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Donor/recipient molecular human leukocyte antigen (HLA) mismatch predicts primary B-
cell alloimmune activation, yet the impact on de novo donor-specific T-cell alloimmunity
(dnDST) remains undetermined. The hypothesis of our study is that donor/recipient HLA
mismatches assessed at the molecular level may also influence a higher susceptibility to
the development of posttransplant primary T-cell alloimmunity. In this prospective
observational study, 169 consecutive kidney transplant recipients without preformed
donor-specific antibodies (DSA) and with high resolution donor/recipient HLA typing were
evaluated for HLA molecular mismatch scores using different informatic algorithms [amino
acid mismatch, eplet MM, and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-
II)]. Primary donor-specific alloimmune activation over the first 2 years posttransplantation
was assessed by means of both dnDSA and dnDST using single antigen bead (SAB) and
IFN-g ELISPOT assays, respectively. Also, the predominant alloantigen presenting
pathway priming DST alloimmunity and the contribution of main alloreactive T-cell
subsets were further characterized in vitro. Pretransplantation, 78/169 (46%) were
DST+ whereas 91/169 (54%) DST−. At 2 years, 54/169 (32%) patients showed
detectable DST responses: 23/54 (42%) dnDST and 31/54 (57%) persistently positive
(persistDST+). 24/169 (14%) patients developed dnDSA. A strong correlation was
observed between the three distinct molecular mismatch scores and they all accurately
predicted dnDSA formation, in particular at the DQ locus. Likewise, HLA molecular
incompatibility predicted the advent of dnDST, especially when assessed by PIRCHE-II
score (OR 1.014 95% CI 1.001–1.03, p=0.04). While pretransplant DST predicted the
development of posttransplant BPAR (OR 5.18, 95% CI=1.64–16.34, p=0.005) and
particularly T cell mediated rejection (OR 5.33, 95% CI=1.45–19.66, p=0.012), patients
developing dnDST were at significantly higher risk of subsequent dnDSA formation
org March 2021 | Volume 11 | Article 6232761

https://www.frontiersin.org/articles/10.3389/fimmu.2020.623276/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.623276/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.623276/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.623276/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:obestard@bellvitgehospital.cat
https://doi.org/10.3389/fimmu.2020.623276
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.623276
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.623276&domain=pdf&date_stamp=2021-03-10


Meneghini et al. HLA-Incompatibility and Primary Adaptive Alloimmunity

Frontiers in Immunology | www.frontiersin.
(HR 2.64, 95% CI=1.08–6.45, p=0.03). In vitro experiments showed that unlike preformed
DST that is predominantly primed by CD8+ direct pathway T cells, posttransplant DST
may also be activated by the indirect pathway of alloantigen presentation, and
predominantly driven by CD4+ alloreactive T cells in an important proportion of
patients. De novo donor-specific cellular alloreactivity seems to precede subsequent
humoral alloimmune activation and is influenced by a poor donor/recipient HLA
molecular matching.
Keywords: alloreactive, T cell, HLA mismatch, donor-specific antibodies, kidney transplantation
INTRODUCTION

Long-lasting survival of kidney transplantation is greatly
challenged by both preformed and primary donor-specific
humoral alloimmunity: the former preventing access to
transplantation in sensitized patients, and the latter
accelerating chronic rejection and premature graft loss (1, 2).
Between 5 and 9% of kidney transplant recipients may develop de
novo donor-specific antibodies (dnDSA) each year mainly
against class-II human leukocyte antigens (HLA) (3, 4). This is
of significant clinical relevance, being chronic antibody mediated
rejection (ABMR) one of the leading causes of death-censored
graft loss that may explain to some extent why even with modern
immunosuppression, long term graft survival has not improved
in recent years (5).

Recent data show that a major determinant of primary
humoral alloimmune activation relies on poor donor/
recipient HLA matching, especially in case of non-adherence
or insufficient immunosuppression exposure (4, 6, 7). Notably,
while clinical histocompatibility assessment is still based on
alphanumeric class-I/II allele matching, novel computed
algorithms have refined its evaluation by assessing the
mismatch (MM) degree at a molecular level (8). The
definition of the molecular differences between donor and
recipient HLA molecules has been an interesting field of
research developed in the last decade that led to the creation
of informatic algorithms available for research purposes and
whose clinical impact on outcomes has been investigated. On
the one hand, the calculation of the number of highly
polymorphic aminoacids composing the mismatched donor
HLA molecules (amino acid MM) has been proposed and
showed to predict primary humoral responses (9, 10).
Similarly, the HLAMatchmaker algorithm defines the count
of specific mismatched polymorphic aminoacidic-residues
within 3 Ångstroms radius (eplets) exposed on the HLA
molecular surface and constituting the functional epitopes
against which anti-HLA antibodies are directed (11). The
number of eplets that are mismatched between donor and
recipients can be calculated by the HLAMatchmaker software
either at each HLA locus, by class (1 or 2) or as a cumulative
number or “eplet MM load”. Some but not all eplets have been
“antibody verified” in vitro and since this process is ongoing,
newer versions of the calculator are periodically released
including the last updates on the eplets’ repertoire. An
org 2
increasing number of eplet MM has been shown to identify
kidney transplant recipients at higher risk of developing
dnDSA, antibody-mediated rejection (ABMR) and worse
allograft survival (12–15). Furthermore, since dnDSA can
only be produced by B cells activated by cognate interactions
with indirectly primed alloreactive T cells that have previously
recognized donor HLA antigens (16), another HLA matching
algorithm was developed to predict the number of recognizable
donor-HLA-derived peptides that can be processed and
presented by recipient’s HLA class-II molecules according to
the physico-chemical characteristics of donor and recipient
HLA molecules (PIRCHE-II). The PIRCHE-II score sums the
number of these peptides and defines the risk of primary anti-
donor humoral alloimmune activation through indirect
pathway of antigen presentation. In clinical studies, this score
has also been associated to the risk of dnDSA formation and
graft loss (13, 17).

