set of formulas Σ and say that M satisfies Σ with the assignation ā ∈ M, M � Σ(ā), if
M � ψ(ā) for each ψ in Σ. A set of formulas Σ is satisfiable if M � Σ(ā) for some model
M and some assignation ā ∈ M. Respectively, a formula ϕ is satisfiable if M � ϕ(ā) for
some model M and some assignation ā ∈ M.
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Two L-formulas ϕ(x̄), ψ(x̄) with x̄ = (x0, . . . , xn) are equivalent, ϕ ≡ ψ, iff for each
model M of L and each ā = (a0, . . . , an) ∈ M we have M � ϕ(ā) iff M � ψ(ā).

We say that two models M and N for the same language L are elementarily equiva-
lent, and we write it as M ≡ N, iff every sentence that holds in M also holds in N, and
the other way round.

Given two models M and N for the same language L, we say that M is a submodel or
substructure of N, M ⊆ N, iff:

(a) The domain of M is a subset of the domain of N.
(b) The domain of M contains the constants of N and is closed under the functions of

N.
(c) Each non-logical symbol of L is interpreted in M according to the restriction of its

interpretation in N.
(c.1) FN �Mn= FM for F a n-ary function symbol.
(c.2) RN ∩Mn = RM fo R a n-ary relation symbol.
(c.3) cN = cM.

We say then that N is an extension of M.

M is an elementary submodel of N, M � N, iff M ⊆ N and for each formula ϕ(x̄)
and each ā ∈ M,

M � ϕ(ā)⇔ N � ϕ(ā).

If M � N then M and N satisfy the same sentences; the converse may not be true, even if
M ⊆ N.

Theorem 1.1. (Tarski-Vaught test) Let M ⊆ N be models for the same language L. Then the
following are equivalent:
(a) M � N.
(b) For each L-formula ϕ(x̄, y) and for each ā ∈ M

N � ∃yϕ(ā, y)⇒ there exists b ∈ M s.t. N � ϕ(ā, b).

Proof. The proof of Tarski-Vaught test is similar to the one of proposition 3.1.2. of [2].

Given a set of L-formulas Σ and an L-formula ϕ, we say that ϕ is a consequence of Σ,
Σ � ϕ, if for each model M of L and each ā ∈ M such that M � Σ(ā) we have M � ϕ(ā).

We write Σ ` ϕ to denote that there is a proof of ϕ from Σ, Λ and some rules of
inference. The rules of inference and the set Λ, formed by some formulas called logical
axioms, will depend on the deductive calculus we are working with. As an example of
deductive calculus you can see section 2.4 of Enderton’s book [3].

Theorem 1.2. (Completeness theorem). Let Σ be a set of L-formulas and let ϕ be an L-formula.
Then Σ ` ϕ iff Σ � ϕ.

Proof. You can find a proof of the Completeness theorem in page 135 of [3].



4 Preliminaries

An L-sentence is a formula with no free variables. We say then that an L-sentence σ is
satisfiable if M � σ for some model M of L, respectively a set of sentences Σ is satisfiable
if M � σ for each σ ∈ Σ and some model M. Moreover, Σ � σ if M � σ for each model M
such that M � Σ.

A theory T of the language L is a collection of L-sentences closed under logical con-
sequence, i.e. if T � σ for σ an L-sentence then σ ∈ T. There are many ways of defining a
theory T, but we will mostly use two.

One is by listing its set of axioms. A set of axioms of a theory T is a set of sentences
with the same consequences as T, this consequences are called theorems. In other words,
a set Γ of sentences of L is a set of axioms of T if T = {σ|Γ � σ}.

Some theories can be defined by more than one set of axioms, we will see an example
of this in section 2.3. Given a theory T, the intriguing issue will be to find its most simple
set of axioms and, if possible, finite. If the set of axioms of a theory T is finite we say that
T is finitely axiomatizable.

Theorem 1.3. (Completeness theorem for theories). Let T be a theory in the language L with set
of axioms Σ and let σ be an L-sentence. Then σ ∈ T iff Σ ` σ iff Σ � σ.

The other way is defining T as the set of all sentences which hold in M, for M a model
of L. In this case, we denote T = Th(M) as the theory of M and we say that M models T.

Some theories can be defined by more than one model and there are also theories that
can not be defined by any model. If there is some model M for L satisfying all sentences
of T we say that T is satisfiable and write T ⊆ Th(M).

We say that a theory T of L is complete if for each sentence σ of L, either σ ∈ T or
¬σ ∈ T. The theory of a model is always complete and satisfiable. Moreover, we can easily
see that a theory is complete if and only if all its models are elementarily equivalent.

A theory T is inconsistent if there is some L-sentence σ such that σ ∈ T and ¬σ ∈ T.
If a theory T is not inconsistent we say that T is consistent. Every consistent theory is
satisfiable.

Given a complete and consistent theory T and an L-sentence σ then σ 6∈ T ⇔ ¬σ ∈ T.

Theorem 1.4. (Compactness) A set Σ of L-formulas is satisfiable iff every finite subset S ⊆ Σ is
satisfiable.

Proof. You can find a proof of the Compactness theorem in page 142 of [3].



Chapter 2

Peano Arithmetic

We will work in the language LA = {0, 1,+, ·,<} where 0, 1 are constants, +, · binary
function symbols and < a binary relation symbol. Each symbol of LA is meant to repre-
sent its common interpretation, 0 for the natural number zero, 1 for the one, + and · for
the addition and the product and < for the linear order.

Notation 2.1. All the LA -formulas will be written in the "natural" way, instead of writing
+(x, y) or ·(x, y) we will write x + y and x · y.

Notation 2.2. Given an LA-term t and an LA-formula ϕ(x̄, y), we will use ∀y < tϕ(x̄, y)
as an abbreviation for ∀y(y < t → ϕ(x̄, y)) and ∃y < tϕ(x̄, y) for ∃y(y < t ∧ ϕ(x̄, y)), to
say that the quantifier is bounded by t in ϕ. Similarly, we will write ∀y ≤ tϕ(x̄, y) for
∀y(y ≤ t→ ϕ(x̄, y)) and ∃y ≤ tϕ(x̄, y) for ∃y(y ≤ t ∧ ϕ(x̄, y)).

Notation 2.3. Given an LA-formula ϕ(x, ȳ), we will write ∃!xϕ(x, ȳ) as an abbreviation
for ∃xϕ(x, ȳ) ∧ ∀x, z(ϕ(x, ȳ) ∧ ϕ(z, ȳ) → x .

= z), to say that there is a unique x satisfying
the formula ϕ .

2.1 The standard model

To introduce Peano Arithmetic we need to start by presenting the structure N and
some of its characteristics. The structure N, also denoted as the standard model is an
LA-structure with domain the set of non-negative integers and with the common inter-
pretation for the symbols in LA.

Notation 2.4. We will denote the complete LA-theory of the standard model as Th(N).

To give a more precise definition of N we will focus on those LA-structures that are
not isomorphic to N, called nonstandard structures.

Notation 2.5. For each n ∈ N we denote the numeral of n, given by the closed term
(. . . (((1 + 1) + 1) + 1) + . . . + 1)︸ ︷︷ ︸

n

of LA, as n.

5



6 Peano Arithmetic

Let us expand the language LA to a language LC by adding a new constant symbol c
and consider then the LC -theory Tc given by the axioms of Th(N) and the axioms

c > n f or each n ∈N.

Proposition 2.6. The theory Tc is consistent.

Proof. For each finite subset S of Tc exists some k such that k > n for all n ∈ S.
Let us define the LC -structure (N, k) with domain N and 0, 1,+, · ,< interpreted nat-

urally and c interpreted by k. This structure satisfies S.
We have found then a model for every subset of Tc. Hence, by the compactness theo-

rem, the theory Tc is consistent.

As a corollary, Tc has a model Mc. Since Mc � c > n for all n ∈ N we can say that Mc
contains an "infinite" integer. Let us reduce Mc to the original language LA and denote
this model by M.

Proposition 2.7. M is not isomorphic to the standard model N, so M is nonstandard.

Proof. Let us suppose that there is an isomorphism h : N→ M. This isomorphism should
send each n ∈N to an element of M, h(n) = nM.

Since N � ∀x, y(x > y → ¬x .
= y), then M � ∀x, y(x > y → ¬x .

= y). Therefore, the
element realizing c in M can not be in the image of h.

From now on we will identify N with the image of h in M, so N is a substructure
of every model M � Th(N). We will denote the elements of M that are not in N as
nonstandard elements.

We say then that N is an initial segment of M and M an end-extension of N, N ⊆e M,
since N ⊆ M and for all n ∈N and all b ∈ M such that M � b < n we have b ∈N.

2.2 The axioms of PA

To present the system of Peano Arithmetic we first need to define the theory PA−, a
theory defined by 16 axioms given by sentences that are obviously true in N.

Notation 2.8. We will omit some parentheses in the axioms to ease the reading of the
sentences.

The first four axioms of PA− state the basic properties of the binary functions · and
+: the commutative and the associative properties. Moreover, the fifth axiom says that +
and · satisfy the distributive law.

Axiom 2.9. ∀x, y(x + y .
= y + x)
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Axiom 2.10. ∀x, y(x · y .
= y · x)

Axiom 2.11. ∀x, y, z((x + y) + z .
= x + (y + z))

Axiom 2.12. ∀x, y, z((x · y) · z .
= x · (y · z))

Axiom 2.13. ∀x, y, z(x · (y + z) .
= x · y + x · z)

The next two axioms state that 0 is the identity for + and a zero for ·, and that 1 is the
identity for ·.

Axiom 2.14. ∀x((x + 0 .
= x) ∧ (x · 0 .

= 0))

Axiom 2.15. ∀x(x · 1 .
= x)

The following axioms make reference to the linear order in N given by the relation
symbol <. The first three state that < is transitive and irreflexive and that satisfies the
trichotomy law.

Axiom 2.16. ∀x, y, z((x < y ∧ y < z)→ x < z)

Axiom 2.17. ∀x¬x < x

Axiom 2.18. ∀x, y(x < y ∨ x .
= y ∨ y < x)

From this three axioms we can also deduce the asymmetric property, which says that
∀x, y(x < y→ ¬y < x). We can use x ≤ y to express x < y∨ x .

= y and rewrite then axiom
2.18 as ∀x, y(x ≤ y ∨ y ≤ x) and the asymmetric property as ∀x, y(x ≤ y↔ ¬y < x).

The next two axioms state that the operations + and · respect the order.

Axiom 2.19. ∀x, y, z(x < y→ x + z < y + z)

Axiom 2.20. ∀x, y, z(0 < z ∧ x < y→ x · z < y · z)
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The thirteenth axiom is similar to the idea of subtraction in N and says that for x < y,
x can be subtracted from y.

Axiom 2.21. ∀x, y(x < y→ ∃z x + z .
= y)

The order in N is also a discrete order and we state this with the next axiom.

Axiom 2.22. 0 < 1∧ ∀x(0 < x → 1 ≤ x)

To finish, the last axiom says that 0 is the least natural number.

Axiom 2.23. ∀x(0 ≤ x)

Now that the theory PA− has been described we can define Peano Arithmetic. The
axioms of Peano Arithmetic are those of PA− together with the second-order induction
axiom,

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X)→ ∀y(y ∈ X)).

With the incorporation of this last axiom, Peano Arithmetic characterizes the standard
model N up to isomorphism. But we are not interested in working with second-order
logic, since there is no Completeness Theorem for second-order logic. Therefore, we will
restrict the induction axiom to subsets X defined by a first-order LA-formula, obtaining
so a weaker theory, PA, which no longer characterizes N. The restricted induction axiom,
Ix ϕ, is given by the sentence

∀ȳ(ϕ(0, ȳ) ∧ ∀x(ϕ(x, ȳ)→ ϕ(x + 1, ȳ))→ ∀xϕ(x, ȳ))

with ϕ(x, ȳ) an LA-formula, x the induction variable and ȳ the parameters.
So, finally, we define PA as the first-order theory axiomatized by PA− together with

the induction axioms Ix ϕ over all LA-formulas ϕ.

Remark 2.24. PA is a recursively axiomatized theory (even though non-finite), which
means that there is a recursive procedure (an algorithm) to decide if a given sentence is
an axiom of PA.

2.3 Alternative induction schemes

In this section we will show alternative sets of axioms which can also define PA. In
particular, we will be interested in changing the induction scheme by others that can
be justified in PA. At the same time, we will also develop new techniques for proving
theorems in PA.
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2.3.1 Principle of induction up to z

When working in N, if we wish to show N � ∀x ≤ nϕ(x) for n ∈ N and ϕ(x) a
formula, is clearly enough to show that N � ϕ(0) ∧ ∀x < n(ϕ(x)→ ϕ(x + 1)), even if the
stronger statement N � ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x + 1) might not be true. The idea is to find
an equivalent principle proved by PA.

We can express this principle by the scheme

∀ȳ, z(ϕ(0, ȳ) ∧ ∀x < z(ϕ(x, ȳ)→ ϕ(x + 1, ȳ))→ ∀x ≤ zϕ(x, ȳ))

over all LA-formulas ϕ(x, ȳ), denoted by Ux ϕ.

