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Abstract: We study the scattering of polarized light by two equal corner stacked Au nanorods
that exhibit strong electromagnetic coupling. In the far field, this plasmonic dimer manifests very
prominent asymmetric scattering in the transverse direction. Calculations based on a system of
two coupled oscillators, as well as simulations based on the boundary element method, show that,
while in one configuration both vertical and horizontal polarization states are scattered to the detector,
when we interchange the source and the detector, the scattered intensity of the horizontal polarization
drops to zero. Following Perrin’s criterion, it can be shown that this system, as well as any other
linear system not involving magneto-optical effects, obeys the optical reciprocity principle. We show
that the optical response of the plasmonic dimer, while preserving electromagnetic reciprocity, can be
used for the non-reciprocal transfer of signals at a subwavelength scale.

Keywords: reciprocity; plasmonics; asymmetric scattering; linearity

1. Introduction

One of the future directions of nano-photonics is creating on-chip large-scale integrated optical
systems. In this context, considerable effort is dedicated to the study of directional nanodevices which
can exhibit nonreciprocal propagation of electromagnetic waves at a subwavelength scale. In optical
experiments one must distinguish reciprocity from time-reversal symmetry as dissipation violates strict
time-reversal symmetry of an experiment; however, it can be still reciprocal [1]. Generally, an optical
system is considered to be reciprocal if one can switch source and detector and get the same result.
This definition (usually termed as Helmholtz reciprocity) is very useful in optical experiments because
it is applicable even if in the presence of absorption or scattering processes that lack “true” time-reversal
symmetry. However, in the context of electromagnetism, the understanding of reciprocity (here usually
called Lorentz reciprocity) is more strict, so that the concept of non-reciprocity of the wave propagation
is almost exclusively associated to magneto-optic media [2]. These magnetic materials have wide
applications in microwave and optical technologies that allow for the fabrication of optical isolators
and circulators. According to this electromagnetic formulation, devices that are non-reciprocal in their
properties are this way because of the asymmetry of the permittivity and/or permeability tensors
(ε 6= εT , µ 6= µT) of magneto-optical media they contain.

Many linear optical processes that do not involve magneto-optical media may still have a
non-reciprocal optical response, meaning that switching sources and detector effectively changes
the experiment. This was first considered by Perrin [3] and later generalized by Van de Hulst [4] when
considering scattering in an optical medium. As it noted by Barron [5], this happens because light
scattering is not a reversible phenomenon, so that reversing only the scattering beam in the direction
of interest, but ignoring the beams scattered into all other directions, does not restore the incident
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beam to its original condition. Later we will come back to this point, but it is important to remark from
the beginning that this type of optical non-reciprocity, also observed in absorbing nanomaterials [6,7],
is not equivalent to the non-reciprocity of systems based on magneto-optical effects, because they do
not involve any violation of Lorentz reciprocity.

This paper is devoted to the study of scattering of polarized light by a plasmonic dimer made
by two equal corner stacked nanorods. A nanorod dimer is an archetypal optical nanoantenna and it
is usually considered as a model system in plasmonics [8–12]. Although antennas are key elements
for many devices at radiowave or microwave regimes, their optical analog is not yet fully prominent
in current optical technology. Instead, optical radiation is mostly manipulated by redirecting the
wavefronts with lenses and mirrors. Such manipulation relies on the wave nature of the electromagnetic
waves but, because of the diffraction limit, it is not suitable to control the field at the subwavelength
scale. In this work, we consider only systems with linear responses where matrix representations of
fields and transfer operators naturally arise, which we will express with the Jones formalism. The Jones
formalism will be particularly useful as Van de Hulst [4] showed how a 2 × 2 scattering matrix or
Jones matrix (J) transforms under a reciprocal transformation:(

j00 j01

j10 j11

)
→
(

j00 −j10

−j01 j11

)
. (1)