While previous clinical reports suggest that alloreactive T-cell
priming precedes humoral activation, (4, 18, 19) there is no
evidence yet showing the frequency of de novo donor-specific T-
cell alloimmune activation (dnDST) after kidney transplantation
and its association with donor/recipient HLA molecular
matching. Hence, we here investigated the association of
distinct donor/recipient HLA molecular mismatch algorithms
with the risk of dnDST activation as well as its influence on
subsequent dnDSA formation. While there are no readily
available tests to monitor the presence of donor-specific T-cell
responses in the clinical setting, we used one of the most sensitive
immune assays tracking circulating frequencies of donor-reactive
memory/effector T cells, the IFN-g Enzyme-Linked ImmunoSpot
(ELISPOT), which has been validated between different research
consortiums (20, 21) and has shown important associations
between preformed T-cell alloimmune memory and
posttransplant rejection risk (22–24). On the other hand, the
development of single antigen beads using solid phase assays has
revolutionized the field of humoral alloimmune risk-
stratification as the most reliable assay tracking anti-HLA
antibodies in clinical practice (25). Therefore, to obtain a
complete picture of the kinetics of posttransplant donor-
specific alloimmune responses, we used these two immune
assays to detect dnDST and dnDSA at different time points
during the first 2 years after kidney transplantation. Finally, the
role of main T-cell subsets accounting DST alloreactivity and the
type of alloantigen presenting pathways priming dnDST in vitro
March 2021 | Volume 11 | Article 623276
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were further assessed to characterize the predominant donor-
antigen T-cell priming occurring after transplantation.
MATERIAL AND METHODS

Patients of the Study
As illustrated in Figure 1, between June 2014 and December
2016 326 adult kidney transplants were performed. Out of them,
multiorgan transplant recipients, ABO incompatible, and HLA
identical transplant recipients, with preformed DSA, without
available donor/recipient PBMCs and/or high-resolution HLA
typing and those lost to follow-up were excluded from this study.
Clinical data were collected prospectively during clinical follow-
up. BPAR was defined according to latest BANFF classification
(26). Graft loss was defined either as re-transplantation or return
to chronic renal replacement therapy. Minimum patient follow-
up was 2 years (mean: 33 ± 16 months, range 24–60). All patients
signed informed consent to participate in the study, which had
been previously approved by the local Investigator
Research Board.

HLA Typing and Donor/Recipient
Mismatch Scores
HLA Typing
High-resolution donor and recipient HLA typing was done for
both class-I (A, B, C) and class-II (DRB1, DQB1, DPB1) antigens
with NGS technology. Exons 2, 3, 4 for class I and exons 2 and 3
for class II were amplified by multiplex PCR. NGS was
performed on a MiSeq platform (Illumina, San Diego,
California). DRB3/4/and DPA1 could not be assessed in all
donor/recipient pairs because of insufficient biological material,
thus HLA mismatch scores were performed at A, B, C, DRB1,
Frontiers in Immunology | www.frontiersin.org 3
DQB1 and DPB1 loci. Notably, since all recipients could be typed
for DQA1, we evaluated PIRCHE score also taking into account
the alloantigen presentation by recipients’ DQ(B1/A1)+
DRB1 molecules.

Amino Acid HLA Mismatches
The HLA epitope mismatch algorithm (HLA‐EMMA) was used
to assess polymorphic amino acids on mismatched donor HLA
molecules as previously described (27). Both total amino acid
sequences and amino acids in solvent accessible positions were
assessed as a global score and at the single HLA locus or
molecule. The software package is available at http://www.
HLA-EMMA.com.

HLAMatchmaker Algorithm
The HLAMatchmaker program (Rene Duquesnoy, 2016,
University of Pittsburgh Medical Center, Pittsburgh, PA HLA-
ABCEpletMatchingVersion3.1 and DRDQDPEpletMatching
ProgramV3.1 from http://www.epitopes.net/downloads.html)
was used to calculate eplet scores as previously described (6).
Total number of eplet and antibody verified eplet mismatches
were calculated for all HLA molecules (eplet MM load), for each
locus and for each donor HLA molecule separately.

Predicted Indirectly Recognizable HLA
Epitopes II Algorithm
PIRCHE-II score was calculated as previously described using
the latest version3.3 from https://www.pirche.org (28). Briefly,
the NetMHCIIpan3.0 algorithm was used to predict the non-
americ-binding cores of donor mismatched HLA-derived
peptides that can bind to recipient HLA-DRB1. Relevant HLA-
DRB1 binders were defined as peptides with an IC50<1,000nM
for HLA-DRB1 (15).
FIGURE 1 | Flow chart of the study. PBMCs, peripheral blood mononucleated cells; DSA, donor specific antibody.
March 2021 | Volume 11 | Article 623276
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Donor-derived HLA class-II binder peptides that differed
at least one amino acid in their non-americ-binding core from
recipient’s HLA sequence were counted as PIRCHE-II. Donor
epitope-HLA complexes that were present multiple times in a
donor/recipient couple were counted as a single PIRCHE-II.
The analysis of PIRCHE-II global score enumerates all class I/
I I donor der ived pept ides , presented by rec ipient
DRB1 molecule. The peptide counts originated from each
donor’s locus and each donor molecule is also described. The
analysis of DRB1 and DQ presentation of donor-derived
peptides, and different IC50 cut-offs for peptide binding,
were evaluated.

Anti-HLA Antibody Determinations
Patients’ sera were tested for the presence of class-I and II anti-
HLA IgG antibodies at baseline, 6 and 12 months after
transplantation and annually thereafter. A single-antigen class-
I and class-II flow beads-assay kit was used (LIFECODES,
division of Immucor, Stanford, CA). All beads showing a
normalized MFI>500 were considered positive if (MFI/MFI
lowest bead)>5.