Proposition 2.25. PA proves all instances of Ux ϕ.

Proof. Let M be an arbitrary model of PA and let ϕ(x, ȳ) be any LA-formula. By the
completeness theorem, it will be enough to prove that M � Ux ϕ.

Let us assume ā, b ∈ M and M � ϕ(0, b) ∧ ∀x < b(ϕ(x, ā) → ϕ(x + 1, ā)) to show
M � ∀x ≤ bϕ(x, ā).

If we define the LA-formula

ψ(x, ȳ, z) := (x ≤ z ∧ ϕ(x, ȳ)) ∨ (x > z),

clearly M � ∀x > bψ(x, ā, b).
From the assumption of M � ϕ(0, b) ∧ ∀x < b(ϕ(x, ā) → ϕ(x + 1, ā)) follows that

M � ψ(0, ā, b) ∧ ∀x < b(ψ(x, ā, b)→ ψ(x + 1, ā, b)).
So M � ψ(0, ā, b) ∧ ∀x(ψ(x, ā, b) → ψ(x + 1, ā, b)) and, by induction, M � ∀xψ(x, ā, b).

Hence, by the definition of ψ(x, ȳ, b), M � ∀x ≤ bϕ(x, ā) as required.

2.3.2 Least number principle

As N is a well-ordered set, it is true that every non-empty set of N has a least element.
Since we are working with a first-order language LA, we need to find an aproximate
principle proved by PA. The scheme

∀ȳ(∃xϕ(x, ȳ)→ ∃z(ϕ(z, ȳ) ∧ ∀w < z¬ϕ(w, ȳ)))

over all LA-formulas ϕ(x, ȳ), denoted by Lϕ, states this principle.

Proposition 2.26. PA proves all instances of Lϕ.

Proof. Let M be an arbitrary model of PA and let ϕ(x, ȳ) be any LA-formula.
For ā, b ∈ M we will assume that M � ϕ(b, ā) and M 2 ∃z(ϕ(z, ā) ∧ ∀w < z¬ϕ(w, ā)),

i.e. M � ∀z(ϕ(z, ā)→ ∃w < zϕ(w, ā)), to arrive to a contradiction.
Let us define the LA-formula

θ(x, ȳ) := ∀z(z < x → ¬ϕ(z, ȳ)).
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Notice that M � θ(0, ā), since 0 is the smallest element of M. Now suppose c ∈ M and
M � θ(c, ā), to show that M � θ(c + 1, ā).

If d ∈ M and M � d < c + 1 we can consider two cases:
1. M � d < c: So M � ¬ϕ(d, ā) since M � θ(c, ā).
2. M � d .

= c: Then M � ∀w < c¬ϕ(w, ā), i.e. M � ¬(∃w < c)ϕ(w, ā), and by the
assumption of M � ∀d(ϕ(d, ā)→ ∃w < dϕ(w, ā)), M � ¬ϕ(d, ā).

In both cases M � ¬ϕ(d, ā), which implies that M � θ(c + 1, ā). As a result,

M � θ(0, ā) ∧ ∀x(θ(x, ā)→ θ(x + 1, ā))

and, by Ixθ, M � ∀xθ(x, ā), i.e. M � ∀z¬ϕ(z, ā), contradicting so the existence of some
b ∈ M such that M � ϕ(b, ā) as required.

2.3.3 Principle of complete induction

The last induction principle is a formulation of the principle of complete induction for
N, which states that for proving N � ∀xϕ(x), for ϕ(x) a formula, it is enough to prove
N � ∀x(∀z < xϕ(z) → ϕ(x)). We usually define this principle for all sets of N, but since
we are working with first-order logic we will enunciate it for those sets that can be defined
with LA-formulas.

The principle of complete induction for first-order logic is the one given by the scheme

∀ȳ(∀x(∀z < xϕ(z, ȳ)→ ϕ(x, ȳ))→ ∀xϕ(x, ȳ))

over all LA-formulas ϕ(x, ȳ), denoted by Tx ϕ.

Proposition 2.27. PA proves all instances of Tx ϕ.

Proof. Let M be an arbitrary model of PA and ϕ(x, ȳ) any LA-formula.
Let ā ∈ M and suppose M � ∀x(∀z < xϕ(z, ā) → ϕ(x, ā)) and M 2 ∀xϕ(x, ā), i.e.

M � ¬ϕ(b, ā) for some b ∈ M, to arrive to a contradiction.
Since M � L¬ϕ, there is a least b ∈ M such that M � ¬ϕ(b, ā), contradicting the

hypothesis of M � ∀x(∀z < xϕ(z, ā)→ ϕ(x, ā)). Hence M � ∀xϕ(x, ā), as required.



Chapter 3

Complexity of formulas

3.1 The arithmetic hierarchy

Definition 3.1. An LA-formula ϕ is ∆0 iff all its quantifiers are bounded.

We also denote ∆0 by Σ0 and Π0. With the initial case defined, we can now define the
classes Σn and Πn for all n ∈N.

Definition 3.2. An LA-formula ϕ is Σn+1 iff it is of the form ∃x̄ψ(x̄, ȳ) for ψ a Πn LA-formula,
which means that ϕ looks like

∃x̄1∀x̄2∃x̄3...Qx̄nψ(x̄1, x̄2, ..., x̄n, ȳ)

where all quantifiers in ψ are bounded and Q is ∃ if n is even or ∀ if n is odd.

Definition 3.3. An LA-formula ϕ is Πn+1 iff it is of the form ∀x̄ψ(x̄, ȳ) for ψ a Σn LA-formula
which means that ϕ looks like

∀x̄1∃x̄2∀x̄3...Qx̄nψ(x̄1, x̄2, ..., x̄n, ȳ)

where all quantifiers in ψ are bounded and Q is ∃ if n is odd or ∀ if n is even.

Notation 3.4. We will write ϕ ∈ Σn if there is a Σn LA-formula ψ equivalent to ϕ in the
model M or the theory T, and ϕ ∈ Πn if there is an equivalent LA-formula Πn. When it
is important to remark the model or theory in which this equivalence takes place, we will
write Σn(T), Πn(T), Σn(M) or Πn(M).

Definition 3.5. An LA-formula ϕ is ∆n iff it is equivalent to both, a Σn and a Πn formula.

Notation 3.6. As before, if it is important to remark the model or theory where the equiv-
alence takes place, we will write ∆n(M) or ∆n(T).

Definition 3.7. An LA-formula ϕ is provably ∆n(T) if there are formulas ψ ∈ Σn and χ ∈ Πn
such that

T ` ϕ↔ ψ and T ` ϕ↔ χ.

11
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Remark 3.8. Every LA-formula is equivalent to a Σn or Πn LA-formula for some n ∈N.

Since blocks of quantifiers are allowed to be empty, any Πn formula is both, a Σn+1 and
a Πn+1 formula. The same happens for Σn formulas. We have then the obvious inclusions
Σn ⊆ ∆n+1 ⊆ Σn+1 and Πn ⊆ ∆n+1 ⊆ Πn+1.

Proposition 3.9. The classes Σn and Πn are closed under conjunctions and disjunctions.

Proof. Let us assume θ1(x̄), θ2(x̄) ∈ Σn for n ∈N and prove θ1(x̄) ∧ θ2(x̄) ∈ Σn.
We can write θ1(x̄) as ∃ȳ1∀ȳ2....Qȳn ϕ1(x̄, ȳ) and θ2(x̄) as ∃z̄1∀z̄2....Qz̄n ϕ2(x̄, z̄), with

ȳi ∩ z̄j = ∅ for all i, j ∈ {1, . . . , n}, ϕ1, ϕ2 ∈ ∆0 and Q = ∃ if n is even or Q = ∀ if n is odd,
and hence θ1(x̄) ∧ θ2(x̄) as

∃ȳ1∀ȳ2....Qȳn ϕ1(x̄, ȳ) ∧ ∃z̄1∀z̄2....Qz̄n ϕ2(x̄, z̄)

Notice that this formula is equivalent to ∃ȳ1z̄1∀ȳ2z̄2....Qȳn z̄n(ϕ1(x̄, ȳ) ∧ ϕ2(x̄, z̄)) if we re-
order the quantifiers, so θ1(x̄) ∧ θ2(x̄) ∈ Σn.

Following the same arguments we can prove the same for θ1(x̄), θ2(x̄) ∈ Πn and for
the disjunction.

Proposition 3.10. If θ(x̄) ∈ Σn then ¬θ(x̄) ∈ Πn. Similarly if θ(x̄) ∈ Πn, ¬θ(x̄) ∈ Σn.

Remark 3.11. This proposition proves that the class ∆n is closed under negations, even if
Σn and Πn are not.

3.2 The collection axiom

The aim of this section will be showing that the classes Σn, Πn and ∆n are closed under
bounded quantification in PA. To do so, we need to define the collection axiom.

Given an LA-formula ϕ(x, ȳ, z̄), the collection axiom for ϕ is the sentence

∀z̄, t(∀x < t∃ȳϕ(x, ȳ, z̄)→ ∃s∀x < t∃ȳ < sϕ(x, ȳ, z̄))

denoted by Bϕ. Since the converse of Bϕ is true for all LA-structures, we have

∀z̄, t(∀x < t∃ȳϕ(x, ȳ, z̄)↔ ∃s∀x < t∃ȳ < sϕ(x, ȳ, z̄)),

which means that we can sometimes transform a formula Π2 into a Σ1.
If we consider as well the collection axiom for ¬ϕ, we obtain

∀z̄, t(∃x < t∀ȳϕ(x, ȳ, z̄)↔ ∀s∃x < t∀ȳ < sϕ(x, ȳ, z̄)),

transforming so a Σ2 formula into a Π1.

Notation 3.12. We will denote {Bϕ|ϕ a Σn LA-formula}, with ϕ a Σn formula in the strict
sense, which means ϕ in Σn form, not equivalent to a Σn formula, by BΣn and similarly
{Bϕ|ϕ a Πn LA-formula}, with ϕ a Πn formula in the strict sense, by BΠn.
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We can define now a new theory Coll = PA− + {Bϕ|ϕ is an LA- f ormula}, free of
induction, and a subtheory Colln given by the axioms of PA− + BΣn.

Proposition 3.13. For all n ∈N, let ϕ(x, ȳ) ∈ Σn and ψ(x, ȳ) ∈ Πn be LA-formulas and t(z̄) an
LA-term with x 6∈ z̄. Then ∀x < t(z̄)ϕ(x, ȳ) ∈ Σn(Colln) and ∃x < t(z̄)ψ(x, ȳ) ∈ Πn(Colln).
Therefore Σn(Colln), Πn(Colln) and ∆n(Colln) are closed under bounded quantification for all
n ∈N.

Proof. We will prove it by induction on n.
Initial case: Σ0 = Π0 = ∆0 are clearly closed under bounded quantification.
Let us prove now the induction case. We will assume Σn−1(Colln−1), Πn−1(Colln−1)

and ∆n−1(Colln−1) closed under bounded quantification to show that Σn(Colln), Πn(Colln)
and ∆n(Colln) are also closed under bounded quantification.

Let M be such that M � Colln and let ϕ(x, ȳ) be an LA-formula of the form ∃z̄θ(x, ȳ, z̄)
for θ(x, ȳ, z̄) ∈ Πn−1 and n ≥ 1. Applying the collection axiom to θ we have

M � ∀ȳ(∀x < tϕ(x, ȳ)↔ ∃s∀x < t∃z̄ < sθ(x, ȳ, z̄)). (1)

Notice that, by the induction hypothesis and since θ(x, ȳ, z̄) is Πn−1, we can conclude
that ∃z̄ < sθ(x, ȳ, z̄)) ∈ Πn−1(Colln−1), i.e that exists a Πn−1 formula χ(x, ȳ, s) such that

Colln−1 ` ∀x, ȳ, s(χ(x, ȳ, s)↔ ∃z̄ < sθ(x, ȳ, z̄)). (2)

Since Colln ` Colln−1 we have M � Colln−1, and hence by (1) and (2),

M � ∀y(∀x < tϕ(x, ȳ)↔ ∃s∀x < tχ(x, ȳ, s)).

The formula ∃s∀x < tχ(x, ȳ, s) is clearly Σn, since χ(x, ȳ, s) is Πn−1, so we have then
that ∀x < tϕ(x, ȳ) ∈ Σn(Colln) as we wanted to show.

That Πn(Colln) is closed under bounded quantification can be proved in a similar
way.

We have used the collection axioms to prove that the classes Σn, Πn and ∆n are closed
under bounded quantification. But now we need to show that the collection axioms are,
in fact, provable in PA.

To do so, we will define a new theory called IΣn, resulting from the axioms of PA−

and induction for all Σn formulas. We can define also the theory IΠn in a similar way.
Then PA is equivalent to IΣ1 + IΣ2 + IΣ3 + . . ., which is also equivalent to the theory
IΠ1 + IΠ2 + IΠ3 + . . ..

Proposition 3.14. IΣn ` Colln for all n ≥ 1. Hence PA ` Coll.

Proof. We will prove it by induction on n. We will see first the induction case and then the
initial case.

