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Abstract: A boosting-based machine learning algorithm is presented to model a binary response with
large imbalance, i.e., a rare event. The new method (i) reduces the prediction error of the rare class,
and (ii) approximates an econometric model that allows interpretability. RiskLogitboost regression
includes a weighting mechanism that oversamples or undersamples observations according to their
misclassification likelihood and a generalized least squares bias correction strategy to reduce the
prediction error. An illustration using a real French third-party liability motor insurance data set is
presented. The results show that RiskLogitboost regression improves the rate of detection of rare
events compared to some boosting-based and tree-based algorithms and some existing methods
designed to treat imbalanced responses.

Keywords: boosting; accuracy; interpretation; unbiased estimates

1. Introduction

Research on rare events is steadily increasing in real-world applications of risk man-
agement. Examples include fraud detection [1], credit default prediction [2], bankruptcy
prediction [3], emerging markets anomalies [4], customer churn predictions [5], and acci-
dent occurrence for insurance studies [6]. We address the rare event modeling problem
with a purposefully designed method to identify rare potential hazards in advance and
facilitate an understanding of their causes.

Rare events are extremely uncommon patterns whose atypical behavior is difficult to
predict and detect. A broad consensus [7–10] favors the definition of rare events data as
binary variables with much fewer events (ones) than non-events (zeros). In other words,
the degree of imbalance is more extreme in rare events than it is in class imbalanced data,
such that rare events are characterized by the number of ones being hundreds to thousands
of times smaller than the number of zeros.

Imbalanced data and rare events have been studied mostly as statistical problems
with potential application in diverse fields of biology, political science, engineering, and
medicine. To name a few, ref. [11] develop a computational method for evaluating the
extreme probabilities from random initialization of nonlinear dynamical systems. Ref. [12]
proposes a solution for the rare events problem with fuzzy sets. Ref. [13] proposes a
resampling strategy via gamma distribution for imbalanced data in medical diagnostics.
Ref. [14] proposes a penalized maximum likelihood fixed effects estimator for binary time-
series-cross-sectional data for political science applications. Ref. [15] proposes a learning-
based stochastic optimization model using rare event data on U.S. federal government
agencies. Ref. [16] introduces dynamic models for rare events and time-inhomogeneity in
fluctuating currency markets.

The insurance literature draws heavily on discrete probability distributions, where
the occurrence of few or non-events are considered as rare or extreme. For instance,
authors like [17,18] use generalized linear models to predict insurance fraud. Ref. [19]
develops an extension of the Poisson approximation of binomial distributions for rare
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events. Another work revolves around solutions reached by rare-event simulations [20].
Refs. [21–23] employ non-parametric methods for heavy tailed distributions. Ref. [24]
employs transaction aggregation to detect credit card fraud when the occurrence of ones
in the dependent variable is much less than zeros. However, very few papers in this field
have been devoted to studying rare events in binary response such as [25–27], and even
fewer that go beyond econometric methods, such as [9], which employs advanced machine
learning methods.

In fact, developing algorithms that can handle rare events powered by the latest
machine learning advances faces two important challenges:

(i) Some models exhibit bias towards the majority class or underestimate the minority
class. Some classifiers are suitable for balanced data [28,29] or treat the minority class
as noise [30]. Moreover, some popular tree-based and boosting-based algorithms have
been shown to have a high predictive performance measured only with evaluation
metrics that consider all observations equally important [31].

(ii) Unlike econometric methods, several machine learning methods are considered as
black boxes in terms of interpretation. They are frequently interpreted using single
metrics such as classification accuracy as unique descriptions of complex tasks [32],
and they are not able to provide robust explanations for high-risk environments.

In this paper we address these two challenges in an attempt to predict and explain rare
events, which will be referred to as dependent or target variables. We propose a RiskLogit-
boost regression, which is a Logitboost-based algorithm that leads to the convergence of
coefficient estimates after some iterations, as occurs when using Iteratively Re-Weighted
procedures. Moreover, bias and weighting corrections are incorporated to improve the
predictive capacity of the events (ones).