Donor and Recipient Peripheral Blood
Mononuclear Cell Samples Preparation
and Evaluation of Circulating Donor-
Specific T-Cell Alloreactivity
Donor and Recipient Peripheral Blood Mononuclear
Cell Samples
Recipient and donor PBMCs from living donors or splenocytes
from deceased donors were harvested and isolated by Ficoll
density gradient centrifugation. Donor samples were depleted
from T-Cells using either anti-CD3 (Human CD3+Cell
Depletion Kit-RosetteSep Kit, STEMCELL, France) or anti-
CD2 kits (EasySep1 Human-CD2 Selection Kit, STEMCELL,
France), in living or deceased donors, respectively, to avoid any
donor T-cell alloimmune response. All samples were frozen in
liquid nitrogen at −80°C until their use.

Evaluation of Donor-Specific Alloreactive T-Cell
Responses
The assessment of DST in peripheral blood, both prior and
posttransplantation, was done using the IFN-g Enzyme-linked
Immunosorbent Spot (ELISpot) assay as previously described
(21). Briefly, 3x105 responder PBMC were placed in each
Elispot well plate coated with primary IFN-g antibody wells
with 3x105 donor cells, in triplicates. A negative control
(complete medium alone: RPMI 1640, GE Healthcare Life
Sciences, USA, with 10% inactivated FBS, antibiotics and L-
glutamine) and a positive control (Pokeweed, AID, Autoimmun
Diagnostika) were also tested in duplicates. Incubation time was
22 h at 37°C, 5% CO2. Results were expressed as frequencies of
IFN-g producing T-cells/3x105 PBMCs, subtracting responses
from negative donor and recipient control wells. As previously
reported, a cut off of ≥25 spots/3x105 PBMCs was considered
positive (21, 29).
Frontiers in Immunology | www.frontiersin.org 4
Analysis of T-Cell Receptor Dependent Activation-
Induced T-Cell Markers
To assess the contribution of CD8 and/or CD4 T-cell subsets to
the allogenic T-cell response assessed in vitro, 22 donor-recipient
pairs with remaining available samples (pretransplant DST−,
n=5; pretransplant DST+, n=10; dnDST+, n=7) were tested in a
T-cell receptor (TCR)-dependent Activation-Induced T-Cell
Markers (AIM) assay as previously described (30).

Cells were cultured in 96-wells round bottom plates at
3x105PBMC per well either with 100ml of medium (negative
control), 3x105 T-cell depleted donor cells (allo-stimulation) or
50ml of phytohemagluttinin-PHA (positive control). After
incubation, cells were stained with the following antibodies:
CD4-FITC, CD8-APC-H7, CD134 (OX-40Antigen)-PE, CD69
(very early activation antigen)-PE-Cy7, CD137 (4-1BB)-APC, 7-
AAD (BD Biosciences, San Diego, CA). Donor Cells after 22 h
incubation with medium were stained with CD4-FITC, CD8-
APC-H7 antibodies to test effective T-cell depletion. After 22 h
incubation with T-cell depleted donor cells, we assessed by flow
cytometry analysis the % of AIM+ cells defined as the % of
(CD69+CD137+) cells for CD8+ T cells, and (CD134-OX40+
CD137+) for CD4+. T-cell activation results are presented by
subtracting the percentage of AIM+ cells after stimulation with
medium (negative control) from % of AIM+ cells after
allogenic stimulation.

Flow cytometry was performed on a FACS-Canto flow
cytometer and analyzed using the FACS-Diva Software (BD
Biosciences, San Diego, CA).

In Vitro Assessment of Alloantigen-Presenting
Pathways Priming Donor-Specific T Cells
In order to characterize the predominant alloantigen-presenting
pathways of circulating DST in vitro, a subset of DST+ patients
with available cell samples, either prior and/or after
transplantation were functionally re-evaluated (preDST+, n=9;
dnDST+, n=9; persistDST+, n=9). For these experiments we
modified the functional immune assay by evaluating in the same
patient DST responses with the following conditions: 1) using
total recipient PBMC as responder cells co-cultured with T-cell
depleted donor stimulating cells and, 2) using recipient T-Cells
only after being selectively isolated as responder cells co-cultured
with donor stimulating cells. In the first assay, both directly and
indirectly primed DST frequencies are detected, since recipient
PBMCs include T cells (CD3+), B cells (CD19+), monocytes
(CD14+) and dendritic cells (HLADR+CD14− CD3− CD19−
CD56−) (Supplementary Figure 1), whereas in the second
experiment only T cells are present as responders thus, DST
frequencies primed by the direct pathway (DP) of antigen
presentation may be only detected. For these later experiments,
a positive selection of recipient CD3+ T-Cells was done (Human
T Cell Enrichment Kit-RosetteSep Kit, STEMCELL, France).
Importantly, the same number of CD3+ T-Cells present in the
all PBMCs sample was seeded in each well when analyzing the
DST with enriched responder T-Cells, to avoid any additional
response due to higher presence of responder T-Cells. Therefore,
to assess the relative role of indirectly primed (IP) DST cells in
March 2021 | Volume 11 | Article 623276
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the in vitro assays, the total number of IFN-g spots observed in
the DP experiment was subtracted from those observed in the
same patient when using all PBMCs as responder cells. PBMC
subsets were stained with combinations of the following
fluorochrome conjugated antibodies: CD3-APC-H7, CD19-
FITC, CD14-PECy7, CD56-PE, HLADR-APC (BD Biosciences,
San Diego, CA).