Due to their aspect ratio and their localized surface plasmon response, metallic nanorods are
highly sensitive to the polarization orientation of light. Moreover, when the gap distance between the
antennas is small enough, the dipole modes of the individual nanorods will couple, hybridizing in
bonding and antibonding modes, respectively, at higher and lower energies [13]. We show, through
analytic calculations, that a very prominent non-reciprocal response appears when one considers 90◦

scattering in the dimer. The electromagnetic response that we obtain in terms of the scattering matrix
also confirms the numerical simulations based on the boundary element method using realistic gold
plasmonic nanoparticles. In this work, we derive an analytical solution for the transverse scattering
of the plasmonic dimer to study its non-reciprocal optical response which, ultimately, can be used
to produce nonreciprocal directional light sources or detectors, which is one of the desired features
for certain solid-state nanoatennas in optics communications [14]. We show that this can be achieved,
while still preserving electromagnetic reciprocity, if one attends to the different polarization channels.

2. Scattering in the Plasmonic Dimer

We consider a plamonic dimer formed by two equal gold nanorods arranged in a corner stacked
position, as they are shown in Figure 1. Right angle scattering (90◦ scattering angle) will be studied in
two different configurations, that we identify as Case A and Case B, one being the reciprocal of the
other. As shown in Figure 1, the source (S) position of Case A corresponds to the detector (D) position
of Case B and vice-versa.
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Figure 1. Two configurations of right angle scattering in the plasmonic dimer. The position of the
sources (S) and detectors (D) are indicated in each case. In (a), excitation is on the +z axis and detection
is on the +x axis (Case A). In (b), excitation is on the -x axis and detection is on the −z axis (Case B).

2.1. Simulations

The electromagnetic response of the plasmonic antenna-like particles is calculated using the
boundary element method (BEM). We used the MATLAB implementation of the BEM method
developed by Hohenester et al. (MNPBEM toolbox) [15]. In all the simulations reported in our
work, the gold nanorod is considered to be 400 nm in length and 50 nm in diameter. A small gap
of 5 nm between the ends of the rods is considered. The optical constants of Au are taken from
Johnson and Christy [16] with the data extrapolated to the infrared range by the Drude model [17].
The configurations in cases A and B are compared by calculating the far field scattered intensities for
horizontal and vertical polarization states. The simulation results include the wavelength region from
1000 nm to 2000 nm, that correspond to the main electric dipole resonance of the rods.

We include as Supplementary Material the MATLAB files necessary to reproduce the simulations
reported in this work using the MNPBEM toolbox.

2.2. Calculations

A metallic nanorod can be considered as a particle that can only polarize along the direction of
its axis because its polarizability tensor is fully anisotropic [13]. In the energy region of resonance,
its scattering properties can be represented by the Jones matrix of a linear polarizer:

J = α

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
, (2)

where α is the Lorentzian polarizability associated with the particle and θ is the orientation angle of
the nanorod axis in the x-y plane.

As each particle of the dimer is close to the other, we have to consider mutual interaction
contributions. Each one of the nanoantennas experiences the induced dipole field of its partner,
so the dipole moment equations are a pair of coupled equations, as described in [18], and further
developed in [13,19]. Assuming a plane wave excitation with electric field components E0x and E0y
at the plane z = 0, we calculate the components of the far field electric vector for two orthogonal
nanorods depicted in Figure 1, Case A, by taking into account the mutual interactions, as described in



Symmetry 2020, 12, 1790 4 of 11

detail in Appendix A. Equation (A12) shows that the Jones matrix of the system for the scattering in
the z-direction (forward scattering) is:

Je(z)d(z) = g

(
1 e1αδ

e1αδ 1

)
, (3)

where
g =

εαF
1− e2

1α2δ2
, (4)

and the notation used for sub-index, e(z)d(z), indicates that both excitation and detection take place
in the z axis. ε is the permittivity of the medium, δ is the interaction coefficient, F is the far field
factor (F = eikR), e1 = ei2πd/λ and δ is the interaction coefficient defined as δ = −k2B/2. In all these
expressions, k is the wavenumber, R is the magnitude of the position vector of the detection, d is the
distance between the centers of the particles, and B is given in Equation (A4b):