For n ≥ 2 let us suppose IΣn−1 ` Colln−1 and show that IΣn ` Colln. To prove this we
will assume M � IΣn, ϕ(x, ȳ, z̄) ∈ Σn and ā, b ∈ M such that

M � ∀x < b∃ȳϕ(x, ȳ, ā)
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and show then that M � ∃c∀x < b∃ȳ < cϕ(x, ȳ, ā).
Since ϕ(x, ȳ, ā) ∈ Σn, we can write it as ∃ūθ(x, ȳ, ā, ū) for θ(x, ȳ, ā, ū) ∈ Πn−1 some

LA-formula and hence ∀x < b∃ȳϕ(x, ȳ, ā) as ∀x < b∃ȳ, ūθ(x, ȳ, ā, ū) which is equivalent
to ∀x < b∃z̄θ(x, z̄, ā) for θ(x, z̄, ā) ∈ Πn−1 and z̄ = ȳū.

Let us consider the formula

ψ(u, ā) := (∃c∀x < u∃z̄ < cθ(x, z̄, ā)) ∨ u > b.

Since θ(x, z̄, ā) ∈ Πn−1, we can use the previous proposition and obtain then that
∀x < u∀z̄ < cθ(x, z̄, ā) ∈ Πn−1(Colln−1). By the induction hypothesis, we also have
∀x < u∀z̄ < cθ(x, z̄, ā) ∈ Πn−1(IΣn−1).

Notice that IΣn ` IΣn−1, since Σn−1 ⊆ Σn, therefore ψ(u, ā) ∈ Σn(IΣn). So we can
apply induction on ψ.

Clearly M � ψ(0, ā), so there is only left to show that M � ∀x(ψ(x, ā) → ψ(x + 1, ā)).
Let us suppose M � ψ(w, ā) for w ∈ M and prove then that M � ψ(w + 1, ā). We will
consider two cases:

1. Case M � w ≥ b: Then M � w + 1 > b and M � ψ(w + 1, ā).
2. Case M � w < b: We shall show that M � ∃c∀x < w + 1∃z̄ < cθ(x, z̄, ā). Since

M � ψ(w, ā), there is some v1 ∈ M such that M � ∀x < w∃z̄ < v1θ(x, z̄, ā). Let us define
v2 = max(z̄) + 1 and v = max(v1, v2). Since M � ∀x < b∃z̄θ(x, z̄, ā) and M � w < b, we
have found some v ∈ M such that M � ∀x < w + 1∃z̄ < vθ(x, z̄, ā) as required.

We have seen that M � ∀uψ(u, ā), so in particular, M � ψ(b, ā), which means that
M � ∃c∀x < b∃z̄ < cθ(x, z̄, ā) and hence M � ∃c∀x < b∃ȳ < cϕ(x, ȳ, ā).

Let us prove now the initial case, IΣ1 ` Coll1. We will assume M � IΣ1, ϕ(x, ȳ, z̄) ∈ Σ1
and ā, b ∈ M such that M � ∀x < b∃ȳϕ(x, ȳ, ā) to show that there is some c ∈ M such that
M � ∀x < b∃ȳ < cϕ(x, ȳ, ā). Since ψ(w, ā) ∈ Σ1 we can apply induction on ψ as before
and obtain M � ∃c∀x < b∃ȳ < cϕ(x, ȳ, ā).

Now we will see that, in fact, collection is actually equivalent to PA over the theory
I∆0, i.e. that PA is equivalent to the theory I∆0 + Coll. For showing this we will need two
previous lemmas.

Lemma 3.15. For each n ≥ 0 we have IΠn + Colln+2 ` IΣn+1.

Proof. For M such that M � IΠn + Colln+2, we want to show that M � IΣn+1.
To do so we will assume M � θ(0, ā)∧∀x(θ(x, ā)→ θ(x+ 1, ā)) for some θ(x, ȳ) ∈ Σn+1

and some ā ∈ M and prove that M � θ(b, ā) for all b ∈ M.
Since θ(x, ā) ∈ Σn+1 we can write it as ∃ȳψ(x, ȳ, ā) for ψ(x, ȳ, ā) ∈ Πn an LA-formula.

Let us define the formula

χ(x, ȳ, ā) := ψ(x, ȳ, ā) ∨ ∀z̄¬ψ(x, z̄, ā),

which can also be written as ∃z̄ψ(x, z̄, ā)→ ψ(x, ȳ, ā).
The negation of a formula Πn is Σn, so ¬ψ ∈ Σn. If we add the quantifier we have,

∀z̄¬ψ(x, z̄, ā) ∈ Πn+1 and hence χ ∈ Πn+1 ⊆ Πn+2. So we can apply collection to χ, since
M � Colln+2.
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Notice that M � ∃ȳχ(x, ȳ, ā), in particular M � ∀x < b + 1∃ȳχ(x, ȳ, ā) for any arbitrary
b ∈ M, and by the collection axiom, M � ∃c∀x < b + 1∃ȳ < cχ(x, ȳ, ā). So there is a c ∈ M
such that

M � ∀x ≤ b∃ȳ < c(∃z̄ψ(x, z̄, ā)→ ψ(x, ȳ, ā)).

Reordering the formula we obtain that there is some c ∈ M such that

M � ∀x ≤ b(∃ȳψ(x, ȳ, ā)→ ∃ȳ < cψ(x, ȳ, ā)).

Since the other implication is clearly true, there is some c ∈ M such that

M � ∀x ≤ b(∃ȳψ(x, ȳ, ā)↔ ∃ȳ < cψ(x, ȳ, ā)).

Let us define a formula ϕ(x, c, ā) := ∃ȳ < cψ(x, ȳ, ā). From the hypothesis follows
that M � θ(0, ā) ∧ ∀x(θ(x, ā) → θ(x + 1, ā)) and since M � θ(x, ā) ↔ ∃ȳψ(x, ȳ, ā) and
M � ϕ(x, c, ā)↔ ∃ȳ < cψ(x, ȳ, ā) we have

M � ϕ(0, c, ā) ∧ ∀x < b(ϕ(x, c, ā)→ ϕ(x + 1, c, ā)).

The formula ϕ is clearly Πn and since M � IΠn, we can apply induction up to b to ϕ,
obtaining so M � ∀x ≤ bϕ(x, c, ā). In particular, M � ϕ(b, c, ā) and hence M � θ(b, ā) as
required.

Lemma 3.16. For all n ≥ 0 we have IΣn ` IΠn and IΠn ` IΣn.

Proof. To prove IΠn ` IΣn we will assume M � IΠn and show M � IΣn. To do so, let
ϕ(x, ȳ) be a Σn formula and ā ∈ M such that

M � ϕ(0, ā) ∧ ∀x(ϕ(x, ā)→ ϕ(x + 1, ā))

and prove then that M � ϕ(b, ā) for each b ∈ M.
We will assume the opposite, i.e that there is some b ∈ M such that M � ¬ϕ(b, ā), to

arrive to a contradiction. Let us define the formula

ψ(x, b, ā) := x > b ∨ (x ≤ b ∧ ∀y(y + x .
= b→ ¬ϕ(y, ā)))

which is Πn, as ¬ϕ ∈ Πn.
Notice that M � ψ(0, b, ā), since M � ¬ϕ(b, ā), 0 ≤ b and M � y + 0 .

= b only
if M � y .

= b. By the initial assumption of M � ∀x(ϕ(x, ā) → ϕ(x + 1, ā)), we have
M � ∀x(ψ(x, b, ā)→ ψ(x + 1, b, ā)) and therefore

M � ψ(0, b, ā) ∧ ∀x(ψ(x, b, ā)→ ψ(x + 1, b, ā))

Since M � IΠn and ψ ∈ Πn we can deduce that M � ∀xψ(x, b, ā) by applying induction
to the formula ψ. In particular, M � ψ(b, b, ā) and hence M � ¬ϕ(0, a), contradicting so
M � ϕ(0, ā) ∧ ∀x(ϕ(x, ā)→ ϕ(x + 1, ā)).

To prove IΣn ` IΠn we shall follow the same arguments but considering ψ(x, b, ā) as
x > b ∨ (x ≤ b ∧ ∃y(y + x .

= b ∧ ¬ϕ(y, ā))).
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Theorem 3.17. PA is equivalent to I∆0 + Coll.

Proof. To show that PA is equivalent to I∆0 + Coll, we need to prove both directions,
PA ` I∆0 + Coll and I∆0 + Coll ` PA.

PA ` I∆0 + Coll follows from proposition 3.14. So there is only left showing that
I∆0 +Coll ` PA. Since PA is equivalent to IΣ1 + IΣ2 + IΣ3 + . . . it will be enough to show
that I∆0 + Colln+1 ` IΣn for all n ∈N. We will do it by induction on n.

The initial case is clearly true since IΣ0 is equivalent to I∆0. Let us suppose now
that I∆0 + Colln+1 ` IΣn and show I∆0 + Colln+2 ` IΣn+1. By lemma 3.16 we have
I∆0 + Colln+1 ` IΠn and by lemma 3.15, I∆0 + Colln+1 + Colln+2 ` IΣn+1.

Since Colln+2 ` Colln+1 we can omit Colln+1 and obtain I∆0 + Colln+2 ` IΣn+1 as
required.

Notation 3.18. We denote {Lϕ|ϕ a Σn LA-formula}, with ϕ a Σn formula in the strict
sense, which means ϕ in Σn form, not equivalent to a Σn formula, by LΣn and similarly
{Lϕ|ϕ a Πn LA-formula}, with ϕ a Πn formula in the strict sense, by LΠn.

Proposition 3.19. For all n ≥ 0 we have LΣn ⇔ IΣn ⇔ IΠn ⇔ LΠn.

Proof. IΣn ⇔ IΠn is proved by lemma 3.16. We will only prove LΣn ⇔ IΠn, since
the proof of LΠn ⇔ IΣn is similar. We can prove IΠn ⇒ LΣn following the proof of
proposition 2.26, since if ϕ ∈ Σn then θ ∈ Πn. So there is only left to show that LΣn ⇒ IΠn.

Let M be an arbitrary model of PA such that M � LΣn and show then that M � IΠn.
For ā ∈ M and for an LA-formula ϕ(x, ȳ) ∈ Πn we will suppose that M � ϕ(0, ā) and
M � ϕ(x, ā)→ ϕ(x + 1, ā) and prove then that M � ∀xϕ(x, ā). Let us assume that there is
some b ∈ M such that M � ¬ϕ(b, ā) to arrive to a contradiction.

Since ϕ(x, ȳ) ∈ Πn we have that ¬ϕ(x, ȳ) ∈ Σn. By the least number principle there is
some d ∈ M such that M � ¬ϕ(d, ā) ∧ ∀z < dϕ(z, ā), and M � ¬d .

= 0 since M � ϕ(0, ā).
We can write then d = c + 1 for some c ∈ M. As M � c < d we also have M � ϕ(c, ā)
and by the hypothesis of M � ϕ(x, ā) → ϕ(x + 1, ā) we can conclude that M � ϕ(c + 1, d)
arriving so to a contradiction.

3.3 Extensions of LA
In this section we will show how to extend a language and a theory by introducing

new symbols and its applications in the study of the complexity of formulas.

Definition 3.20. We say that an LA-formula ϕ(x1, . . . , xn, y) is functional in PA if

PA ` ∀x1, . . . , xn∃!yϕ(x1, . . . , xn, y).

Proposition 3.21. For all n ∈N, if ϕ(x1, . . . , xm, y) ∈ Σn is functional in PA, then ϕ is provably
∆n(PA).



3.3 Extensions of LA 17

Proof. Let ϕ(x1, . . . , xm, y) ∈ Σn be an LA-formula and functional in PA, we have then
PA ` ∀x1, . . . , xm∃!yϕ(x1, . . . , xm, y) and hence,

PA ` ∀z(¬z .
= y→ ¬ϕ(x1, . . . , xm, z))↔ ϕ(x1, . . . , xm, y).

Since the negation of a Σn formula is a Πn, ¬ϕ(x1, . . . , xm, y) ∈ Πn and therefore
∀z(¬z .

= y→ ¬ϕ(x1, . . . , xm, z)) ∈ Πn. We have shown then that ϕ(x1, . . . , xm, y) is equiv-
alent to a formula Πn, so ϕ(x1, . . . , xm, y) is equivalent to both, a Σn and a Πn formula, as
required.

Definition 3.22. A function f : Nm → N is provably recursive if there is a Σ1 functional
formula ϕ(x1, . . . , xm, y) defining f in N. In other words, if

f (a1, . . . , am) = the unique b satis f ying ϕ(a1, . . . , am, b)

such that ϕ(x1, . . . , xm, y) is functional in PA.

Let us extend the language LA to LA′ = LA ∪ {F} by introducing a new function
symbol F, given by some provably recursive function f : Nm → N defined by a Σ1
formula ϕ f (x1, . . . , xm, y). Now we can extend the theory PA to a theory PA+ = PA + θF
where θF is defined as ∀x1, . . . , xm ϕ f (x1, . . . , xm, F(x1, . . . , xm)).

Our goal will be proving that for each LA′-formula χ(y1, . . . , yn) ∈ Σm exists some LA-
formula ψ(y1, . . . , yn) ∈ Σm equivalent in PA+. The same will happen for Πm formulas.
To show this we need four previous lemmas.