Statistical Analysis
All continuous data are presented as mean ± SD or median and
interquartile-range. Different groups were compared using X2

test for categorical variables and student t-test for normally
distributed data, and non-parametric Kruskal-Wallis or Mann-
Whitney U test for non-normally distributed variables. Bivariate
correlation analyses were performed by Pearson or Spearman
test (non-parametric variables). Univariate and multivariate
logistic regression analyses were used to determine the
variables associated with the risk of developing BPAR and
dnDST. The time-dependent association of the variables
assessed on graft survival and dnDSA development was studied
with Cox proportional hazard, Kaplan–Meier plots, and log-rank
test. The statistical significance level was defined as 2-tailed
p<0.05. Statistical analyses were performed with IBM SPSS
Statistics, version 26 (Armonk, NY) and GraphPad Prism
version6.0 (GraphPad Software, La Jolla, CA).
RESULTS

Patients of the Study and Main
Clinical Outcomes
As illustrated in Figure 1, 169 consecutives non HLA-identical,
single, adult transplant recipients at Bellvitge University Hospital
(Barcelona, Spain) without preformed DSA and in whom both
donor and recipient HLA typing was characterized using high
resolution Next Generation Sequencing (NGS) technology and
peripheral blood mononuclear cells (PBMC) to monitor DST
were obtained both prior and at different time points after
transplantation were evaluated in this study.

As shown in Table 1, the patients included in the study were
representative of the total kidney transplant patients performed
during the study timeline, as there were no differences regarding
main demographic, immunological, and clinical outcomes. Most
patients of the study were male, Caucasic transplant recipients
receiving a deceased donor kidney. Induction immunosuppression
was mainly based on basiliximab induction with tacrolimus-based
maintenance triple therapy.

Forty-six (27%) patients developed delayed graft function
(DGF) and 19 (11%) biopsy-proven acute rejection (BPAR) (79%
TCMR, 21% ABMR). 24/169 (14%) patients developed dnDSA: 6
(25%) class-I only (2 against A, 3 anti-B and 1 anti-C), 19 (80%)
class-II only (anti-DR n=1, 5%; anti-DQ n=17, 89%, anti-DP
n=1, 5%), and 1(5%) patient against both class-I and II. Five
(21%) patients developed dnDSA against both donor DQ
molecules, thus the majority of dnDSA were directed against
DQ antigens (22/30, 73%). Mean time until first dnDSA
Frontiers in Immunology | www.frontiersin.org 5
detection was 24± 20 months (range 6–60). Mean dnDSA
mean fluorescence intensity (MFI) was 8,685 (range
1,152–20,338).

Death-censored graft loss occurred in 9 (6%) patients, being
main causes BPAR (5, 55%), interstitial fibrosis/tubular atrophy
(2, 22%), primary glomerulonephritis recurrence (2, 22%).
Eleven (6%) patients died with a functioning graft because of
malignancies (5, 45%), infections (3, 27%), and cardiovascular
events (3, 27%).

A detailed description of the different HLA mismatch (MM)
scores of the study population is depicted in Supplementary
Table 1. Despite the strong positive correlation between the three
molecular MM algorithms, a single number of HLA allelic
mismatch could correspond to a wide range of molecular MM
at the individual patient level (Supplementary Figure 2).

No direct association was observed between BPAR and the
HLA allelic, amino acid, and eplet MM scores (OR 1.08, 95% CI
TABLE 1 | Main baseline and clinical outcomes of the study population and
comparison with patients not included in the study.

Main baseline

characteristics

All patients

(n=169)

Not studied

patients

(n=118)

p

Recipient age (years) 52 ± 14 52 ± 14 0.83

Recipient gender (male) 110 (65) 30 (25) 0.09

Race (Caucasic) 158 (94) 113 (96) 0.41

Cause of end stage disease

Vascular

Diabetes

Glomerular

Polycystic kidney disease

Interstitial disease

Others/unknown

20 (12)

8 (5)

48 (28)

23 (14)

24 (14)

46 (27)

21 (18)

14 (12)

30 (25)

16 (14)

11 (9)

26 (22)

0.12

Time on dialysis (months) 25 ± 34 21 ± 25 0.23

Transplant type (deceased) 115 (68) 88 (75) 0.23

Donor age (years) 55 ± 15 54 ± 12 0.86

Transplant number (1) 152 (90) 106 (90) 0.98

Cold ischemia time (hours) 12.8 ± 9.5 11 ± 9 0.18

Pre-transplant anti-HLA

(non DSA) antibodies

Class I 14 (8) 10 (8.5) 0.34

Class II 17 (10) 12 (10.2) 0.30

cPRA (maximum) 2.8 ± 6.6 2.6 ± 5.9 0.88

Main immunosuppression

- Induction 32 (19)/126 (74)/11 (6) 30 (25)/85 (72)/3 (2) 0.14

(rATG/basiliximab/none)

- Maintenance therapy (CNI,

tacrolimus)

150 (89) 116 (98) 0.06

- Steroid withdrawal before 6

months (yes)

50 (30) 38 (34) 0.41

Main clinical outcomes

DGF 46 (27) 36 (31) 0.54

BPAR

TCMR/ABMR

19 (11)

15/4

17 (14)

16/1

0.43

0.21/0.33

Patients developing de novo

DSA

24 (14) 20 0.49

HLA class I 6 3

HLA class II 19 18

HLA class I and II 1 1

Death-censored graft loss 9 (5) 10 (9) 0.32

Patient death 11 (6) 4 (4) 0.24
March 2021 | V
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Data are mean (standard deviation, SD) or n (%).
cPRA, calculated panel of reactive antibodies; rATG, rabbit anti thymoglobulin; CNI,
calcineurin inhibitor; BPAR, biopsy-proven acute rejection; TCMR, T cell mediated
rejection; ABMR, antibody-mediated rejection; DSA, donor-specific antibodies.
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0.84–1.38, p=0.54 allelic; OR 1.01, 95% CI 0.99–1.04, p=0.33
global amino acidic and OR 1.02, 95% CI 0.98–1.07, p=0.34 eplet
MM), but for global PIRCHE-II score (OR 1.012, 95% CI 1.001–
1.023, p=0.038). Patients developing ABMR during follow-up
showed a trend towards higher amino acid MM (88±5 vs. 63±22,
p=0.08); global PIRCHE-II (117±48 vs. 80±38, p=0.06) and
higher eplet MM load (41.5±7 vs. 32±11, p=0.07). There was
no effect of molecular MM scores on graft function progression,
death-censored graft survival, and patient death (data
not shown).