Note that Equation (3) is just describing the components of the electric field for forward scattering
in terms of the exciting field:

Ex =
F(εαE0x + e1εα2δE0y)

1− e2
1α2δ2

, (5a)

Ey =
F(e1εα2δE0x + εαE0y)

1− e2
1α2δ2

. (5b)

For excitation and detection in the −z axis —i.e., e(−z)d(−z)—the matrix in Equation (3) would
be transformed according to Equation (1). The eigenvectors of the scattering matrix in Equation (3) are
45◦ and −45◦ linear polarization states, each one enabling only one of the two hybridized plasmonic
modes, as shown experimentally in [10,11].

3. Results

Now we turn our attention to scattering in other directions, different from forward scattering,
namely those considered in Figure 1. In what follows, we will refer to any polarization parallel to the xz
plane as horizontal (H) polarization, and polarization parallel to the y axis as vertical (V) polarization.
In addition to this, we also have to take into account that, for the 90◦ scattering, there is a rotation in
the local reference frame upon scattering—for example, for Case A (Figure 1a), the −z axis becomes a
new local x′ axis. When the dimer is viewed from the x-axis (Case A), the dipole field of the rod lying
in the x axis has no contribution to the far field, the scattering intensity is due only to the vertical rod;
hence, we obtain the following Jones matrix for Case A:

JA = Je(z)d(x) = g

(
0 0
µ 1

)
. (6)

where µ = e1αδ. This non-symmetric matrix (JA 6= JT
A) is characterized by the following responses,

that are schematically presented in Figure 2:
(i) For H excitation: Only the rod that lies along the x-axis is directly excited by the incident light

and it excites the vertical one via dipole-dipole coupling. However, only the vertical rod scatters in the
+x-direction. The scattered intensity is Ie(H)

A = |gµ|2.
(ii) For V excitation: Only the vertical rod is directly excited and it excites the other rod via

dipole-dipole coupling. Only the vertical rod scatters in the +x-direction. The scattered intensity is
Ie(V)
A = |g|2.

As shown in the graph of Figure 2, the scattered intensities for excitation with H and V polarization
get comparable values, although their spectral response is clearly distinct.
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Figure 2. Scattering of the plasmonic dimer for horizontal and vertical illumination in Case A. The thick
dashed arrow in the schemes indicates mutual interactions through dipole–dipole coupling.

Case B is the reciprocal of case A and only radiation traveling towards the−z-direction is detected.
In this case the scattering matrix is

JB = Je(−x)d(−z) = g

(
0 −µ

0 1

)
. (7)

As expected from two conjugate configurations, JA and JB are connected through Equation (1).
Case B is characterized by the following responses, which are schematically presented in Figure 3:

(i) For H excitation: None of the rods can be directly excited by the incident light, hence the
scattered field in the −z-direction is zero: Ie(H)

B = 0.
(ii) For V excitation: Only the vertical rod is directly excited and it excites the other rod

via dipole–dipole coupling. Both rods scatter in the −z-direction and total scattered intensity is
Ie(V)
B = |g|2(1 + |µ|2).

This response is fully confirmed by the results of the BEM simulation, shown in the graph
of Figure 3. The lack of scattered light for H illumination is greatly contrasted with the situation
presented in Figure 2, thus clearly displaying asymmetric response. Nevertheless, the situation
changes if one checks only the co-polarized scattered intensity—i.e., the scattered intensity that
holds the same polarization as the illumination. This case is easily realized by left-multiplying
the Jones matrices in Equations (6) and (7) by the Jones matrix of a H or V polarizer, accordingly
with the illumination polarization in order to select, in each case, the same polarization state of the
scattered light. The co-polarized scattered intensities turn out to be the same for Cases A and B:
Ie(H)d(H)
A = Ie(H)d(H)

B = 0 and Ie(V)d(V)
A = Ie(V)d(V)

B = |g|2. This is satisfied for any linear medium that
does not involve magneto-optical phenomena and traces back to the law of (Lorentz) reciprocity for
polarization optics given by Perrin and stated as follows [3]: “If two incident polarized beams have
equal intensities, the inverse emerging beams of the same polarization, which are associated with them,
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also have equal intensities”. As Perrin pointed out, this law of reciprocity for polarization states is
intimately connected with the general principle of quantum mechanics asserting the equal probability
of inverse transitions between two states of the same energy.