Lemma 3.23. Let t(y1, . . . , yn) be an LA′-term. Then there is some functional Σ1 formula of LA,
ψ(y1, . . . , yn, y), such that PA+ ` t .

= y↔ ψ(y1, . . . , yn, y).

Proof. We will prove it by induction on t.
Case t = y1: We can define then ψ(y1, y) as y1

.
= y.

Case t = 0: Defining ψ(y) as 0 .
= y.

Case t = 1: Defining ψ(y) as 1 .
= y.

Case t = t1 + t2: By induction hypothesis there are some ψ1, ψ2 ∈ Σ1(PA) functional
formulas such that

PA+ ` t1
.
= y↔ ψ1(y1, . . . , yn, y)

and
PA+ ` t2

.
= y↔ ψ2(y1, . . . , yn, y).

Let us define ψ(y1, . . . , yn, y) as

∃z1, z2(ψ1(y1, . . . , yn, z1) ∧ ψ2(y1, . . . , yn, z2) ∧ y .
= z1 + z2)

and show then that ψ(y1, . . . , yn, y) is Σ1(PA) and functional. Since ψ1 and ψ2 are func-
tional, z1 and z2 are unique, therefore y = z1 + z2 is also unique and hence ψ functional.
The formula ψ is clearly Σ1 because ψ1 and ψ2 are Σ1.

Case t .
= t1 · t2: We can prove it as before considering ψ(y1, . . . , yn, y) as

∃z1, z2(ψ1(y1, . . . , yn, z1) ∧ ψ2(y1, . . . , yn, z2) ∧ y .
= z1 · z2).
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Case t .
= F(t1, . . . , tm): By induction hypothesis there are ψ1, . . . ψm ∈ Σ1(PA) func-

tional formulas such that

PA+ ` ti
.
= y↔ ψi(y1, . . . , yn, y) f or i = 1, . . . , m.

Let us define ψ(y1, . . . , yn, y) as

∃z1, . . . , zm(ψ1(y1, . . . , yn, z1) ∧ . . . ∧ ψm(y1, . . . , yn, zm) ∧ ϕ f (z1, . . . , zm, y))

and show then that ψ(y1, . . . , yn, y) is Σ1(PA) and functional. Since ψ1, . . . , ψm, ϕ f are
functional, z1, . . . , zm are unique, therefore y is also unique and hence ψ functional. The
formula ψ is clearly Σ1 because ψ1, . . . ψm, ϕ f are Σ1.

Lemma 3.24. Given t1 = t1(y1, . . . , yn) and t2 = t2(y1, . . . , yn) terms of LA′. There is some
provably ∆1 LA-formula ψ(y1, . . . , yn) such that PA+ ` t1

.
= t2 ↔ ψ(y1, . . . , yn).

Proof. By the previous lemma there are ψ1(y1, . . . , yn, y), ψ2(y1, . . . , yn, y) ∈ Σ1 functional
formulas of LA such that

PA+ ` y .
= t1 ↔ ψ1(y1, . . . , yn, y)

and
PA+ ` y .

= t2 ↔ ψ2(y2, . . . , yn, y).

Let us define the formula ψ(y1, . . . , yn) as

∃y(ψ1(y1, . . . , yn, y) ∧ ψ2(y1, . . . , yn, y))

and show then that ψ(y1, . . . , yn) is ∆1. We can clearly see that ψ(y1, . . . , yn) ∈ Σ1. So thee
is only left to show that ψ(y1, . . . , yn) ∈ Π1, which is true since

PA ` ψ(y1, . . . , yn)↔ ∀z1, z2(ψ1(y1, . . . , yn, z1) ∧ ψ2(y1, . . . , yn, z2)→ z1
.
= z2).

Lemma 3.25. Given t1 = t1(y1, . . . , yn) and t2 = t2(y1, . . . , yn) terms of LA′. There is some
provably ∆1 LA-formula ψ(y1, . . . , yn) such that PA+ ` t1 < t2 ↔ ψ(y1, . . . , yn).

Proof. Similar to the previous one, defining ψ(y1, . . . , yn) as

∃z1, z2(z1 < z2 ∧ ψ1(y1, . . . , yn, z1) ∧ ψ2(y1, . . . , yn, z2)).

To see that ψ(y1, . . . , yn) ∈ Π1 we will use that

PA ` ψ(y1, . . . , yn)↔ ∀z1, z2(ψ1(y1, . . . , yn, z1) ∧ ψ2(y1, . . . , yn, z2)→ z1 < z2).
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Lemma 3.26. Given χ(y1, . . . , yn) an LA′-formula ∆0. There is some provably ∆1(PA) formula
of LA ψ(y1, . . . , yn) such that PA+ ` ψ(y1, . . . , yn)↔ χ(y1, . . . , yn).

Proof. We will prove it by induction on χ.
Case χ := t1

.
= t2: lemma 3.24.

Case χ := t1 < t2: lemma 3.25.
Case χ(y1, . . . , yn) := ¬χ′(y1, . . . , yn): By the induction hypothesis there is some prov-

ably ∆1(PA) formula of LA, ψ′(y1, . . . , yn) such that

PA+ ` ψ′(y1, . . . , yn)↔ χ′(y1, . . . , yn).

If we define ψ(y1, . . . , yn) as ¬ψ′(y1, . . . , yn) we have a ∆1(PA) formula of LA such that
PA+ ` ψ(y1, . . . , yn)↔ χ(y1, . . . , yn).

Case χ(y1, . . . , yn) := χ1(y1, . . . , yn)∧ χ2(y1, . . . , yn): By the induction hypothesis there
are some provably ∆1(PA) formulas of LA ψ1(y1, . . . , yn) and ψ2(y1, . . . , yn) such that

PA+ ` ψ1(y1, . . . , yn)↔ χ1(y1, . . . , yn)

and
PA+ ` ψ2(y1, . . . , yn)↔ χ2(y1, . . . , yn).

Defining ψ(y1, . . . , yn) as χ1(y1, . . . , yn) ∧ χ2(y1, . . . , yn) we have a ∆1(PA) LA-formula
such that PA+ ` ψ(y1, . . . , yn)↔ χ(y1, . . . , yn).

Case χ(y1, . . . , yn) := ∃x < t(y1, . . . , yn)χ′(y1, . . . , yn, x): By the induction hypothesis
there is some provably ∆1(PA) formula of LA, ψ′(y1, . . . , yn, x), such that

PA+ ` ψ′(y1, . . . , yn, x)↔ χ′(y1, . . . , yn, x).

By lemma 2.18 exists a Σ1 functional formula of LA, ψt(y1, . . . , yn, x), such that

PA+ ` y .
= t↔ ψt(y1, . . . , yn, y).

Let us define ψ(y1, . . . , yn) as ∃x, y(x < y ∧ ψt(y1, . . . , yn, x) ∧ ψ′(y1, . . . , yn, x)). Clearly
PA+ ` ψ(y1, . . . , yn)↔ χ(y1, . . . , yn).

As both, ψt(y1, . . . , yn, x) and ψ′(y1, . . . , yn, x), are Σ1 we have ψ(y1, . . . , yn) ∈ Σ1.
For proving that ψ(y1, . . . , yn) is also Π1 it will be enough to show that it is equivalent

to the formula
∀y(ψt(y1, . . . , yn, y)→ ∃x < yψ′(y1, . . . , yn, x)).

Proposition 3.27. For all k ≥ 1, given χ(y1, . . . , yn) a Σk (or Πk) formula of LA′. There is some
Σk (or Πk) formula ψ(y1, . . . , yn) of LA such that

PA+ ` ψ(y1, . . . , yn)↔ χ(y1, . . . , yn).
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Proof. We will prove the case of χ(y1, . . . , yn) being Σk. The other case is similar. Since
χ(y1, . . . , yn) is a Σk formula we can write it as

∃x̄1, ∀x̄2 . . . ∃x̄kχ′(y1, . . . , yn, x1, . . . , xk) i f k even

or
∃x̄1, ∀x̄2 . . . ∀x̄kχ′(y1, . . . , yn, x1, . . . , xk) i f k odd

with χ′(y1, . . . , yn, x1, . . . , xk) ∈ ∆0 an LA′-formula.
By the previous lemma, there is some LA-formula ψ′(y1, . . . , yn, x1, . . . , xk) and prov-

ably ∆1 equivalent to χ′(y1, . . . , yn, x1, . . . , xk). Since ψ′(y1, . . . , yn, x1, . . . , xk) is ∆1 there
are some equivalent LA-formulas Σ1 and Π1.

For k even we will replace χ′(y1, . . . , yn, x1, . . . , xk) with the equivalent LA-formula Σ1
and for k odd, with the ∆1. Obtaining so, in both cases, an LA-formula Σk.

Remark 3.28. All statements will still be true if we extend the language adding more than
one function or a relation.



Chapter 4

Satisfaction

In this chapter we will show that PA can handle syntax and semantics adequately to
give a definition of truth in PA.

We will constantly define new functions, most of them used to code sequences, to
extend the language LA to a language LA′ and the theory PA to a theory PA+. Because of
section 3.3, it will be important that all the new functions defined are provably recursive.

Notation 4.1. To introduce less notation we will use the same notation for the function
symbol as for the corresponding operation.

4.1 Coding sequences

We will start the chapter introducing a method for coding sequences of natural num-
bers. To do so, we need to define some previous concepts of arithmetic in PA.

Proposition 4.2. PA ` ∀x, y(¬x .
= 0→ ∃!d, r(y .

= x· d + r ∧ r < x)).

Proof. Let M be an arbitrary model of PA.
To prove the existence we will define the formula

ϕ(y) = ∀x(¬x .
= 0→ ∃d, r(y .

= x· d + r ∧ r < x))

and use induction to show that M � ∀yϕ(y).
Clearly M � ϕ(0), since for each a ∈ M with a 6= 0, M � 0 .

= a· 0 + 0 and M � 0 < a.
Let us suppose now M � ϕ(w) and show that M � ϕ(w + 1). Notice that M � ϕ(w)

implies that for each b ∈ M, with b 6= 0, exist some c, m ∈ M such that M � w .
= b· c + m

and M � m < b. We want to prove that there are also some elements c′, m′ ∈ M such that
M � a + 1 .

= b· c′ + m′ and M � m′ < b.
We will consider two cases:
1. M � m + 1 < b: We can take c′ as c and m′ as m + 1.
2. M � m + 1 .

= b: We have M � w + 1 .
= b· c + m + 1, since M � w .

= b· c + m, and
then M � w + 1 .

= b· c + b. By axiom 2.18, M � w + 1 .
= b· (c + 1) and we can choose

hence c′ = c + 1 and m′ = 0.

21
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We have found in both cases some values for m′ and c′ such that M � m′ < b and
M � w + 1 .

= b· c′ + m′. So M � ϕ(w) → ϕ(w + 1) and by induction M � ∀yϕ(y) as
required.

To prove the uniqueness we will suppose that there are d1, d2, r1, r2 ∈ M such that
M � d1· b + r1

.
= a, M � r1 < b, M � d2· b + r2

.
= a and M � r2 < b for some a, b ∈ M.

Since M � d1· b + r1
.
= a and M � d2· b + r2

.
= a we have

M � d1· b + r1
.
= d2· b + r2. (∗)

Let us suppose M � d1 < d2 to arrive to a contradiction. So there is some n ∈ M
such that M � n > 0 and M � d2

.
= d1 + n and hence we can follow from (*) that

M � d1· b + r1
.
= (d1 + n)· b + r2. By axiom 2.18, M � d1· b + r1

.
= d1· b + n· b + r2, so

M � r1
.
= n· b + r2. Since M � n > 0, we have M � r1

.
= n· b + r2 iff r1 ≥ b, contradicting

the hypothesis of M � r1 < b.
If we assume M � d1 > d2 we will arrive to the same contradiction. So necessarily

M � d1
.
= d2 and M � r1

.
= r2.

Definition 4.3. Let M � PA and x, y ∈ M. We define then the binary function that gives the
remainder on dividing y by x as

rem(y, x) :=

{
z s.t. ∃w ≤ y(x·w + z .

= y ∧ z < x), i f x 6= 0

0 otherwise

or, which is the same, by the ∆0 LA-formula

ϕ(x, y, z) := [(¬x .
= 0∧ ∃w ≤ y(x·w + z .

= y ∧ z < x)) ∨ (x .
= 0∧ z .

= 0)].

We have then that

PA ` rem(y, x) .
= z↔ [(¬x .

= 0∧ ∃w ≤ y(x·w + z .
= y ∧ z < x)) ∨ (x .

= 0∧ z .
= 0)]

so the formula rem(y, x) .
= z is ∆0(PA) and in particular Σ1(PA). By proposition 4.2,

PA ` ∀x, y∃!z(rem(y, x) .
= z). So by section 3.3, the function that gives the remainder is

a provably recursive function and we can add the symbol rem to the extended language
LA′.

Definition 4.4. Let M � PA and x, y, z ∈ M. We say that x is congruent to y modulo z, and
denote it by x ≡ y mod z, if they satisfy the three-place relation given by

x ≡ y mod z↔ (¬z .
= 0∧ rem(x, z) .

= rem(y, z)).

Notation 4.5. We write x|y to say that x divides y.