Donor/Recipient HLA Molecular
Mismatch Scores Predict Primary
Humoral Alloimmunity
As shown in Figure 2, significantly higher MM scores of each
molecular algorithm against the individual mismatched donor
DQ molecule was observed for the respective anti-DQ dnDSA.
No association was observed at the allelic MM level (data not
shown). A similar association was observed when donor DQ
peptides presented by both recipient DRB1 and DQ were
assessed (35.19±29 vs. 17.70±23, p=0.0002, in dnDSA+ vs.
dnDSA−, respectively). We did not study the impact of the
different molecular algorithms in the two solely anti-DP and
anti-DR dnDSA. A positive correlation with anti DQ dnDSA
MFI was observed for DQB1 amino acid MM (r=0.57, p=0.02;
solvent accessible r=0.60, p=0.013), DQB1 eplet MM (r=0.44,
p=0.03), and DQB1 PIRCHE-II score (r=0.36, p=0.08).

Donor/Recipient HLA Molecular Mismatch
Scores and Primary T-Cell Alloimmunity
Pretransplant DST Does Not Correlate With Donor/
Recipient HLA Molecular MM Scores
Despite the absence of preformed DSA, 78/169 (46%) showed
high frequencies of pretransplant DST (preDST+), whereas 91
(54%) did not (preDST−). No association was found between
preDST+ andmain clinical, demographic characteristics nor with
different HLA molecular MM scores (Supplementary Table 2).
Nonetheless, preDST+ patients showed higher risk of BPAR (OR
5.18, 95% CI=1.64–16.34, p=0.005), mostly TCMR (OR 5.33,
95% CI=1.45–19.66, p=0.012) (Supplementary Figure 3),
Frontiers in Immunology | www.frontiersin.org 6
whereas it was not associated with dnDSA nor death-censored
graft survival. Multivariate logistic regression analysis showed
that while PIRCHE-II and tacrolimus CV (OR 1.02, 95% CI
1–1.04, p=0.047) where associated to BPAR, only preDST+,
induction therapy with rATG and DGF were independent
correlates of BPAR (preDST+ OR 8.46, 95% CI 1.7–41.8,
p=0.009; rATG induction OR 0.13, 95% CI 0.14–1.3, p=0.08;
DGF OR 3.9, 95% CI 1.2–13.1, p=0.03).

PIRCHE-II Score Identifies Patients at Risk
of Primary Donor-Specific T-Cell Alloreactivity
After transplantation, 54/169 (32%) patients showed DST
responses at some timepoint (postDST+), being 23 (42%)
dnDST and 31 (57%) persistently positive (persistDST+),
whereas 115/169 (68%) were postDST− (68 preDST− and 47
preDST+) (Figure 3A). Changes of mean donor-reactive IFN-g
T-cell frequencies between pre and posttransplantation are
depicted in Figures 3B–E.

While none of the different HLA MM scores associated with
postDST+ (persistDST+ and/or dnDST+) (data not shown), a
significantly higher global PIRCHE-II score was observed among
dnDST+ than within postDST− patients (Figure 4). When
analyzing the single HLA loci, dnDST patients showed
significantly higher solvent-accessible DRB1 amino acid MM,
not-Ab-verified (Abv) DRB1 eplet MM, PIRCHE-II DRB1, and
PIRCHE-II DQB1 (DRB1 amino acid MM 11.17 ± 6.2 vs. 8.18 ±
6.4, p=0.05, not-Abv DRB1 Eplet 6.3±3.05 vs. 4.79±3.5, p=0.06
PIRCHE-II DRB1 15.5 ± 11.9 vs. 9.44 ± 8.4, p=0.03, PIRCHE-II
DQB1 22.65 ± 15.7 vs. 16.29 ± 12.5 p=0.05). When assessing the
PIRCHE-II score presented by DRB1+DQ molecules, similar
results were observed, being the count of DRB1 donor-derived
peptides similarly associated to dnDST activation (29.95±24.2 vs.
20.15±17.8, p=0.04). However, the difference in global PIRCHE-II
score presented by both DRB1+ DQmolecules was not statistically
different (199.4±132 in dnDST+ vs. 175.1±91 in dnDST−, p=0.4).
The relationship between PIRCHE-II and dnDST for different
peptide affinity thresholds (IC50: 0–50, 0–125, and 125–1,000),
revealed that PIRCHE-II was significantly associated to dnDST
especially at less stringent IC50 intervals (Supplementary
Figure 4). Donor-specific T-cell frequencies did not correlate
A B C

FIGURE 2 | Association between amino acid MM, eplet MM load, and PIRCHE-II score for each donor DQ molecule and the respective dnDSA formation. Each dot
illustrates the single molecular MM score of each donor DQ molecule against which the patients developed or not dnDSA. (A) Amino acid MM 6.5 ± 7.9 vs 17.6 ±
7.4, p<0.001. Solvent accessible 4.82 ± 6.18 vs 12.87 ± 6.29, p<0.001. (B) Eplet MM load 3.56 ± 4.33 vs 8.27 ± 2.95, p<0.001. Antibody-verified 1.31 ± 1.87 vs
2.82 ± 1.26, <0.001. (C) PIRCHE-II 8.98 ± 11.54 vs 23.2 ± 10.84, p<0.001. MM, mismatch; dnDSA, de novo donor-specific antibody.
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with amino acid MM (r=0.17, p=0.14) nor Eplet MM load (r=0.1,
p=0.34), whereas showed a weak but positive linear correlation
with the global PIRCHE-II score (r=0.24, p=0.025).