Figure 3. Scattering of the plasmonic dimer for horizontal and vertical illumination in Case B. The thick
dashed arrow in the schemes indicates mutual interactions through dipole–dipole coupling.

4. Discussion

We can prove the preservation of Lorentz reciprocity principle for any polarization state by
following Perrin’s criterion in a more general way. Let E1 = (x, y)T be a normalized polarization state
(xx∗ + yy∗ = 1). After passing through the system for Case A:

JAE1 = g

(
0 0
µ 1

)(
x
y

)
=

(
0

g(µx + y)

)
. (8)

We note that emerging state is vertically polarized but not normalized to unity. The output
intensity for Case A is

IA = |JAE1|2 = |g(µx + y)|2. (9)

Now we consider the reverse process (Case B). Let the incident state be a vertical polarization
state with unit intensity E2 = (0, 1)T :

JBE2 = g

(
0 −µ

0 1

)(
0
1

)
= g

(
−µ

1

)
. (10)
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We let this emerging beam pass through a general elliptical polarizer so that it gets the same
polarization as the incident field of Case A. The Jones matrix of the elliptical polarizer associated with
E1 is

P =

(
|x|2 xy∗

x∗y |y|2

)
. (11)

As the emerging beam now is traveling in the reversed direction, P needs to be transformed according
to Equation (1), so that P→ P̃. The overall transformation is:

P̃JBE2 = g

(
−|x|2µ− x∗y
xy∗µ + |y|2

)
. (12)

The scattered intensity IB, now calculated as IB = |P̃JBE2|2, is

IB = (|x|2 + |y|2)IA = IA. (13)

This proves that, when polarization states are taken into account, the scattering intensities are
the same in both configurations, in agreement with Perrin’s formulation of the law of reciprocity in
optics. In fact, an analog demonstration holds for any linear system with a general Jones matrix that
transforms according to Equation (1) when interchanging the position of the source and detector.

For the scattering of our plasmonic dimer, the asymmetry in the overall scattered intensity is a
direct result of the dipole–dipole interaction between the plasmonic rods. We may emphasize that
when the dipole–dipole interaction is stronger, the asymmetric scattering is greater. Note that if there
was no interaction (δ = 0), which will happen when the particles are well separated or when they form
and orthogonal cross at the center, then only the vertical rod could scatter in the transverse direction
when excited only by the vertical polarization, hence there would be no non-reciprocal scattering.
In this non-interacting case, the Jones matrix of the system becomes an identity matrix for scattering
in the z-direction [20], a vertical polarizer matrix for scattering in the x-direction and a horizontal
polarizer matrix for scattering in the y-direction; hence, the system becomes a plasmonic beam splitter
for H/V polarization with transverse scattering in x and y direction. A somewhat similar case was
recently worked out for an all-dielectric metasurface [21].

If we try to assimilate the plasmonic dimer to an optical diode we should start recalling that
a diode is an essential element in electronics, which permits current in the forward direction and
blocks it in backward direction (non-reciprocal propagation). In optics, the most well-known known
example of an optical diode is a system based on linear polarizers and a Faraday rotator that is known
as an optical isolator and used to prevent unwanted backreflections in lasers. Despite the fact that
there have been some contradictory publications in the past, now it seems to be well established that
only a system that breaks electromagnetic (Lorentz) reciprocity (most usually when magneto-optical
processes come into play) can be regarded as a true optical isolator [22]. Therefore, the optical response
of the plasmonic dimer that we have previously discussed cannot be directly regarded as an optical
diode, essentially because, as shown previously, Perrin’s law of reciprocity is fulfilled. The calculated
scattering matrices JA and JB clearly have unidirectional properties for many polarization propagation
modes but this is not enough to warrant an unidirectional power flow—for example, our dimer system
would never be effective in protecting a laser from reflections.