More specifically, our prediction strategy consists of: (i) increasing the accuracy of
minority class prediction, and (ii) building an interpretable model similar to classical
econometric models. After the introduction, this paper is organized as follows. Section 2
presents the background to the three main approaches used in this research: boosting
methods for imbalanced data sets, penalized regression models, and interpretable machine
learning. Section 3 describes in detail the proposed RiskLogitboost regression in the
rare event problem framework. Section 4 shows the illustrative data used to prove the
RiskLogitboost regression. Section 5 discusses the results obtained in terms of predictive
capacity and interpretability. Finally, Section 6 presents the conclusions of the paper.

2. Background

To formally define the novel RiskLogitboost regression as a supervised machine
learning method, this section first addresses three important notions which are the basis of
our strategy. A rigorous description of boosting-based algorithms is presented since it is
the core procedure of our method. We will obtain certain key expressions from penalized
linear models to approximate RiskLogitboost as an econometric method. Finally, two
widely recognized interpretable machine learning techniques are briefly described to gain
an overview of how traditional machine learning has been interpreted so far.

Supervised machine learning methods are used to predict a response variable denoted
as Yi, i = 1, . . . , n. The data consist of a sample of n observations of the response, and the
prediction is established by a set of covariates denoted as Xip, p = 1, . . . , P with P predictor
variables. The model is trained by a base learner F

(
Xip; u

)
, which is a function of covariates

Xip and the parameters represented by u. The predicted response is denoted as Ŷi.
The purpose of supervised machine learning is to minimize the learning error mea-

sured by a loss function ϕ using an optimization strategy like gradient descent. The loss
function is the distance between the observed Yi and the predicted response Ŷi which is
denoted as ϕ(Yi, Ŷi).
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2.1. Boosting Methods

Boosting methods for additive functions are developed within an iterative process
through a numerical optimization technique called gradient descent. Each function mini-
mizes a specified loss functionϕ. Ref. [33] applied the boosting strategy to some loss criteria
for classification and regression problems (we use the term “classification problem” if Yi is
qualitative, whereas if Yi is quantitative, we use the term “regression problem”. The latter
does not refer to regression models studied in econometrics; it refers to a predictive model)
such as: least-squares

(
Yi − Ŷi

)2 for the least-squares regression; least absolute-deviation∣∣Yi − Ŷi
∣∣ for the least-absolute-deviation regression; Huber for M-Regression 0.5

(
Yi − Ŷi

)2

if
∣∣Yi − Ŷi

∣∣ ≤ δ or δ
∣∣Yi − Ŷi

∣∣ − δ/2 otherwise; and the Logistic binomial log-likelihood

log
(

e−2YiŶi
)

for two-class Logistic classification.
The Gradient Boosting Machine shown in Algorithm 1 is the base proposal of [33]. The

algorithm initializes with a prediction guess of Ŷi
0. Then a boosting process of D iterations

is carried out in four stages: the first transforms the new response denoted as r̃i
d computed

as the negative gradient of ϕ
(

Yi, Ŷi
d
)

at iteration d. The second stage fits a least squares

regression with the recently computed r̃i
d as the response. The third stage minimizes the

loss function between the observed Yi and Ŷi
d + γF

(
Xip; ud

)
and the result is delivered in

γ. Finally, the last stage updates the prediction Ŷi
d by summing Ŷi

d−1 and γF
(

Xip; ud
)

.

Algorithm 1. Gradient Boosting Machine

1. Initial values : Ŷi
0 = argminρ ∑n

i=1 ϕ(Yi, ρ).
2. For d = 1 to D do:

2.1 Transformation : r̃i
d = − ∂ϕ(Yi ,Ŷi

d)
∂Ŷi

d

∣∣∣∣
Yi=Ŷi

d−1
.