Definition 4.6. Let M � PA and x, y ∈ M. We say that x and y are coprime, and denote it by
coprim(x, y), if they satisfy the binary relation given by

coprim(x, y)↔ (x ≥ 1∧ y ≥ 1∧ ∀u(u|x ∧ u|y→ u .
= 1)).
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Definition 4.7. We define the function β of Gödel, β : N3 →N as

β(a, b, i) := the least z s.t. z ≡ a mod(b· (i + 1) + 1).

Theorem 4.8. (Chinese remainder theorem) Given m0, . . . , mn−1 ∈ N pairwise coprimes and
a0, . . . , an−1 ∈N, there is some k ∈N such that

k ≡ ai mod mi f or each 0 ≤ i < n.

The Chinese reminder theorem is also provable in PA and we will use it to code a finite
sequence x0, . . . , xn−1 of elements of M, for M � PA. To do so, let us define m = c! for
c = max(n, x0, . . . , xn−1).

Proposition 4.9. The sequence of numbers m + 1, 2·m + 1, 3·m + 1, . . . , n·m + 1 is pairwise
coprime.

Proof. We want to show that M � coprim(i·m + 1, j·m + 1) for 0 < i < j ≤ n. Let us
assume M � u|(i·m + 1) and M � u|(j·m + 1) for some u ∈ M and prove then that
M � u|1. If M � u|(i·m + 1) and M � u|(j·m + 1) we have M � u|((i·m + 1)− (j·m + 1))
and hence M � u|(i− j)·m.

Since i − j < n ≤ c and m = c! we have M � (i − j)|m and then M � u|m. So as
M � u|i·m and M � u|(i·m + 1), M � u|(i·m− (i·m + 1)) and M � u|1 as required.

By the Chinese remainder theorem, we can find some k ∈ M such that

β(xi, m, i) = k

for each i < n, and say then that the pair (k, m) codes the sequence x0, . . . , xn−1. Finally,
to reduce this pair to a single number we need to define a pairing function.

Definition 4.10. For M � PA we define the pairing function 〈, 〉 : M×M→ M as

〈x, y〉 :=
(x + y + 1)(x + y)

2
+ y

Remark 4.11. Notice that either 2|(x + y + 1) or 2|(x + y), so 2|(x + y + 1)(x + y).

For each z ∈ M exists a unique pair (x, y) with x, y ∈ M such that z = 〈x, y〉 which
implies that PA � ∀z∃!x, y〈x, y〉 .

= z. Moreover the formula 〈x, y〉 .
= z is clearly ∆0, since

PA ` 〈x, y〉 .
= z↔ 2z .

= ((x + y + 1)(x + y) + 2y).

So, the pairing function is provably recursive and we can add then the symbol 〈, 〉 to the
language LA′.
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Lemma 4.12. PA proves the following:
(a) ∀z∃x, y〈x, y〉 .

= z.
(b) ∀x, y, u, v(〈x, y〉 .

= 〈u, v〉 → x .
= u ∧ y .

= v).

Proof. (a) Let M be an arbitrary model of PA and ϕ(z) the formula ∃x, y〈x, y〉 .
= z. We will

show that M � ∀zϕ(z) by induction.
The initial case is clear, since M � 〈0, 0〉 .

= 0.
Let us suppose now that M � ϕ(w) for w ∈ M and prove then that M � ϕ(w + 1). To

do so we will assume that exist some a, b ∈ M such that M � 〈a, b〉 .
= w and show that

there are also some c, d ∈ M such that M � 〈c, d〉 .
= w + 1. We will consider two cases.

1. Case M � a .
= 0: We have

w + 1 =
(a + b + 1)(a + b)

2
+ b + 1 =

(a + 1)b
2

+ b + 1 = 〈b + 1, 0〉.

So we can take c = b + 1 and d = 0.
2. Case M � a > 0: We have

w + 1 =
(a + b + 1)(a + b)

2
+ b + 1 =

=
((a− 1) + (b + 1) + 1)((a− 1) + (b + 1))

2
+ b + 1 = 〈a− 1, b + 1〉.

So we can choose c = a− 1 and d = b + 1.
We have shown that M � ϕ(0) ∧ ∀z(ϕ(z) → ϕ(z + 1)) and by induction we can con-

clude M � ∀ϕ(z).
(b) Let M be an arbitrary model of PA. We will start by showing that for a, b, c, d ∈ M,

if M � 〈a, b〉 .
= 〈c, d〉 then M � a + b .

= c + d. To do so we will suppose M � a + b < c + d
to arrive to a contradiction. If M � a + b < c + d we have M � a + b + 1 ≤ c + d. Then

〈a, b〉 = (a + b + 1)(a + b)
2

+ b <
(a + b + 1)(a + b)

2
+ a + b + 1 =

=
(a + b + 1)(a + b + 2)

2
≤ (c + d)(c + d + 1)

2
= 〈c, d〉

and hence M � 〈a, b〉 < 〈c, d〉 contradicting so the hypothesis.
Assuming M � c + d < a + b we would arrive to a similar contradiction. Therefore we

can suppose M � a + b .
= c + d.

Let us see now that M � b .
= d. We have

b = 〈a, b〉 − (a + b + 1)(a + b)
2

= 〈c, d〉 − (c + d + 1)(c + d)
2

= d.

Since M � a + b .
= c + d, also M � a .

= c as required.

Notation 4.13. We will denote as zL the unique x ∈ M such that z = 〈x, y〉 and as zR the
unique y ∈ M such that z = 〈x, y〉.
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Proposition 4.14. PA proves the following:
(a) ∀z(zL ≤ z)
(b)∀z(zR ≤ z)

Notation 4.15. We will write z = 〈x0, . . . , xn−1〉 to say that z codes the sequence x0, . . . , xn−1
of elements of M using the function beta and the pairing function.

For any arbitrary model M of PA, given some z ∈ M such that z = 〈x0, . . . , xn−1〉 we
can recover each xi with

xi = rem(zL, zR(i + 1) + 1).

Definition 4.16. Given z ∈ M such that z = 〈x0, . . . , xn−1〉 we define the binary function (z)i
for i < n as

(z)i := rem(zL, zR(i + 1) + 1)

or which is the same, as
(z)i := β(zL, zR, i).

Proposition 4.17. PA proves the following:
(a) ∀z, i∃!x(z)i

.
= x

(b) ∀z, i(z)i ≤ z
(c) ∀x∃z(z)0

.
= x

(d) ∀x, i, z∃w(∀j < i((w)j
.
= (z)j) ∧ (w)i

.
= x)

Proof. (a) By lemma 4.12 we have PA ` ∀z∃!zL, zR〈zL, zR〉
.
= z and by proposition 4.2,

PA ` ∀x, y∃!z(rem(x, y) .
= z), so it is clear that PA ` ∀z, i∃!x(z)i

.
= x

(b) Notice that PA ` ∀x, y(rem(y, x) ≤ y) and hence PA ` ∀z, i(z)i ≤ zL. So since
PA ` ∀z(zL ≤ z) we can conclude that PA ` ∀z, i(z)i ≤ z.

(c) Let M be an arbitrary model of PA. We want to prove that M � ∃z(z)0
.
= a for each

a ∈ M. Let us define z as 〈a, a〉, then (z)0 = rem(a, a + 1) and hence M � (z)0
.
= a as

required.

The formula, (z)i
.
= x is clearly ∆0(PA+) and hence, by section 3.3, ∆1(PA). Moreover,

since PA ` ∀z, i∃!x(z)i
.
= x, the function (z)i is provably recursive and we can add its

symbol to the extended language LA′.

For the rest of the section let M be an arbitrary model of PA.

Definition 4.18. For z ∈ M, we define the length of the sequence coded by z as

len(z) := (z)0.

The formula len(z) .
= n is clearly ∆0(PA+) and hence ∆1(PA). We also have that

PA � ∀x∃!n(len(x) .
= n). Therefore len(z) is a provably recursive function and we can

add the symbol len to the extended language LA′.
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Definition 4.19. For z, i ∈ M, we define the function

[z]i :=

{
(z)i+1 i f i < len(z)

0 otherwise

then PA ` [z]i
.
= x ↔ (i ≥ len(z) ∧ x .

= 0) ∨ (i < len(z) ∧ (z)i+1
.
= x).

As before, the function [z]i is also provably recursive and we can add its symbol to the
language LA′.

Definition 4.20. For n ∈N and x0, . . . , xn−1 ∈ M we define

[x0, . . . , xn−1] := the least z s.t. len(z) .
= n ∧

∧
i<n

([z]i
.
= xi).

For all n ∈ N the function [x0, . . . , xn−1] is provably recursive, since we can write
[x0, . . . , xn−1]

.
= z as

len(z) .
= n ∧

∧
i<n

([z]i
.
= xi ∧ ∀w < z(¬len(w)

.
= n ∨

∨
i<n
¬[w]i

.
= xi)

which is clearly ∆0(PA+) and ∆1(PA).

For the following definitions we will consider x, y ∈ M such that x codes the sequence
[x]0, . . . , [x]len(x)−1 and y the sequence [y]0, . . . , [y]len(y)−1

Definition 4.21. For x, y ∈ M we define the function

x ∗ y := the least z s.t. len(z) .
= len(x) + len(y)∧

∀i < len(x)([z]i
.
= [x]i) ∧ ∀j < len(y)([z]len(x)+j

.
= [y]j).

The idea is that x ∗ y codes the sequence [x]0, . . . , [x]len(x)−1, [y]0, . . . , [y]len(y)−1 of length
len(x ∗ y) = len(x) + len(y).

Clearly the formula x ∗ y .
= z is ∆0(PA+), since all quantifiers are bounded, and hence

∆1(PA).

Notation 4.22. We can omit the parenthesis when using the operation ∗, since it satisfies
the associative property, i.e. PA ` ∀x, y, z((x ∗ y) ∗ z .

= x ∗ (y ∗ z)).

Definition 4.23. For x, w ∈ M, we define

x � w := the least z s.t. len(z) .
= w ∧ ∀i < len(z)([z]i

.
= [x]i).

The idea is that, if w ≤ len(x), then x � w codes the sequence [x]0, . . . , [x]w−1 and, if
w > len(x), the sequence [x]0, . . . , [x]len(x)−1, 0, . . . , 0 of length n.

Once again, the formula x � w .
= z is ∆1(PA).

Definition 4.24. For x, y, w ∈ M, we define

x[y|w] := the least z s.t. len(z) .
= max(len(x), w + 1)∧

∀i < len(z)[(i .
= w→ [z]i

.
= y) ∧ (¬i .

= w→ [z]i
.
= [x]i)].



4.2 Gödel-numbering 27

Intuitively, x[y|w] codes [x]0, . . . , [x]w−1, y, [x]w+1, . . . , [x]len(x)−1 if w < len(x) and the
sequence [x]0, . . . , [x]len(x)−1, 0, . . . , 0, y of length w if w ≥ len(x).

Notice that the formula x[y|w]
.
= z is also ∆1(PA).

In fact, the last three functions are provably recursive, so we can add its symbols to
LA′.

4.2 Gödel-numbering

Having shown how to code sequences of elements of any model of PA we are ready
to introduce the Gödel-numbering and a method for coding strings σ = s0 . . . sn−1 of
LA-symbols.

The first step will be to assign a unique natural number υ(s) to each symbol s of the
first order language LA. We will use the following table.

s 0 1 + · < .
= ∧ ∨ ¬ ∃ ∀ ( ) νi

υ(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 〈13, i〉

Remark 4.25. Notice that 〈13, i〉 ≥ 13 for each i, so the value of υ(s) is unique for each
LA-symbol s.

Definition 4.26. We define #σ as the least x ∈N coding the sequence υ(s0), . . . , υ(sn−1).

Definition 4.27. We define the formula GN(x)

∀i < len(x)([x]i ≤ 12∨ ∃j ≤ x[x]i
.
= 〈13, j〉)∧

∀w < x(¬len(w)
.
= len(x) ∨ ∃i < len(x)¬[x]i

.
= [w]j)

to say that x is a Gödel-number.

It is easy to check that GN(x) is ∆1(PA). Moreover, any string σ has a unique Gödel-
number #σ.

Notation 4.28. We will use pσq to denote the numeral of the Gödel-number of a string σ,
i.e. the numeral of #σ.

Notation 4.29. We will write var(i) to denote [〈13, i〉].

4.2.1 Syntax

Now we are ready to give some syntactic notions in PA, such as the definition of the
Gödel-number of a formula or a term.

To define the Gödel-number of a term we need to introduce the previous formula
termseq(x). Given some x coding a sequence [x]0, . . . , [x]len(x)−1 the formula termseq(x)
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says that for each i < len(x) the element [x]i is either the Gödel-number of a constant
(0, 1), of a variable or of the addition or product of two previous elements of the sequence.
In other words, it says that x codes a sequence where each element codes a step of the
construction of a term, following the rules given in chapter 1.

Definition 4.30. termseq(x) denotes the LA′-formula

∀i < len(x){[x]i
.
= p0q∨ [x]i

.
= p1q∨ ∃j ≤ x([x]i

.
= var(j))

∨∃j, k ≤ i([x]i
.
= p(q ∗ [x]j ∗ p+q ∗ [x]k ∗ p)q)

∨∃j, k ≤ i([x]i
.
= p(q ∗ [x]j ∗ p· q ∗ [x]k ∗ p)q)}

The formula termseq(x) is clearly ∆0(PA+) and hence ∆1(PA).