Despite the fact that a plasmonic dimer cannot be regarded as a true optical isolator, it can be
still useful for the non-reciprocal transmission of signals at a subwavelength scale since it fulfills the
most basic premise that the measured intensity is different upon exchanging source and detector. As a
thought experiment, suppose that we have the following protocol between Bob and Alice: Alice sits at
the source point of Case A and Bob sits at the detector point of Case A, and they send a sequence of
coded signals to each other using V (Logic 1) and H (Logic 0) polarizations. They agree that, when
received, V and any polarization other than H corresponds to logic 1, H and “no signal” corresponds
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to logic 0. Alice cannot send any information to Bob, because any code from her (H or V) will reach
Bob as V polarization (logic 1). On the other hand Bob can send a meaningful message to Alice: the
H signal will not reach Alice, so she will code it as logic 0, while the V signal will reach Alice as
an elliptical polarization that she will code as logic 1. As with common antennas (i.e., radio- and
microwave antennas), plasmonic nanoantennas can convert propagating electromagnetic radiation
into electrical signals and vice versa. The asymmetric response in the nanoantenna thus means that
effectively there can be a different behavior of the system when being used as a receiving or as an
emitting antenna if one attends to the H and V polarization channels.

5. Conclusions

We have studied a plasmonic system consisting of two oriented oscillators that exhibit strong
electromagnetic coupling in two different configurations, one reciprocal to the other. Our calculations
based on a coupled dipole model, as well as our simulations based on the boundary element method
have shown asymmetric scattering of light, meaning that, while in one configuration, both vertical
and horizontal polarization states are scattered to the detector, when the source and the detector
are interchanged, the scattered intensity for horizontal polarization drops to zero. Regardless of
this asymmetry, we have demonstrated that the system obeys the optical reciprocity principle, as it
was originally formulated by Perrin, which confirms the preservation of electromagnetic reciprocity,
and shows that this plasmonic system cannot be regarded as a true optical isolator. However, it can
be used for the non-reciprocal transfer of signals at a subwavelength scale—for example, exploiting
the different behaviors of the H and V polarization channels when being used as a receiving or as an
emitting nanoantenna.

Supplementary Materials: The MATLAB files necessary to reproduce the simulations of Case A and Case B using
the MNPBEM toolbox are available online at http://dx.doi.org/10.17632/v8dysnm5j4.1.
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Appendix A

This appendix describes the scattering of light by two mutually interacting dipoles forming a
dimer. We start considering a single dipole; the induced electric dipole moment vector, P, on a dipolar
particle is proportional to the incident electric field, E0(r):

P = εαE0(r), (A1)

where ε is the permittivity of the medium at the dipole position r and α is the polarizability matrix.
When we put two particles close to each other we have to consider mutual interaction

contributions. Each one of the dipoles experience the field of the other dipole which should be
taken into account to find the actual dipoles of the particles:

P1 = α1[εEo(r1) + k2 ¯̄G(r1 − r2) · P2], (A2a)

P2 = α2[εEo(r2) + k2 ¯̄G(r2 − r1) · P1], (A2b)

where k is the wavenumber, α1 and α2 are the matrix polarizabilities of the individual particles, and ¯̄G
is the free-space electric dyadic Green’s function with the following effect on a dipole vector:

http://dx.doi.org/10.17632/v8dysnm5j4.1
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¯̄G · P =
1

4πd

[ (
1 +

i
kd
− 1

k2d2

)
P +

(
−1− 3i

kd
+

3
k2d2

)
(û · P)û

]
, (A3)

where d is the distance between the centers of the particles and û is the unit vector between the center
of masses of particles. The notation can be simplified if we let,

A =
1

4πd

(
1 +

i
kd
− 1

k2d2

)
, (A4a)

B =
1

4πd

(
−1− 3i

kd
+

3
k2d2

)
, (A4b)

thus,
¯̄G · P = AP + B(û · P)û. (A5)

We first consider the scattering for the rather general geometry of oriented dipoles given in
Figure A1, where one dipole is at the origin of coordinates and the second one is at an arbitrary point
with positive z value. r (|r| = d) is the vector between the dipoles. A plane wave that propagates along
the +z direction excites P1 first and excites P2 after a delay. According to Figure A1, e1 = ei2πd/λ is the
phase difference between the dipoles along the distance d, and e2 = ei2πrz/λ is the phase difference in
the z-direction.