2.2 Fitting : ud = argminu,v ∑n
i=1

[
r̃i

d −vF
(

Xip; u
)]2

.

2.3. Minimizing : γd = argminγ ∑n
i=1 ϕ

[
Yi,Ŷi

d + γF
(

Xip; ud
)]

.

2.4 Updating : Ŷi
d = Ŷi

d−1 + γdF
(

Xip; ud
)

.

3. End for

Adaboost was one of the first boosting-based prediction algorithms [34,35]. It trains
the base learner in a reweighted version by allocating more weight to misclassified obser-
vations. Many other boosting techniques have since been derived, such as RealBoost [33],
which allows a probability estimate instead of a binary outcome. Logitboost [33] can be
used for two-class prediction problems by optimizing an exponential criterion. Gentle
Adaboost [33] builds on Real Adaboost and uses probability estimates to update functions.
Madaboost [36] modifies the weighting system of Adaboost. Brownboost [37] is based on
finding solutions to Brownian differential equations. Delta Boosting [38] uses a delta basis
instead of the negative gradient as transformed response.

In the context of rare event and imbalanced prediction problems, various boosting-based
methods have been proposed in the literature, including but not limited to RareBoost [39],
which calibrates the weights depending on the accuracy of each iteration. Asymmetric
Adaboost [40] is a variant of Adaboost and incorporates a cascade classifier. SMOTEBoost [41]
incorporates SMOTE (synthetic minority over-sampling techniques) in a boosting procedure.
DataBoost-IM [42] treats outliers and extreme observations in a separate procedure to generate
synthetic examples of majority and minority classes. RUSBoost [43] trains using skewed
data. MSMOTEBoost [44] rebalances the minority class and eliminates noise observations.
Additional cost-sensitive methods [45–50] have been developed by introducing cost items in
the boosting procedure.

Other boosting extensions include the tree boosting-based methods, which have
been considered a great success, due to their predictive capacity, in the machine learning
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community. The tree gradient boost [51] varies from the original gradient boost in the
initial value of the first prediction Ŷi

0, and the use of a Logistic loss function and a tree
base learner.

A tree gradient boost as shown in Algorithm 2 consists of six stages. The first states the
values for the initial prediction, Ŷi

0. The second stage obtains the new transformed response
with the negative gradient of a Logistic loss function. The third maps the observations
onto J leaves of the tree at iteration d. The tree learner is ∑J

j=1 uj1(XipεRj) with J terminal
nodes known as leaves, and Rj classification rules (regions), j = 1, . . . , J. Parameter u
corresponds to the score of each leaf, which is the proportion of cases classified as events
given covariates Xip. Gini and entropy are two metrics for choosing how to split a tree.
Gini is a measurement of the likelihood of an incorrect classification of a new observation
if it were randomly classified according to the distribution of class labels of the covariates.
Entropy measures how much information there is in a node.

Algorithm 2. Tree Gradient Boost

1. Initial values : Ŷi
0 = 1

2 log 1+Y
1−Y

, where Y is the mean of Yi.
2. For d = 1 to D do:

2.1 Transformation : r̃i
d = 2Yi

1+exp(2YiŶi
d−1)

2.2 Mapping : Rjd = j− leafscores (r̃i , Xn
1 )

2.3 Minimizing : γd
j = argminγ

∑Xi εRjd
r̃i

∑Xi εRjd
|r̃i(2−|r̃i |)| .

2.4 Updating : Ŷi
d = Ŷi

d−1 + ∑J
j=1 γ

d
j 1(XiεRjd)

3. End for

The fourth stage requires minimizing a Logistic loss function: argminγ ∑n
XiεRjd

log[
1 + exp

(
−2Yi

(
Ŷi

d−1 + γd
))]

delivered in γd
j . However, since there is no closed form for

γd
j , a Newton-Raphson approximation is computed. Finally, the sixth stage updates the

final Ŷi
d.