Definition 4.31. We define the formula term(x) := ∃y(termseq(y ∗ [x])) to denote that x is the
Gödel-number of a term.

The formula term(x) has an existential quantifier. To transform this quantifier into
a bounded one, we will define a provably recursive function g : N → N, given by a
Σ1-formula ϕg(x, y) and represented by the symbol bound, such that

PA+ ` ∀xϕg(x, bound(x))

and
PA+ ` term(x)↔ ∃y ≤ bound(x)termseq(y ∗ [x])

and add it to LA′.

Definition 4.32. Let us define a function f : N×N→N such that

f (m, n) := the least k such that len(k) = n and f or all i < n [k]i = m.

Formally we define f as the function given by the formula

ϕ f (m, n, x) := len(x) .
= n ∧ ∀i < n[x]i

.
= m ∧ ∀z < x(¬len(z) .

= n ∨ ∃i < n¬[z]i
.
= m).

Lemma 4.33. PA ` ∀m, n∃!xϕ f (m, n, x).

Proof. The uniqueness is proved by the definition of x as the least number.
To prove the existence we will define the formula ψ(n) = ∀m∃xϕ f (m, n, x) and show

M � ∀nψ(n), for an arbitrary model M of PA, by induction.
Initial case: If we take x as 0 we have M � ψ(0).
Let us suppose now that M � ψ(w) and prove that M � ψ(w+ 1). So assume that there

is some a ∈ M such that M � ∀mϕ f (m, w, a) to show that there is some b ∈ M such that
M � ∀mϕ f (m, w + 1, b). If we take b as a ∗ [m] we have M � len(b) = len(a) + 1 = w + 1
and M � ∀i < w + 1[b]i = m for all m ∈ M, since M � ∀i < w[b]i = m by hypothesis and
M � [b]w = m by definition of b. So M � ψ(w + 1).

We have shown then that M � ψ(0) ∧ ∀n(ψ(n)→ ψ(n + 1)) and by induction we have
M � ∀nψ(n) as required.
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Since all quantifiers in ϕ f are bounded, we have that ϕ f is a ∆0(PA+) formula and
hence ∆1(PA). By lemma 4.33, f is a provably recursive function.

Definition 4.34. Let us define now the function g : N → N as g(n) := f (len(n), n), given by
the formula ϕg(x, bound(x)) := ϕ f (len(x), x, bound(x)).

This function is clearly provably recursive and therefore we can add the symbol bound
to the language LA′.

Since PA+ ` term(x)↔ ∃y ≤ bound(x)termseq(y ∗ [x]), the formula term(x) is ∆0(PA+)

and ∆1(PA).

We have already defined the Gödel-number of a term, now we will do similar for
formulas. As before, we will need to define a previous formula f ormseq(x) to define the
Gödel-number of an LA-formula.

Definition 4.35. f ormseq(x) denotes the LA′-formula

∀i < len(x){∃u, v ≤ x[term(u) ∧ term(v)∧

([x]i
.
= p(q ∗ u ∗ p .

=q ∗ v ∗ p)q∨ [x]i
.
= p(q ∗ u ∗ p<q ∗ v ∗ p)q)]

∨∃j, k < i([x]i
.
= p(q ∗ [x]j ∗ p∧q ∗ [s]k ∗ p)q)

∨∃j < i([x]i
.
= p¬q ∗ [x]j)

∨∃j < i∃k ≤ x([x]i
.
= p∃q ∗ var(k) ∗ [x]j)}

The formula f ormseq(x) has been constructed considering the different ways of build-
ing up a formula and is ∆0(PA) since all quantifiers are bounded.

Definition 4.36. We define the formula f orm(x) := ∃y( f ormseq(y ∗ [x])) to denote that x is the
Gödel-number of a formula.

We can show with the symbol bound(x) that f orm(x) ∈ ∆1(PA), since

PA+ ` f orm(x)↔ ∃y ≤ bound(x) f ormseq(y ∗ [x]).

Now we will define the Gödel-number of Σn and Πn-formulas. Once again, we will
need to define the previous functions f ormseq∆0(x), f ormseqΣn(x) and f ormseqΠn(x). Let
us start with the initial case ∆0.

Definition 4.37. f ormseq∆0(x) is the formula

∀i < len(x){∃u, v ≤ x(term(u) ∧ term(v)∧

([x]i
.
= p(q ∗ up .

=q ∗ v ∗ p)q∨ [x]i
.
= p(q ∗ u ∗ p<q ∗ v ∗ p)q))

∨∃j, k < i([x]i
.
= p(q ∗ [x]j ∗ p∧q ∗ [x]k ∗ p)q) ∨ ∃j < i([x]j

.
= p¬q ∗ [x]j)

∨∃j < i∃k, u ≤ x(term(u) ∧ ∀l < len(u)¬[u]l
.
= 〈13, k〉∧

[x]i
.
= p∃q ∗ var(k) ∗ p(q ∗ p(q ∗ var(k) ∗ p<q ∗ u ∗ p)q ∗ p∧q ∗ [x]j ∗ p)q)}

The formula f ormseq∆0(x) is clearly ∆0(PA+) and hence ∆1(PA).
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Definition 4.38. We define then the formula f orm∆0(x) := ∃s( f ormseq∆0(s ∗ [x]) to say that x
is the Gödel-number of a ∆0-formula.

The formula f orm∆0(x) has an existential quantifier, but we can transform it into a
bounded one with the symbol bound, so the formula f orm∆0(x) is also ∆1(PA).

Notation 4.39. We also write f orm∆0 as f ormΣ0 or f ormΠ0 .

With the initial case defined we can define now the cases Σn and Πn by recursion.

Definition 4.40. For each n ∈N f ormseqΣn+1(x) is the formula

∀i < len(x){( f ormΠn([x]i) ∧ i .
= 0)

∨(i > 0∧ ∃k ≤ x([x]i
.
= p∃q ∗ var(k) ∗ [x]j−1))}

and f ormseqΠn+1(x) the formula

∀i < len(x){( f ormΣn([x]i) ∧ i .
= 0)

∨(i > 0∧ ∃k ≤ x([x]i
.
= p∀q ∗ var(k) ∗ [x]j−1))}.

Definition 4.41. For each n ∈N, we define the formula

f ormΣn(x) := ∃s( f ormseqΣn(s ∗ [x])

to denote that x is the Gödel-number of a Σn-formula and the formula

f ormΠn(x) := ∃s( f ormseqΠn(s ∗ [x])

to denote that x is the Gödel-number of a Πn-formula.

Using the symbol bound we can also see that the formulas f ormseqΣn(x), f ormseqΠn(x),
f ormΣn(x) and f ormΠn(x) are ∆1(PA) for each n ∈N.

4.2.2 Semantics

We have almost all the tools we need to give a definition of truth in PA.
The next step will be defining a function that gives the value of a term. To define this

function we will need the previous formula valseq(y, x, r), where y codes the assignation
of the variables, x an LA-term and r the values of each [x]i with the assignation y.

Definition 4.42. valseq(y, x, r) denotes the formula

termseq(x) ∧ len(r) .
= len(x) ∧ ∀i < len(x){

([x]i
.
= p0q∧ [r]i

.
= 0) ∨ ([x]i

.
= p1q∧ [r]i

.
= 1) ∨ ∃j ≤ x([x]i

.
= var(j) ∧ [r]i

.
= [y]j)∨

∃j, k < i([x]i
.
= p(q ∗ [x]j ∗ p+q ∗ [x]k ∗ p)q∧ [r]i

.
= [r]j + [r]k)∨

∃j, k < i([x]i
.
= p(q ∗ [x]j ∗ p· q ∗ [x]k ∗ p)q∧ [r]i

.
= [r]j· [r]k)}.

The formula valseq(y, x, r) is ∆0(PA+) and therefore ∆1(PA).
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Definition 4.43. Given x, the Gödel-number of a term, and y coding a sequence, we define
val(x, y) = z↔ ∃s, r(valseq(y, s ∗ [x], r ∗ [z])) ∨ (¬term(x) ∧ z .

= 0).

Intuitively, val(x, y) is the value of a term t(v0, . . . , vk) coded by x when each variable
vi is given the value [y]i. If i ≥ len(y), we define [y]i = 0, so val(x, y) is a well-defined
function.

Proposition 4.44. The function val(x, y) is a provably recursive function, i.e. the formula
val(x, y) = z is Σ1(PA) and PA ` ∀x, y∃!zval(x, y) .

= z.

Proof. It can be proved by complete induction in the variable x.

Proposition 4.45. For any LA-term t(v0, . . . , vk),

PA ` ∀v0, . . . , vk(t(v0, . . . , vk)
.
= val(ptq, [v0, . . . , vk])).

Proof. We can prove it by induction in the construction of t.
Case t(v̄) = 0: Notice that PA ` ∀v0, . . . , vk(0

.
= val(p0q, [v0, . . . , vk])). That is because,

in PA we can prove that exist r, s such that valseq([v0, . . . , vk], s ∗ [p0q], r ∗ [0]), since we can
take r = s = 0.

Case t(v̄) = 1: Similar to the previous case.
Case t(v̄) = vi: We want to check that PA ` ∀v0, . . . , vk(vi

.
= val(pviq, [v0, . . . , vk])).

Again, that is because if we choose r = s = 0, we have valseq([v0, . . . , vk], s ∗ [pviq], r ∗ [vi]).
Case t(v̄) = t1(v̄) + t2(v̄): From the induction hypothesis follows that

PA ` ∀v0, . . . , vk(ti(v0, . . . , vn)
.
= val(ptiq, [v0, . . . , vk])) f or i = 1, 2,

so, working in PA, we can find some values r1, s1, r2, s2 such that

valseq([v0, . . . , vk], si ∗ [ptiq], ri ∗ [ti(v0, . . . , vk)]) f or i = 1, 2.

If we take s = s1 ∗ [pt1q] ∗ s2 ∗ [pt2q] and r = r1 ∗ [t1(v0, . . . , vk)] ∗ r2 ∗ [t2(v0, . . . , vk)], then

valseq([v0, . . . , vk], s ∗ [ptq], r ∗ [t(v0, . . . , vk)]).

Case t(v̄) = t1(v̄)· t2(v̄): Analog to the previous one.

Now we have all we need to formalize a truth definition for formulas. We will start
with the truth definition for ∆0-formulas, denoted by the formula Sat∆0(x, y).

We will need to define a previous formula satseq∆0(x, t). In satseq∆0(x, t) x codes the
construction of a ∆0-formula and t a sequence of triples 〈i, z, w〉 where i is the index for
the sequence x, z the assignation for the variables of the formula and w a truth value.

Notation 4.46. We will use 0 for false and 1 for true.
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Definition 4.47. satseq∆0(x, t) is the formula

f ormseq∆0(x) ∧ ∀l < len(t)∃i, z, w ≤ t([t]l
.
= 〈i, z, w〉 ∧ i < len(x) ∧ w ≤ 1)∧

∀l < len(t)∀i, z, w ≤ t{[t]l
.
= 〈i, z, w〉 →

[∀u, u′ ≤ x((term(u) ∧ term(u′) ∧ [x]i
.
= u ∗ p .

=q ∗ u′)→

(w .
= 1↔ val(u, z) .

= val(u′, z)))∧

∀u, u′ ≤ x((term(u) ∧ term(u′) ∧ [x]i
.
= u ∗ p<q ∗ u′)→

(w .
= 1↔ val(u, z) < val(u′, z)))∧

∀j, k < i([x]i
.
= p(q ∗ [x]j ∗ p∧q ∗ [x]k ∗ p)q→

∃l1, l2 < l∃w1, w2 ≤ 1([t]l1
.
= 〈j, z, w1〉 ∧ [t]l2

.
= 〈k, z, w2〉∧

(w .
= 1↔ w1

.
= 1∧ w2

.
= 1)))∧

∀j < i([x]i
.
= p¬q ∗ [x]j →

∃l1 < l∃w1 ≤ 1([t]l1
.
= 〈j, z, w1〉 ∧ (w .

= 1↔ w1
.
= 0)))∧

∀j < i∀k, u ≤ s((term(u) ∧ ∀m < len(u)¬[u]m
.
= 〈13, k〉∧

[x]i
.
= p∃q ∗ var(k) ∗ p(q ∗ var(k) ∗ p<q ∗ u ∗ p∧q ∗ [x]j ∗ p)q)→

∀r < val(u, z)∃l1 < l∃w1 ≤ 1([t]l1
.
= 〈j, z[r|k], w1〉)∧

(w .
= 1↔ ∃r < val(u, z)∃l1 < l([t]l1

.
= 〈j, z[r|k], 1〉)))]}.

Since the operation val(x, y) is provably recursive and the formulas f ormseq∆0(x) and
term(x) are ∆1(PA), we can see that the formula satseq∆0(x, t) is ∆1(PA).

Definition 4.48. Sat∆0(x, y) is the formula

∃s, t[satseq∆0(s ∗ [x], t) ∧ ∃l < len(t)([t]l
.
= 〈len(s), y, 1〉)].