Figure A1. Geometry of the two oriented and mutually interacting dipoles.

As the plane wave propagates along z, the dipoles will only polarize in a direction in the xy
plane and Equation (A2) can be treated with a 2 × 2 matrix formalism instead of a 3 × 3 formalism.
According to Figure A1, the first dipole is fixed along the y axis, which leads to a 2 × 2 polarizability
matrix that can be expressed by a vertical polarizer Jones matrix:

α1 = α1J1 = α1

(
0 0
0 1

)
. (A6)

The second dipole is tilted at an angle θ in the xy plane:

α2 = α2J2 = α2

(
a b
b c

)
, (A7)

where α1 and α2 are the scalar Lorentzian polarizabilities of the dipoles and a = cos2 θ, b = cos θ sin θ,
c = sin2 θ. Let C1 = cos φ1, S1 = sin φ1, C2 = cos φ2 and S2 = sin φ2, then the unit vector along r can
be written as

û(r2 − r1) = (C1C2, S1, C1S2). (A8)
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From Equation (A2) we calculate P1 and P2 with the Green function contributions:

P1 = εα1J1

(
E0x
E0y

)
+ k2α1J1

(
e1 AP2x + (C1C2P2x + S1P2y)C1C2e1B

e1 AP2y + (C1C2P2x + S1P2y)S1e1B

)
, (A9)

P2 = εα2J2

(
e2E0x
e2E0y

)
+ k2α2J2

(
C1C2S1e1BP1y

e1 AP1y + S2
1e1BP1y

)
, (A10)

where E0x, E0y are the components of the planewave excitation at z = 0.
If we solve the components of the dipoles at the far field for scattering in the z-direction, we find

the scattering matrix (Jones matrix) of the interacting system that relates scattered fields Ex and Ey

with incident fields E0x and E0y:

J =
εF
N

[
e2α1

(
0 0
0 1

)
+ e2α2

(
a b
b c

)
+ e1α1α2

(
0 ∆1

e2
2∆1 (1 + e2

2)∆2

)]
(A11)

where N = 1− e2
1α1α2(2bδ1δ2 + cδ2

1 + aδ2
2), F is the far field factor, δ1 = k2(A+ S2

1B), δ2 = k2(C1C2S1B),
∆1 = bδ1 + aδ2 and ∆2 = cδ1 + bδ2 are the interaction coefficients that result from the dipole–dipole
interaction. Here we write the Jones matrix of the system as a linear combination of three Jones
matrices, first two of them corresponding to the symmetric linear polarizer Jones matrices of individual
(noninteracting) dipoles and the third one is an asymmetric Jones matrix due to the interaction and
phase (e2). All elements of the interaction Jones matrix are scaled by interaction coefficients which are
functions of the distance between the dipoles so that for distant particles this coupling term consistently
vanishes.

The geometry considered in Figure 1a involves two equal particles (α1 = α2) in the same plane
and with the angles θ = φ2 = 0◦ and φ1 = −45◦. This means that b = c = 0, a = 1, ∆2 = 0,
∆1 = δ2 = −k2B/2 ≡ δ and N = 1− e2

1α2δ2. Moreover, as both particles lie in the xy plane, e2 = 1.
Considering these values, the Jones matrix in Equation (A11) can be simplified to the following
symmetric matrix:

J =
εαF

1− e2
1α2δ2

(
1 e1αδ

e1αδ 1

)
. (A12)
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