Tree gradient boosting techniques tend to overfit especially when data are complex
or highly imbalanced [31]. Regularization is a popular strategy to penalize the complex-
ity of the tree and allow out-of-sample reproducibility. This involves adding a shrink-
age penalty or regularization term to the loss function ϕ(Yi,Ŷi) so that the leaf scores
shrink: ∑n

i=1 ϕ
(
Yi, Ŷi

)
+ ∑D

d=1 ή
(

Ŷd
)

(ή = λ‖ .
u‖, where λ is a regularization parameter as-

sociated with L1-norm or L2-norm of the scores vector). Moreover, ref. [52] introduced
cost-complexity pruning that penalizes the number of terminal nodes J according to the
following expression: ∑n

i=1 ϕ
(
Yi, Ŷi

)
+ ∑D

d=1 λJ. As a consequence, these strategies seem
quite risky for analysts who want to keep the effect of the covariates even when this effect
is small or not significant, because after applying regularization or pruning the score of the
leaf is arbitrarily shrunk and the correspondingly less important characteristics disappear.

2.2. Penalized Regression Methods

In the econometric setting, regression models have commonly been used to describe
the relationship between a response Yi and a set of covariates Xip. Regression models
are used to predict a target variable Ŷi, and allow interpretability of the coefficients by
measuring the effect of the covariates on the expected response.

Logistic regression models are used to model the binary variable Yi. Yi follows a
Bernoulli distribution, where πi is the probability that Yi equals 1, expressed as follows:

πi=
exp(Xiβ)

1 + exp(Xiβ)
. (1)
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Note that Xiβ is the matrix notation of βo + ∑P
p=1 Xipβp, where β is the parameter

vector. 1− πi is the probability that Yi equals 0:

πi =
1

1 + exp(Xiβ)
. (2)

The Logistic regression uses a logit function as the linear predictor defined as:

ηi= log
(

πi
1− πi

)
= βo + ∑P

p=1 Xipβp. (3)

Then, the classical likelihood function is the joint Bernoulli probability distribution of
observed values of Yi as follows:

l(βo, . . . , βP; Xi) = ∏n
i=1

[
πi

Yi (1− πi)
1−Yi

]
. (4)

Taking logarithms of (4), and replacing with Expressions (1) and (2) we obtain:

l(βo, . . . , βP; Xi) = ∑n
i=1[Yi(Xiβ)− log(1 + exp(Xiβ))]. (5)

Then Logistic regression estimates can be found by maximizing the log likelihood
from (5) or minimizing the negative log likelihood function, which can be seen as a loss
function to be minimized. Maximization is achieved by deriving l(βo, . . . , βP; Xi) by all the
P + 1 parameters, obtaining a vector of P + 1 partial derivate equation known as the score

and denoted as
=
l (βo, . . . , βP; Xi) (We denote ′ to transpose vectors and matrices).

=
l (βo, . . . , βP; Xi) =

[
∂l

∂βo
, . . . , ∂l

∂βP

]
′ (6)

However, when fitting a simple model like a Logistic regression, it is sometimes the
case that many variables are not strongly associated with the response Yi, which lowers the
classification accuracy of the model. That this problem can be improved with alternative
fitting procedures such as constraining or shrinking (also known as regularization) before
considering non-linear models was recognized by [53]. The idea is that complex models
are sometimes built with irrelevant variables, but by shrinking coefficient estimates we
manage to reduce variance, and thus the prediction error.

However, when complex models arise, the machine learning literature suggests impos-
ing some degree of penalty on the Logistic regression so that the variables that contribute
less are shrunk through a regularization procedure.

Ridge Logistic regression, shown in Algorithm 3, follows the dynamics of the Logistic

regression, but the term λ
[
∑P

p=1 βp

]2
known as the regularization penalty is added to the

negative likelihood function, as in (4). Thus, covariates with a minor contribution are
forced to be close to zero.

Algorithm 3. Ridge Logistic Regression.