In the univariate and multivariate logistic regression analysis
for the prediction of dnDST, high global PIRCHE-II score and
Frontiers in Immunology | www.frontiersin.org 7
delayed graft function were independent correlates (Table 2).
Conversely, persistDST+ was only predicted by absence of T-cell
depletion (OR 0.09, 95% CI 0.01–0.62, p=0.01) and high pre-
transplant IFN-g ELISpot frequencies (OR 1.02, 95% CI 1.009–
1.03, p=0.001).
A

B

D E

C

FIGURE 3 | Kinetics of posttransplant de novo DST and changes of mean donor-reactive IFN-g T-cell frequencies between pre and posttransplantation in
different groups of patients. (A) At month 3, 6, 12, and 24 months 7, 7, 5, and 4 patients developed dnDST, and 34, 38, 35 and 31 were PersistDST+
respectively. (B–E) All preDST− remaining DST− and preDST+ becoming postDST− showed significantly lower T-cell frequencies posttransplantation.
PersistDST+ although remaining positive, showed weaker responses. Only dnDST+ patients showed a significant increase of spots number. (B) preDST− and
postDST−: preDST mean 9.76 ± 7.2 IFN-g spots/300.000 PBMC; postDST mean 5.28± 6.27 IFN-g spots/300.000 PBMC (C) dnDST: postDST mean 70.7±55.9
spots/300.000PBMCs. (D) preDST+ and postDST−: preDST+ mean 67.04 ± 35.9 IFN-g spots/300.000PBMC; postDST: mean 8.76±6.35 IFN-g spots/300.000
PBMC (E) persistDST+: postDST mean 66.56±61.04 IFN-g spots/300.000 PBMC. DST, donor specific T cell alloreactivity; preDST, pretransplant donor-specific
T-cell alloimmune response; postDST, posttransplant donor specific T-cell alloreactivity; dnDST, de novo donor specific T-cell alloreactivity; persistDST,
persistent donor specific T-cell alloreactivity.
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De Novo DST Predicts Subsequent Development
of dnDSA
While postDST+ showed a higher risk of subsequent dnDSA
formation (HR 2.66, 95% CI=1.19–5.95, p=0.017), when
stratifying postDST in either persistent or de novo, dnDST
Frontiers in Immunology | www.frontiersin.org 8
displayed a stronger risk of dnDSA than persistDST (HR 2.64,
95% CI=1.08–6.44, p=0.03 and HR 1.62, 95% CI=0.63–4.13,
p=0.31, respectively). Kaplan-Meier dnDSA-free survival
curves illustrate the cumulative dnDSA rates among different
postDST groups (Figure 5).
A B

DC

FIGURE 4 | HLA allelic MM, amino acid MM, eplet MM load, global PIRCHE-II and de novo DST. Comparisons between HLA MM scores and dnDST- or dnDST+ patients.
(A) HLA allelic MM 7.66 ± 2.3 vs 8.05 ± 2.2, p=0.52. (B) Amino acid MM 60.52 ± 20.6 vs 69.47 ± 25.8, p=0.09. (C) eplet MM load 31.62 ± 10.5 vs 35 ± 10.5, p=0.19.
(D) PIRCHE-II 74.1 ± 33.2 vs 94.8 ± 48.1, p=0.04. MM, Mismatch; DST, donor specific.
TABLE 2 | Univariate and multivariate logistic regression for the risk of de novo donor-specific T-cell (dnDST).

Variable Univariate analysis Multivariate analysis

OR 95% CI p OR 95% CI p

Recipient age (y) 1.02 0.99–1.06 0.21
Donor age (y) 1.02 0.98–1.05 0.42
Recipient gender (m) 0.96 0.35–2.59 0.93
Donor gender (m) 1.52 0.55–4.21 0.42
Transplant number (>1) 1.02 0.19–5.42 0.98
Race (Caucasic) 0.48 0.08–3.1 0.44
Type of donor (deceased 4.96 1.34–18.3 0.02 1.04 0.05–20.5 0.99
Cold ischaemia time (hours) 1.08 1.02–1.15 0.01 1.05 0.91–1.21 0.51
DGF 4.67 1.64–13.24 0.004 4.11 1.18–14.3 0.03
Type of induction IS (no rATG) 1.36 0.49–3.76 0.55
Steroid withdrawal 1.40 0.45–4.29 0.56
Type of maintenance IS (CNI) 0.85 0.26–3.07 0.85
Tacrolimus CV% 1.004 0.98–1.03 0.76
Previous BPAR 3.14 0.42–23.70 0.27
HLA allelic MM 1.08 0.86–1.36 0.52
Amino acid MM 1.02 0.99–1.04 0.13
Eplet MM load 1.03 0.98–1.08 0.18
Global PIRCHE-II 1.014 1.001–1.03 0.03 1.015 1.001–1.03 0.04
March 202
1 | Volume 11 | Article 62
rATG, rabbit anti thymoglobulin; DGF, delayed graft function; CNI, calcineurin inhibitor; CV, coefficient of variation (CV = s/m × 100); BPAR, biopsy-proven acute rejection; HLA, human
leukocyte antigens; MM, mismatches; IS, immunosuppression; DST, donor-specific T-cell alloimmunity.
In bold are statistically significant variables.
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In addition, transplant patients with both dnDST+ and
dnDSA+ showed significantly higher PIRCHE-II global score
as compared to patients with either dnDST or dnDSA or those
without dnDSA nor dnDST (101±49 vs. 78.9±38, p=0.04). No
differences were observed with any of the other HLA molecular
MM algorithms at this level.