The idea is that given some x coding the construction of a ∆0-formula and some t
coding a sequence of triples 〈i, y, w〉 as in satseq∆0 , the formula Sat∆0(x, y) denotes that
the formula is true with the assignation y.

The formula Sat∆0(x, y) is ∆1(PA), but to prove it we will need two previous lemmas.
The first lemma states that the value of a bounded formula, in PA, only depends on the
information coded by y, that is, the assignation of the free variables. And the second one,
that all bounded formulas can be evaluated.

Lemma 4.49. PA ` ∀x, t, x′, t′, w, w′[satseq∆0(x, t)∧ satseq∆0(x′, t′)∧∃l < len(t)∃l′ < len(t′)
∃i < len(x)∃i′ < len(x′)([x]i

.
= [x′]i′ ∧ [t]l

.
= 〈i, y, w〉 ∧ [t′]l′

.
= 〈i′, y, w′〉)→ w .

= w′].

Proof. It can be proved by complete induction on the variable x.
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Lemma 4.50. PA ` ∀x, y[ f ormseq∆0(x) → ∃s, t, w(satseq∆0(s ∗ x, t) ∧ ∃l < len(t)[t]l
.
=

〈len(s), y, w〉)]

Proof. It can be proved by complete induction on the variable x.

Theorem 4.51. The formula Sat∆0(x, y) is ∆1(PA) and PA proves the following:
(a) Sat∆0(r ∗ p

.
=q ∗ s, y)↔ val(r, y) .

= val(s, y)
(b) Sat∆0(r ∗ p<q ∗ s, y)↔ val(r, y) < val(s, y)
(c) Sat∆0(p(q ∗ u ∗ p∧q ∗ v ∗ p)q, y)↔ Sat∆0(u, y) ∧ Sat∆0(v, y)
(d) Sat∆0(p¬q ∗ u, y)↔ ¬Sat∆0(u, y)
(e) Sat∆0(p∃q ∗ var(i) ∗ p(q ∗ var(i) ∗ p<q ∗ r ∗ p∧q ∗ up)q, y)
↔ ∃x < val(r, y)Sat∆0(u, y[x|i])

for all y, i, r, s, u, v.

Proof. We will only prove that Sat∆0(x, y) is ∆1(PA), since the other properties are straight-
forward.

From the definition of Sat∆0 is clear that Sat∆0(x, y) is Σ1(PA), so we only need to show
that PA ` ∀x, y(sat∆0(x, y) ↔ ψ(x, y)) for some Π1-formula ψ. Let us define the formula
ψ(x, y) as

f orm∆0(x) ∧ ∀t, s∀w ≤ 1[(satseq∆0(s ∗ [x], t) ∧ ∀l < len(t)[t]l
.
= 〈len(s), y, x〉)→ w .

= 1].

We will show both directions separately. The direction PA ` ∀x, y(sat∆0(x, y) → ψ(x, y))
follows from lemma 4.49 and from PA ` ∀x(∃s, t(satseq∆0(s ∗ [x], t))→ f orm∆0(x)). While
the other direction, PA ` ∀x, y(ψ(x, y)→ sat∆0(x, y)), can be proved with lemma 4.50.

We have seen that the formula Sat∆0(x, y) is equivalent to a Π1-formula in PA, so
Sat∆0(x, y) is ∆1(PA).

Proposition 4.52. For any ∆0-formula θ(v0, . . . , vk),

PA ` ∀v0, . . . , vk[θ(v0, . . . , vk)↔ Sat∆0(pθq, [v0, . . . , vk])].

Proof. It can be proved by induction in the construction of θ.

Notation 4.53. We also write Sat∆0 as SatΣ0 or SatΠ0 .

So we are finally prepared to give a truth definition for Σn and Πn formulas for all
n ∈N, denoted by the formulas SatΣn(x, y) and SatΠn(x, y) respectively.

Definition 4.54. For n ∈N, SatΣn+1(x, y) is the formula

f ormΣn+1(x)∧

∃s, t[len(t) .
= len(s) ∧ f ormseqΣn+1(s) ∧ [s]len(s)−1

.
= x ∧ [t]len(t)−1

.
= y∧

∀i < len(s)(i > 0→ ∃k ≤ s∃z ≤ t([s]i
.
= p∃q ∗ var(k) ∗ [s]i−1 ∧ [t]i−1

.
= [t]i[z|k]))

∧SatΠn([s]0, [t]0)]
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and SatΠn+1(x, y) the formula
f ormΠn+1(x)∧

∀s, t[len(t) .
= len(s) ∧ f ormseqΠn+1(s) ∧ [s]len(s)−1

.
= x ∧ [t]len(t)−1

.
= y∧

∀i < len(s)(i > 0→ ∃k ≤ s∃z ≤ t([s]i
.
= p∀q ∗ var(k) ∗ [s]i−1 ∧ [t]i−1

.
= [t]i[z|k]))

∧SatΣn([s]0, [t]0)].

Theorem 4.55. For each n ≥ 1, SatΣn(x, y) is Σn(PA), SatΠn(x, y) is Πn(PA) and PA proves
the following:

(a) ∀s[ f ormΣn−1(x)→ ∀y(SatΣn(x, y)↔ SatΣn−1(x, y))∧
∀y(SatΠn(x, y)↔ SatΣn−1(x, y))]

(b) ∀s[ f ormΠn−1(x)→ ∀y(SatΣn(x, y)↔ SatΠn−1(x, y))∧
∀y(SatΠn(x, y)↔ SatΠn−1(x, y))]

(c) ∀x, y, k(SatΣn(p∃q ∗ var(k) ∗ x, y)↔ ∃zSatΣn(x, y[z|k]))
(d) ∀x, y, k(SatΠn(p∀q ∗ var(k) ∗ x, y)↔ ∀zSatΠn(x, y[z|k]))

Proof. SatΣn(x, y) being Σn and SatΠn(x, y) being Πn can be proved by induction on n ∈N.
The initial case follows from theorem 4.51.

The other properties are straightforward.

Proposition 4.56. For any Σn-formula θ(v0, . . . , vk) and any Πn-formula ψ(v0, . . . , vk),

PA ` ∀v0, . . . , vk(θ(v0, . . . , vk)↔ SatΣn(pθq, [v0, . . . , vk]))

and
PA ` ∀v0, . . . , vk(ψ(v0, . . . , vk)↔ SatΠn(pψq, [v0, . . . , vk])).

Proof. It can be proved by induction on n ∈N. The initial case is given by proposition 4.52.



Chapter 5

Ryll-Nardzewski’s theorem

We are coming closer to our main objective. In this final chapter we will give the last
definitions needed to prove Ryll-Nardzewski’s theorem.

5.1 Definable elements

Let M be an arbitrary model of PA and A a subset of M.

Definition 5.1. An element b ∈ M is definable in M over A iff there is an LA-formula θ(x, ȳ)
and a tuple ā ∈ A such that M � ∃!xθ(x, ā) and b is this unique element.

Notation 5.2. We denote the set of all elements of M definable over A as K(M; A). If
A = {a1, . . . , an} is finite we can denote K(M; A) by K(M; a1, . . . , an) and if it is empty, we
will denote it just K(M).

We want to show now that K(M; A) is the universe of a model that satisfies PA. We
will denote this model also as K(M; A). To show this, we will prove that K(M; A) � M.

Theorem 5.3. If M � PA and A ⊆ M then A ⊆ K(M; A) � M.

Proof. To show that A ⊆ K(M; A) it is enough to see that each a ∈ A is definable over A
by the formula x .

= a.
Let us prove now that K(M; A) � M. To do so we will first show that K(M; A)

is a substructure of M. Clearly all elements of K(M; A) are elements of M and also
0, 1 ∈ K(M; A) since they can be defined by the formulas x .

= 0 and x .
= 1. Suppose now

some c, d ∈ K(M; A) defined by the formulas θ1(x, ā) and θ2(y, b̄) with ā, b̄ ∈ A. Then
c + d and c · d are defined by

∃u, v(θ1(u, ā) ∧ θ2(v, b̄) ∧ z .
= u + v)

and
∃u, v(θ1(u, ā) ∧ θ2(v, b̄) ∧ z .

= u · v).

So c + d, c· d ∈ K(M; A) and hence K(M; A) is a substructure of M.
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Now we will use Tarski-Vaught test to show that K(M; A) � M. To do so we will prove
that for each LA-formula ϕ(x, ȳ) with ȳ = (y0, . . . , yn) and each c̄ = (c0, . . . , cn) ∈ K(M; A)

such that M � ∃xϕ(x, c̄), exists some d ∈ K(M; A) such that M � ϕ(b, ā).
Since c̄ ∈ K(M; A) there is a formula ηi(x, ā) defining ci for each i ∈ {0, . . . , n} and for

some ā ∈ A. Then

M � ∃x, ȳ(
n∧

i=1

ηi(yi, ā) ∧ ϕ(x, ȳ)).

By the least number principle,

M � ∀ȳ[∃xϕ(x, ȳ)→ ∃z(ϕ(z, ȳ) ∧ ∀w < z¬ϕ(w, ȳ))]

and in particular,

M � ∃xϕ(x, c̄)→ ∃z(ϕ(z, c̄) ∧ ∀w < z¬ϕ(w, c̄)).

Since M � ∃xϕ(x, c̄), we have

M � ∃z[∃ȳ(
n∧

i=1

ηi(yi, ā) ∧ ϕ(z, ȳ)) ∧ ∀w < z∀ȳ(
n∧

i=1

ηi(yi, ā)→ ¬ϕ(w, ȳ))].

Notice that the formula in square brackets defines an element d ∈ K(M; A) such that
M � ϕ(d, c̄), as required.

Definition 5.4. For each complete consistent theory T extending PA with the language LA, we
define the prime model for T as KT = K(M) for M � T an arbitrary model.

With the next theorem we will show that the definition of KT only depends on T and
not on the choice of M.

Theorem 5.5. Let T be a complete consistent extension of PA with the language LA and N a
model of T. Then there is a unique elementary embedding h : KT ↪→ N and the image of this
embedding is K(N).

Proof. Let us consider N and M such that N � T, M � T and KT = K(M). Since KT � T
and T complete, by Theorem 5.3 we have,

N � ∃!xθ(x)⇔ T ` ∃!xθ(x)⇔ KT � ∃!xθ(x)

for any LA-formula θ(x).
For each a ∈ KT let θa(x) be a formula defining a in M and h : KT → N the function

defined by h(a) = the unique element of N satisfying θa(x).
Let us see now that h is an embedding.
• Injective: Let a, b ∈ KT such that a 6= b, then

T ` ∀x, y(θa(x) ∧ θb(y)→ ¬x .
= y)

and hence h(a) 6= h(b).
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• Respects addition: Let a, b ∈ KT and a + b = c in KT , then

T ` ∀x, y, z(θa(x) ∧ θb(y) ∧ θc(z)→ x + y .
= z)

and hence h(a) + h(b) = h(c) in N.
• Respects product: Let a, b ∈ KT and a · b = c in KT , then

T ` ∀x, y, z(θa(x) ∧ θb(y) ∧ θc(z)→ x · y .
= z)

and hence h(a) · h(b) = h(c) in N.
• Respects order: Let a, b ∈ KT such that a < b, then

T ` ∀x, y(θa(x) ∧ θb(y)→ x < y)

and hence h(a) < h(b).
Thus h is an embedding h : KT ↪→ N. Let us see now that it is unique.
Let k : KT → N be an arbitrary elementary embedding. Then for each a ∈ KT , we have

KT � θa(x) and since k is an elementary embedding also N � θa(k(a)). Moreover, since
T ` ∃!xθa(x) then N � ∃!xθa(x). So k(a) = h(a) for all a.

There is only left to show that K(N) is the image of h. We will prove both inclusions.
⊇: All elements of the image of h are clearly defined in N by the formula θa(x).
⊆: Suppose b ∈ K(N), then b is defined in N by some LA-formula ϕ(x). Hence,

N � ∃!xϕ(x), so KT � ∃!xϕ(x) which means that there is some a ∈ KT such that KT � ϕ(a).
Since M � θa(a) we have M � (θa(x)↔ ϕ(x)) and then N � (θa(x)↔ ϕ(x)), so N � θa(b)
and hence h(a) = b.

Remark 5.6. Let T be the complete theory of N, then the model KT is precisely N.

5.2 Σn - definable elements

Let M be a model such that M � PA− and A a subset of M.

Definition 5.7. For n ≥ 1, we denote the set Kn(M; A) as the elements in M defined by Σn
formulas and ā ∈ A. In other words, the subset of M consisting of all b ∈ M such that

M � θ(b, ā) ∧ ∀x(θ(x, ā)→ x .
= b)

for some θ(x, ȳ) ∈ Σn and ā ∈ A.

Notation 5.8. As in the previous section, we denote Kn(M; A) by Kn(M; a1, . . . , an) if
A = {a1, . . . , an} is finite and by Kn(M) if it is empty.
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Proposition 5.9. Kn(M; A) is a substructure of M.

Proof. Clearly all elements of Kn(M; A) are elements of M and also 0, 1 ∈ Kn(M; A) since
they can be defined by the formulas x .