1. Minimizing the negative likelihood function: L = −∏n
i=1 πi

Yi (1− πi)
1−Yi

2. Penalizing: L∗ = −∏n
i=1 πi

Yi (1− πi)
1−Yi +λ

[
∑P

p=1 βp

]2
.

On the other hand, Lasso Logistic regression, shown in Algorithm 4, follows the
dynamics of the Logistic regression, but a regularization penalty λ

∣∣∣∑P
p=1 βp

∣∣∣ is added to
the negative likelihood function. In this case, less contributive covariates are forced to be
exactly zero. In both cases, λ is a shrinkage parameter, so th larger it is, the smaller the
magnitude of the coefficient estimates [53].
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Algorithm 4. Lasso Logistic Regression.

1. Minimizing the negative likelihood function: L = −∏n
i=1 πi

Yi (1− πi)
1−Yi

2. Penalizing: L∗ = −∏n
i=1 πi

Yi (1− πi)
1−Yi + λ

∣∣∣∑P
p=1 βp

∣∣∣.
2.3. Interpretable Machine Learning

Unlike statistical models in econometrics, machine learning algorithms are generally
not self-explanatory. For example, generalized linear models provide coefficient estimates
and their standard errors give information about the effect of covariates, whereas machine
learning requires alternative methods to make the models understandable. Two popular
approaches are described below.

Variable importance (VI), as proposed by [52], measures the influence of inputs on the
variation of Ŷi. We obtain the importance in a decision tree by summing the improvements
in the loss function over all splits on a specific covariate Xp; in other words, variable
importance is calculated by the node impurity weighted by the node probability (The node
probability is calculated by the number of observations contained in that node of the tree
divided by total number of observations). For ensemble techniques, the VI of all the trees
that composed the ensemble is averaged.

Partial Dependence Plots (PDP) proposed by [51] show the marginal effect of a co-
variate Xp on the prediction. The predicted function Ŷ is evaluated in certain values of the
specific covariate Xp while averaging over a range of values of all the other covariates.

3. The Rare Event Problem with RiskLogitboost Regression

The RiskLogitboost regression is an extension of Logitboost [33] that modifies the
weighting procedure to improve the classification of rare events. It also adapts a bias
correction from [54] in the boosting procedure, which is also applied to regression models
such as those in [7,8,10].

To formally define the RiskLogitboost regression, we first describe briefly the Log-
itboost shown in Algorithm 5. It first initializes with Ŷi

0= 0 and π0(Xi) = 0.5. Then the
boosting procedure continues with four stages. The first one transforms the response.
Logitboost also uses the exponential loss function eYiŶi which is a quadratic approximation
of χ2 and zi (transformed response) (see further details in Appendix A). The second stage
involves calculating the weights by computing the variance of the transformed response
Var[zi|X] (see further details in Appendix B). The third stage fits a least squares regres-
sion with response zi. Finally, the fourth stage updates the prediction Ŷi

d and π(Xi) by
computing F

(
Xip; ud

)
as Xiβ for this particular case.

Algorithm 5. Logitboost

1. Initial values : Ŷi
0 = 0,

π0(Xi) = 0.5, where π(Xi) are the probability estimates.
2. For d= 1 to D do:

2.1 Transformation : zd
i =

Yi
d−1−π(Xi)

d−1

π(Xi)
d−1
(

1−π(Xi)
d−1
)

2.2 Weighting : wi
d = π(Xi )

d−1
(

1− π(Xi)
d−1
)

2.3 Minimizing : βd = argminβ ∑n
i=1 wi

d
[
zd

i −
(

βo + ∑P
p=1 Xipβp

)]2

2.4 Updating : Ŷi
d = Ŷi

d−1 + 1
2 F
(

Xip; ud
)