Whilewe did not observe any correlation between posttransplant
IFN-gELISpot frequencies andMFI of dnDSA (Rho−0.7, p=0.75), a
weak but statistically significant inverse correlation with 12 and 24-
month graft function was observed (eGFR 12months r=−0.25,
p=0.01; eGFR 24 months r=−0.20, p=0.01).
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Higher Involvement of CD4+ T Cells in
De Novo T-Cell Alloreactivity as Compared
to Pretransplantation
The contribution of CD8+ and CD4+ T cells to donor-reactive
T-cell responses were investigated using the TCR dependent
activation-induced cell marker (AIM) assay in a subset of
patients. CD4+ and CD8+ AIM+ T cells varied among
different DST groups, which were detected both within preDST+
and dnDST+ patients (Supplementary Figure 5).

The percentages of CD8+ and CD4+ AIM+ T cells, were
significantly higher among DST+ as compare to DST−
A B

FIGURE 5 | Posttransplant donor-specific T-cell alloreactivity and de novo DSA formation. Kaplan–Meier curves illustrating the cumulative incidence of dnDSA
stratified according to: (A) postDST− vs. postDST+ (B) postDST+ further stratified in dnDST or persistDST. postDST− vs. persistDST+= log rank 0.07; postDST− vs.
dnDST+ log rank=0.01; persistDST+ vs. dnDST+ log rank=0.36. dnDSA, de novo donor-specific antibody; DST, donor specific T-cell alloreactivity; postDST, post-
transplant donor specific T-cell alloreactivity; dnDST, de novo donor specific T-cell alloreactivity; persistDST, persistent donor specific T-cell alloreactivity.
A B

FIGURE 6 | Contribution of CD8 and CD4 T cell subsets to pre- and posttransplant donor-specific alloreactivity assessed by T-cell receptor dependent activation-
induced cell markers (AIM) by flow cytometry analysis. (A) Comparison of % of CD8+ AIM + T cells (CD69+CD137+) and AIM+ (OX40+CD137+) CD4+ T cells after
allogenic (donor-specific stimulation) in DST− or DST+ patients. CD8+ AIM+: median 0.17% (0.05–0.42) vs 0.81% (0.48–2.09), p=0.041; CD4+AIM+: median 0.08%
(0.008–0.19) vs 0.40% (0.2–0.56), p=0.029 in non alloreactive versus alloreactive patients, respectively. (B) CD8+/CD4+ AIM+ T-cell ratio in preDST+ and dnDST+
samples, respectively. Median 2.77 (0.6–6.3) in preDST+ vs. 1.13 (−2.3–1.79) in dnDST+, p=0.13. AIM, T-cell receptor dependent activation-induced cell markers;
DST, donor specific T-cell alloreactivity; preDST, pretransplant donor specific T-cell alloreactivity; dnDST, de novo donor specific T-cell alloreactivity.
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independently of the time of the IFN-g ELISpot test assessment,
either before or after transplant (Figure 6A), confirming that the
two assays are concordant detecting the same donor-reactive T
cells. Notably, when we stratified for time of assessment, dnDST+
showed a numerically lower CD8+/CD4+ AIM+ T-cell ratio than
preDST+ suggesting an increased contribution of CD4+
alloreactive T cells after transplantation among dnDST+
patients (Figure 6B).

Contribution of Distinct Alloantigen
Presentation Pathways Priming
Posttransplant Donor-Specific T-Cell
Alloreactivity
In order to characterize the contribution of the two main
alloantigen presenting pathways, both direct (DP) and indirect
(IP), priming circulating donor-reactive T cells, we functionally
characterized them in vitro. When using whole recipient PBMC,
different cell subsets other than T cells such as B cells, monocytes
and dendritic cells were present, whereas only T cells were
detectable when recipient PBMC were enriched for T cells
(Supplementary Figure 1).

While most circulating preDST+ responses [7/9, (78%)] were
driven by donor-reactive T cells primed by the DP, an important
proportion of patients with postDST+ responses, either dnDST+
or persistDST+, were also primed by the IP (5/9, 55% in both
groups) (Figure 7A). While no differences were found at the
HLA allelic, aminoacidic and eplet MM scores, patients with
IP_postDST+ (either dnDST+ or persistDST+) showed a trend
toward higher PIRCHE-II scores than those with only DP_DST+
(Figures 7B–E and Supplementary Table 3).
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DISCUSSION

Primary humoral alloimmune activation through dnDSA
production is a well-characterized deleterious factor inducing
chronic ABMR and accelerated graft loss (1, 2) and recent
reports have recently shown that it may be predicted by
quantifying the donor/recipient HLA MM at the molecular
level (6, 31). However, for B-cell activation in absence of
preformed immune memory, cognate T-cell help is required
thus, previous de novo T-cell alloimmune priming (dnDST)
against donor antigens might also occur, subsequently driving
anti-donor humoral immune activation.