= 0 and x .
= 1. So there is only left to show that

b + c ∈ Kn(M; A) and b · c ∈ Kn(M; A) for each b, c ∈ Kn(M; A).
Let ϕ(y, ā) and ψ(z, ā) be the Σn formulas defining b, c ∈ Kn(M; A) respectively. Then

b + c is defined by the formula ∃y, z(ϕ(y, ā)∧ ψ(z, ā)∧ x .
= y + z) and b · c, by the formula

∃y, z(ϕ(y, ā) ∧ ψ(z, ā) ∧ x .
= y · z), both Σn formulas.

Definition 5.10. For Γ a class of LA-formulas we say that N is a Γ-elementary extension of M,
M �Γ N, iff M ⊆ N and for each LA-formula ϕ(x̄) ∈ Γ and each ā ∈ M,

M � ϕ(ā)⇔ N � ϕ(ā).

Lemma 5.11. Given some M � PA− and an LA-formula ϕ(x, ȳ) such that:
(1) M � Lϕ.
(2) ϕ(x, ȳ) ∧ ∀u < x¬ϕ(u, x̄) ∈ Σn.
(3) For all a, b̄ ∈ Kn(M; A), Kn(M; A) � ϕ(a, b̄)⇔ M � ϕ(a, b̄).

Then for all b̄ ∈ Kn(M; A),

Kn(M; A) � ∃xϕ(x, b̄)⇔ M � ∃xϕ(x, b̄).

Proof. We will prove the two directions of the implication separately.
⇒: This direction is clear from assumption (3) and proposition 5.9.
⇐: Let b̄ = {b0, . . . , bm} ∈ Kn(M; A) be arbitrary and suppose M � ∃xϕ(x, b̄). Since

M � Lϕ, there is some c ∈ M such that

M � ϕ(c, b̄) ∧ ∀w < c¬ϕ(w, b̄).

The formula ψ(x, b̄) = ϕ(x, b̄) ∧ ∀w < x¬ϕ(w, b̄) ∈ Σn defines c in M over b̄, therefore
c ∈ Kn(M; A ∪ b̄). Let us define then the formula

θ(x, ā) =
m∧

i=0

ηi(yi, ā) ∧ ψ(x, ȳ)

with ηi ∈ Σn defining bi in M over A. The formula θ is also Σn and defines c in M
over A. So c ∈ Kn(M; A) and by assumption (3), Kn(M; A) � ϕ(c, b̄) which implies that
Kn(M; A) � ∃xϕ(x, b̄).

Lemma 5.12. Let n ≥ k ≥ 1 and M � IΣk−1 such that Kn(M; A) �Πk−1 M, then Kn(M; A) �Σk

M.

Proof. Let us assume M � IΣk−1, Kn(M; A) �Πk−1 M and an LA-formula ψ(ȳ) ∈ Σk and
show then that for any b̄ ∈ Kn(M; A) we have

Kn(M; A) � ψ(b̄)⇔ M � ψ(b̄).
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Since ψ(ȳ) ∈ Σk, we can write ψ as ∃x̄ϕ(x̄, ȳ) for some ϕ(x̄, ȳ) ∈ Πk−1. Let us define
then the formula

θ(z, ȳ) = ∃x̄ < zϕ(x̄, ȳ).

This formula is Πk−1, since IΣk−1 ` Collk−1 and hence by section 3.2 the class Πk−1 is
closed under bounded quantification.

Now we will verify that all assumptions of lemma 5.11 hold to show that for any
b̄ ∈ Kn(M; A), Kn(M; A) � ∃zθ(z, b̄)⇔ M � ∃zθ(z, b̄).

Assumption (1) holds by proposition 3.19 and assumption (3) follows from the hy-
pothesis of Kn(M; A) �Πk−1 M. So there is only left to show that

θ(z, ȳ) ∧ ∀u < z¬θ(u, ȳ) ∈ Σn,

which is true since the negation of a Πk−1 formula is Σk−1 and Σk−1 ⊆ Σn.
We can assume now that Kn(M; A) � ∃zθ(z, b̄)⇔ M � ∃zθ(z, b̄) for each b̄ ∈ Kn(M; A).

Since ∃zθ(z, ȳ) is the same as ∃x̄ϕ(x̄, ȳ), we get

Kn(M; A) � ψ(b̄)⇔ M � ψ(b̄)

for all b̄ ∈ Kn(M; A), as required.

Lemma 5.13. Given some M � L∆0 then Kn(M; A) �∆0 M.

Proof. We will prove it by induction in the construction of an LA-formula ϕ(x̄) ∆0. To do
so we will show that for all ā ∈ Kn(M; A),

Kn(M; A) � ϕ(ā)⇔ M � ϕ(ā).

Let us consider the following cases:
For ϕ an atomic formula it follows from Kn(M; A) being a substructure of M.
Case ϕ := ¬ψ for some ψ ∈ ∆0: We have Kn(M; A) � ϕ(ā) iff Kn(M; A) 6� ψ(ā) and

M � ϕ(ā) iff M 6� ψ(ā) for each ā ∈ Kn(M; A). By the induction hypothesis, we can
conclude Kn(M; A) 6� ψ(ā)⇔ M 6� ψ(ā) and hence Kn(M; A) � ϕ(ā)⇔ M � ϕ(ā).

Case ϕ := ψ1 ∧ ψ2 for some ψ1, ψ2 ∈ ∆0: We have that for each ā ∈ Kn(M; A),
Kn(M; A) � ϕ(ā) iff Kn(M; A) � ψ1(ā) and Kn(M; A) � ψ2(ā) and M � ϕ(ā) iff M � ψ1(ā)
and M � ψ1(ā).

From the induction hypothesis follows then that Kn(M; A) � ϕ(ā)⇔ M � ϕ(ā).
Case ϕ(z, ȳ) := ∃x < zψ(x, z, ȳ): We will use lemma 5.11. Assumption (1) follows

from M � L∆0 and assumption (3) from the induction hypothesis. We just need to show
that ϕ(z, ȳ) ∧ ∀u < z¬ϕ(u, ȳ) ∈ Σn, which is true since it is ∆0.

So, by induction we can conclude that Kn(M; A) �∆0 M.
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Theorem 5.14. Let n ≥ k ≥ 1 and A ⊆ M � IΣk−1, then A ⊆ Kn(M; A) �Σk M.

Proof. To show that A ⊆ Kn(M; A) it is enough to see that each a ∈ A can be defined by
the formula x .

= a.
Let us prove now that Kn(M; A) �Σk M. We will do it by induction on k.
Initial case: M � IΣ0 and hence M � L∆0. So by lemma 5.13, Kn(M; A) �∆0 M, which

is the same as Kn(M; A) �Π0 M. Therefore, from lemma 5.12 follows Kn(M; A) �Σ1 M.
Let us do now the induction case. Assume it true for k = r and prove it for k = r + 1.

For n ≥ r + 1 and M � IΣr we want to show that Kn(M; A) �Σr+1 M.
IΣr−1 ⊆ IΣr, so M � IΣr−1 and by the induction hypothesis Kn(M; A) �Σr M. Notice

that Kn(M; A) �Σr M is the same as Kn(M; A) �Πr M, so from lemma 5.12 we can
conclude Kn(M; A) �Σr+1 M as required.

Proposition 5.15. Let M be an LA-structure, if N ⊆e M then N �∆0 M.

Proof. We will prove it by induction in the construction of an LA-formula ϕ(x̄) ∆0. We
need to show that for any ā ∈N,

N � ϕ(ā)⇔ M � ϕ(ā).

The cases ϕ := t1
.
= t2 and ϕ := t1 < t2 for t1(x̄) and t2(x̄) LA-terms are also clear,

since t1[ā], t2[ā] ∈N.
Case ϕ := ¬ψ for some ψ ∈ ∆0: By the induction hypothesis N � ψ(ā) ⇔ M � ψ(ā),

so N 6� ψ(ā)⇔ M 6� ψ(ā) and hence N � ϕ(ā)⇔ M � ϕ(ā).
Case ϕ := ψ1 ∧ ψ2 for some ψ1, ψ2 ∈ ∆0: From the induction hypothesis follows that

N � ψ1(ā) ∧ ψ2(ā)⇔ M � ψ1(ā) ∧ ψ2(ā).
Case ϕ(z, ȳ) := ∃x < zψ(ȳ) for some ψ ∈ ∆0: Let us assume that M � ∃x < bψ(ā)

for some b, ā ∈ N, i.e. there is some c ∈ M such that M � c < b and M � ψ(ā). By
the hypothesis of N ⊆e M we have c ∈ N and by induction hypothesis N � ψ(ā), so
N � ϕ(b, ā). The other direction follows from N ⊆ M and the induction hypothesis.

Remark 5.16. Kn(M; A) may be nonstandard.

For example, let us assume n = 1, A = ∅ and M � PA + ∃xχ(x) for some formula
χ ∈ ∆0 such that N � ∀x¬χ(x). Such a formula exists as a consequence of Gödel’s
incompleteness theorem. It is clear that K1(M) contains the least element c ∈ M such that
M � χ(c). Moreover since M � PA, we have N ⊆e M and by proposition 5.15, N �∆0 M.
Therefore, we can not have c ∈N, since otherwise N � χ(c), contradicting N � ∀x¬χ(x).
So c ∈ K1(M) is a nonstandard element.

Lemma 5.17. For M a model of PA, if Kn(M; A) is nonstandard, n ≥ 1 and A is finite (i.e
A = {ā}), then Kn(M; A) 2 PA.

Proof. Let us define ϕ(x, y) := SatΣn(y, [ā, x]) ∧ ∀z(SatΣn(y, [ā, z]) → z .
= x) and assume

Kn(M; A) � PA.
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For each c ∈ Kn(M; A) there exists a formula θ(x̄) ∈ Σn defining c in M over A. By
proposition 4.56 M � ϕ(c, b) for some b ∈ N coding θ. We can say then that for each
c ∈ Kn(M; A) exists some b ∈ N such that M � ϕ(c, b). Since ϕ(c, b) is the conjunction
of a formula Σn and a formula Πn, in particular ϕ ∈ Σn+1. Notice that M � PA implies
M � IΣn, so theorem 5.14 gives us Kn(M; A) � ϕ(c, b).

Thus for any nonstandard d ∈ Kn(M; A), which means d > N, we have

Kn(M; A) � ∀c∃b < dϕ(c, b),

and by the least number principle, there is a least d0 ∈ Kn(M; A) such that

Kn(M; A) � ∀c∃b < d0 ϕ(c, b).

This d0 must be standard, since otherwise we could define w as d0 − 1 and have then
w ∈ Kn(M; A) nonstandard and Kn(M; A) � ∀c∃b < wϕ(c, b), so d0 would not be the least
one. But if d0 ∈ N we will have d0 finite, so the possible values for b will also be finite
and we would have a finite number of formulas defining an infinite numbers of elements,
which is impossible. So necessarily Kn(M; A) 6� PA.

We have acquired now all knowledge required to prove Ryll-Nardzewski’s theorem
and conclude, as a corollary, that there is no finitely axiomatizable system equivalent to
PA.

Theorem 5.18. (Ryll-Nardzewski) No consistent extension of PA is finitely axiomatized.

Proof. Let us assume that there is a finitely axiomatized theory T of LA such that PA ⊆ T.
Then all axioms of T are Πn for some n ∈ N. Consider now a nonstandard model
M � T and a nonstandard a ∈ M (i.e a > N). Notice that M � IΣn−1, so by theorem 5.14,
Kn(M; a) �Σn M. Then, Kn(M; a) � T and hence Kn(M; a) � PA, contradicting lemma 5.17.



Conclusion

In this project we have presented a system enough for proving almost all statements
in N, the system of Peano Arithmetic. We have learned how to measure the complexity
of a formula and given a definition of truth in PA. All this for proving Ryll-Nardzewski’s
theorem and coming to the conclusion of Peano Arithmetic not being finitely axiomatizable.

But in addition to this conclusion, from this project I also learned the importance of
being rigorous. Personally, I really enjoyed writing chapter 4, since it was a challenge for
me; writing it as plain as possible and choosing a clear notation was a really hard work.

Moreover, while doing this project I discovered the close relation between Model The-
ory and Arithmetic and how beautiful these fields can be. For this reason I have decided
to keep studying them next year.
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Chinese reminder theorem, 23
collection axiom, 12
Compactness theorem, 4
complete, 4
complete induction, 10
Completeness theorem, 3, 4
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congruent, 22
consistent, 4
coprime, 22

elementary submodel, 3
end-extension, 6
extension, 3

finitely axiomatizable, 4
form(x), 29
formula, 1
free variable, 2
function β, 23
functional, 16

Gödel-number of a term, 27
Gödel-number of an LA-formula, 29

induction up to z, 9
initial segment, 6

language, 1
least number principle, 9

model, 2

nonstandard elements, 6
nonstandard structure, 5
numeral, 6

PA, 8
PA−, 6
pairing function, 23
Peano Arithmetic, 5, 8
provably ∆n(T), 12
provably recursive function, 17

satisfiable, 2, 4
scope, 2
set of axioms, 4
standard model, 5
submodel, 3

Tarski-Vaught test, 3
term, 1
theory, 4

universe, 2