, and

π(Xi)
d =

exp(Ŷi
d−1)

exp(Ŷi
d−1)+exp(−Ŷi

d−1)
3. End for

3.1. RiskLogitboost Regression Weighting Mechanism to Improve Rare-Class Learning

We propose a weighting mechanism that might be considered as a mixed case of
oversampling and undersampling. The main idea is to overweight observations whose
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estimated probability π(Xi) is further from the observed value Yi, in other words, obser-
vations that are more likely to be misclassified. The new majority class observations are
interpolated through a threshold that determines the calibration of weights. The proposed
weighting mechanism takes the following form:

w∗i =

{
[π(Xi)(1− π(Xi)](1 + |Yi − π(Xi)|); i f |Yi − π(Xi)| > Y
[π(Xi)(1− π(Xi)](1− |Yi − π(Xi)|); i f |Yi − π(Xi)| ≤ Y

The original weights wi of the Logitboost are now multiplied by a factor (1± |Yi − π(Xi)|)
that is related to the distance between Yi and π(Xi).

Figure 1 shows the relationship between weights according to the estimated probabilities
of the Logitboost and the RiskLogitboost regression. Logitboost overweights observations
whose estimated probability is around 0.5 and then decreases gradually and symmetrically
on either side. The result of the weighting mechanism in the RiskLogitboost regression
shows that low estimated probabilities are overweighted when Yi = 1 while high estimated
probabilities are underweighted when Yi = 0. In Figure 1 we show that, once the weighting
mechanism is transformed, we maintain the u–inverted shape for Y = 1 and Y = 0.

Figure 1. Plot of weights versus estimated probabilities of the Logitboost and the RiskLogitboost re-
gression.

Refs. [9,26,55,56] proposed weighting mechanisms for parametric and non-parametric
models to improve the predictive performance of imbalanced and rare data.

3.2. Bias Correction with Weights

Bias correction will lead to a lower root mean square error. Ref. [54] proposed a
bias correction method and showed that the bias of the coefficient estimators for any
generalized model can be computed as (X′WX)−1X′Wℵ, where W is the diagonal matrix
of wi. However, we propose replacing wi by w∗i since the behaviour, and therefore the bias,
for the RiskLogitboost is computed as (X′W∗X)−1X′W∗ℵ.

The factor ℵ equals Qii
(
πD(Xi)− 0.5

)
, where Qii is the diagonal elements of the Fisher

information matrix denoted as Q. The matrix Q measures the amount of information that
matrix X carries about the parameters; in other words, it is the variance of the gradient of
the log-likelihood function with respect to the parameter vector known as the score.
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Qrk is the Fisher information matrix for two arbitrary generic parameters: βk and βr.

Qrk = −E
(

∂2lnl(βo, . . . , βk, . . . , βr, . . . , βP; Xi)

∂βrβk

)
. (7)

Now let us take the partial derivative of l(βo, . . . , βP; Xi) in (5) with respect to βk.

∂l
∂βk

= ∑n
i=1 Yi

∂l
∂βk

(Xβ)− ∂l
∂βk

log(1 + exp(Xβ)), (8)

where
∂l

∂βk
(Xiβ = Xik) (9)

and
∂l

∂βk
log(1 + exp(Xiβ)) =

exp(Xβ)

1 + exp(Xβ)

∂l
∂βk

(Xiβ)

∂l
∂βk

log(1 + exp(Xβ)) = πiXik. (10)

Considering (9) and (10), we obtain:

∂l
∂βk

= ∑n
i=1 YiXik − πiXik. (11)

Now, let us compute the second derivative of (8) with respect to βr.

∂2l
∂βkβr

=
∂

∂βr

∂l
∂βk

∂2l
∂βkβr

= ∑n
i=1 Xik

(
Yi −

∂

∂βr
(πi)

)
(12)

And,

∂

∂βr
(πi) =

exp(Xiβ)
∂

∂βr
(Xiβ)(1 + exp(Xiβ))− exp(Xiβ)exp(Xiβ)

∂
∂βr

(Xiβ)

(1 + exp(Xiβ))
2

∂

∂βr
(πi) = πiXir(1− πi). (13)

Plugging (13) into (12):

∂2l
∂βkβr

= −∑n
i=1 XikXirπi(1− πi) (14)

Recall that Var (Yi) = πi(1− πi), since Yi follows a Bernoulli distribution and coincides
with vector wi (second stage of Algorithm 5). However, the new RiskLogitboost replaces
wi with w∗i again in Equation (14).