In our study, we first confirm that HLA matching at the
molecular level using distinct algorithms outperforms allelic MM
assessment predicting primary humoral alloimmunity by means
of dnDSA formation. Furthermore, we report that a relevant
number of kidney transplant recipients develop dnDST after
transplantation, which ultimately predicts the advent of dnDSA.
Notably, unlike pretransplant DST, an important proportion of
posttransplant DST patients, either those with persistent or de
novo DST, display high frequencies of donor-reactive CD4+ T
cells primed by the indirect antigen presentation pathway, which
contributes to their global DST response. Most interestingly, and
similarly to dnDSA, our data suggest that patients at risk of
dnDST seem to also show a poor donor/recipient HLAmolecular
matching, and in particular, at the Predicted indirectly
Recognizable HLA Epitopes II (PIRCHE-II) score level,
emphasize the contribution of the indirect antigen presenting
pathway driving DST development. These data highlight a
continuous increased risk of dnDST and dnDSA for each
A B

D EC

FIGURE 7 | Predominance of the type of alloantigen presenting pathway priming DST according to the time of DST assessment and association with distinct HLA
MM scores. (A) Proportion of patients showing any degree of IP_ DST+ according to timing of DST assessment (preDST n=2/9, 22%; persistDST n=5/9, 56%; or
dnDST n=5/9, 56%). (B) Distribution of HLA allelic MM between IP_postDST− (n=8) and IP_postDST+ patients (n=10): 7.12 ± 1.5 vs. 8.3 ± 0.95, p=0.34 (C) Amino
acidic MM 60.5± 17.5 vs. 62.5 ± 20.4, p=0.87 (D) Eplet MM load 31.6 ± 10.8 vs. 30.1 ± 11.2, p=0.87 (E) PIRCHE-II 51.5 ± 26 vs. 83.9 ± 45, p=0.07. MM,
mismatch; DST, donor specific T-cell alloreactivity; preDST, pretransplant DST; postDST, posttransplant donor specific T-cell alloreactivity; dnDST, de novo donor
specific T-cell alloreactivity; IP DST, indirect pathway donor specific T-cell alloreactivity (with recipient APCs).
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individual predicted peptide presented by recipient APC through
indirect presentation. This is, to our knowledge, the first
report showing the impact of HLA molecular incompatibility
on the development of primary adaptive alloimmunity, not
only at the humoral but also at the cellular level in solid
organ transplantation.

In order to track the presence of donor-reactive T-cell
responses, we used the IFN-g donor-specific T-cell ELISpot, a
sensitive and reproducible immune-assay tracking circulating
donor-reactive IFN-g-producing memory/effector T cells (21,
32). Most studies using this test have focused on the
pretransplant setting and have shown its capacity identifying
transplant candidates at higher risk of BPAR, regardless
preformed donor-specific humoral immune sensitization (22–
24, 29). Here, while we confirm this observation, pretransplant
DST was not associated with any HLA MM score thus, strongly
suggesting that its presence may arise from either antigen cross-
reactivity amid heterologous immunity or prior transient
alloantigen recognition triggering a low immune sensitization
state, predominantly at the T-cell compartment. Notably, it has
recently been reported the impact of HLA class-II mismatching
predicting not only the advent of dnDSA and ABMR but also
TCMR (14, 33, 34). In this regard, our findings support a
mechanistic explanation of incompatibility at the DR and DQ
molecules being especially associated to the risk of de novo T-cell
activation. Although intuitively, a specific threshold would be of
high relevance to help stratifying patients into high or low risk
for either dnDSA or dnDST, from the biological point of view
these thresholds might not represent the potential impact for
alloimmune activation. Indeed, despite the strong correlation
between the load of molecular MM and risk of de novo
alloimmunity, even a small amount of mismatched antigens
may be sufficient to activate an immune response, thus
application of specific cut-offs may be misleading in clinical
practice (34, 35).

Another important observation of our study is that up to 50%
of transplant recipients with preDST maintained a strong DST
response after kidney transplantation, which seems to be mainly
influenced by pretransplant anti-donor T-cell frequencies and
the absence of T-cell depletion induction therapy. Interestingly, a
strong association was observed between postDST and
subsequent dnDSA formation, particularly among dnDST
patients. While we cannot confirm whether patients with
persistent DST show the same pretransplant donor-reactive T-
cell clones after transplantation, we observed that an important
proportion of them did also display DST primed by the IP,
similarly to patients with dnDST thus, suggesting that DST
responses among persistDST may have also been developed de
novo. Interestingly, dnDST was also influenced by the
development of delayed graft function, which could possibly be
explained by an inflamed milieu with increased class II HLA
antigen expression on graft cells ultimately driving T-cell
alloantigen recognition. The higher presence of alloreactive
CD4+ T cells in dnDST+ samples as compared to
pretransplantation does also support that posttransplant anti-
donor alloreactivity is driven, at least also in part, by the IP of
Frontiers in Immunology | www.frontiersin.org 11
antigen presentation. While the presence of the IP after
transplantation has been widely described (16, 36, 37), a body
of evidence has also shown the potential relevance of a semi-
direct or third pathway of antigen presentation (38–40). In this
line, we also found circulating postDST responses primed by the
DP when assessed in vitro, most likely representing the presence
of such semidirect pathway of antigen presentation in vivo.

Our study has some limitations. The retrospective design may
hamper achieving robust conclusions. Nonetheless, the use of
high-resolution HLA typing and the significant associations
observed together with the concomitant mechanistic in vitro
experiments performed, counterbalance this drawback. Also,
both DPA and DRB3/4/5 typing could not be assessed, leaving
undetermined the impact of molecular MM at those loci on
dnDST generation as well as their peptide presenting role.
Nevertheless, the accurate prediction of dnDST by donor-
derived DRB1 peptides and also when evaluating DQ
presentation strengthens the consistency of our findings.
Notably, dnDST was accurately predicted by donor-derived
DRB1 peptides but not by the global peptide burden if DQ
presentation is evaluated. The expression of DQ molecules in
recipient APC or different activation capacity of CD4+ T cells
according to distinct HLA class-II molecules may explain
this observation.

In conclusion, we here show the impact of novel HLA
molecular matching scores, also influencing a higher risk of
primary anti-donor cellular alloimmune activation after kidney
transplantation, which seems to precede the subsequent
development of de novo humoral alloreactivity. Importantly,
the value of implementing these novel donor/recipient HLA
matching scores in kidney transplantation to refine current
immune-risk stratification needs to be further explored in
larger studies.
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