If we generalize expression (14) for all P parameters, we obtain:

∂Pl
∂β1,...,βP

= X′W∗X, (15)

where W∗ is the diagonal matrix of w∗i . Equation (15) is a variance-covariance matrix. Thus,
Q is expressed as an nxn symmetric matrix:

Q = X
(
X′W∗X

)−1X′. (16)
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Finally, each transformed parameter is computed as βRiskLogitboost = βD–(X′WX)−1X′Wℵ.

3.3. RiskLogitboost Regression

The RiskLogitboost regression (Algorithm 6) modifies the original version of Logit-
boost to improve the classification of the rare events (ones). This algorithm comprises 11
stages. The first states the initial values of the prediction Ŷi and probability π(Xi).

The second obtains the transformed answer as explained in Algorithm 5. In the third

stage we compute Ŷi
d = 1

2 log π(Xi)
d−1(

1−π(Xi)
d−1
) , which is the value that minimizes a negative

binomial log-likelihood loss function: log
(
1 + exp

(
−2YiŶi

))
used for two-class classifica-

tion and regression problems. However, Ŷi also minimize the exponential loss function
e−YiŶi used in Logitboost [33]. Therefore, the exponential loss function approximates the
log-likelihood denoted as transformed answer zi, as explained in Algorithm 5.

The fourth stage computes the weights that were explained in detail in Section 3.1.
The fifth stage normalizes the weights of the previous stage so as to convert them into a
distribution that must add up to 1.

The fifth stage consists of fitting a weighted linear regression to zd
i and obtaining the P

+ 1 parameters β. Perhaps the constant β0 is computed by setting Xp to a vector of ones.
As proposed in the original Logitboost, the sixth stage updates the final prediction Ŷi

d to fit
the model by maximum likelihood using Newton steps as follows:

We update the prediction Ŷi + F
(

Xip; ud
)

, where u corresponds to parameters β. The

outcome of F
(

Xip; ud
)

would be Xiβ in a logistic regression with πi expressed in (1), which

is exp
(

2F
(

Xip; ud
))

, as follows:

πi =
exp
(

2F
(

Xip ; ud
))

1 + exp
(
2F
(
Xip ; ud

))
πi =

exp(2Xiβ)

1 + exp(2Xiβ)
. (17)

Recalling l(βo, . . . , βP; Xi) from (5), we compute the expected log-likelihood of Ŷi +
F
(

Xip; ud
)

.

E
[
l
(

Ŷi + F
(

Xip; ud
))]

= ∑n
i=1 2Yi

(
Ŷi + F

(
Xip; ud

))
− log

(
1 + 2exp

(
Ŷi + F

(
Xip; ud

)))
. (18)

The Newton method for minimizing a strictly convex function requires the first and
second derivatives. Let g be the first derivative and H be the second derivative, also known
as the Hessian matrix.

g =
∂E
[
l
(

Ŷi + F
(

Xip; ud
))]

∂F
(
Xip; ud

)
g = 2E(Yi − πi) (19)

H =
∂2E

[
l
(

Ŷi + F
(

Xip; ud
))]

∂F
(
Xip; ud

)2

= −4E(πi(1− πi) (20)

Hence,
Ŷi = Ŷi − H−1g

Ŷi = Ŷi +
1
2

E
(

Yi − πi
πi(1− πi)

)
(21)
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This result is a very close approximation of the iteratively reweighted least squares
method (Appendix A, Equation (A2)) to the likelihood shown in (5). The key difference is
the factor 1

2 that multiplies the expected value. The seventh stage consists of checking that
probabilities are bounded between 0 and 1, since adding a δ might lead to a number larger
than 1.

The eighth stage consists of inverting 1
2 log π(Xi)

d−1(
1−π(Xi)

d−1
) (explained in the third stage),

which yields the probability estimates. Once the iterative process is finished, we obtain
the coefficient estimates of iteration D in stage nine through the expression suggested
by [57,58]. Last but not least, we obtain β* by subtracting βD–bias.

Algorithm 6. RiskLogitboost regression

1. Initial values : Ŷi
0 = 0,

π0(Xi ) = 0.5, where π(Xi ) are the probability estimates.
2. For d = 1 to D do:

2.1 Transformation : zd
i =

Yi
d−1 −π(Xi )

d−1

π(Xi )
d−1
(

1−π(Xi )
d−1
)
+δ

, where δ = 0.0001

2.2 Population Minimizer : Ŷi
d = 1

2 log π(Xi )
d−1(

1−π(Xi )
d−1
)

2.3 Weighting : wi
∗d =

{
[π(Xi )(1− π(Xi )](1 + |Yi − π(Xi )|) ; i f |Yi − π(Xi )| > Y

[π(Xi )(1− π(Xi )][1− π(Xi )] ; i f |Yi − π(Xi )| ≤ Y
2.4 Normalizing : wi

d = wi
∗d

∑n
i=1 wi

∗d

2.5 Minimizing : βd = argminβ ∑n
i=1 wi

d
[
zd

i −
(

βo + ∑P
p=1 Xipβp

)]2

2.6 Updating prediction : Ŷi
d = Ŷi

d−1 + 1
2 F
(

Xip ; ud
)

.

2.7 Checking probabilities : π(Xi )
d = min

{
1

1+exp (−2Ŷi
d−1)

+ δ , 1
}

3. End For
4. Converting : πd(Yi = 1|X ) = 1

1+exp (−2Ŷi
d−1)

πd(Yi = 0|X ) = 1
1+exp (2Ŷi

d−1)

5. Obtaining the P Parameters : βD
p =

∑n
i=1(Xp

DzD
i )

∑n
i=1(Xp D)

2 , ∀ p = 1, . . . , P.

6. Correcting Bias: β∗ = βD −
(
X′i wiXi

)−1X′i wiℵi.

4. Illustrative Data

The illustrative data set used for testing classical and alternative machine learning
algorithms is a French third-party liability motor insurance data set available from [59]
through publicly available data sets in the library CASdatasets in R. It contains 413,169
observations that were recorded mostly in one year about risk factors for third-party
liability motor policies.

This data set contains the following information about vehicle characteristics: The
power of the car ordered by category (Power); the car brand divided into seven categories
(Brand); the fuel type, either diesel or regular (Gas). This data set also includes information
about the policy holder’s characteristics such as: the policy region in France based on
the 1970–2015 classification (Region); the number of inhabitants per km2 in the city in
which the driver resides (Density). More information is included about the policy holders’
characteristics: the car age measured in years (Car age); and the driver’s age (Driver Age).
Finally, the occurrence of accident claims Yi is coded as 1 if the policy holder had suffered
at least one accident, and otherwise coded as 0. A total of 3.75% of policy holders had
reported at least one accident (rare event ratio).

5. Discussion of Results

This section first presents the predictive performance of some machine learning algorithms
jointly with the RiskLogitboost regression when Y = 1 in the extreme observations; secondly,
this section shows that the model is interpretable through the coefficient estimates.
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5.1. Predictive Performance of Extremes

Tables 1 and 2 show the Root Mean Square Error (RMSE) for observations when Y = 1
and Y = 0, respectively. Even though the Boosting Tree has optimized hyperparameters, it
produced a larger error than all other methods when Y = 1 (The Boosting Tree is built with
10-fold cross validation and has optimized hyperparameters through grid search which
correspond to the number of trees (50), the maximum depth of variable interactions (1), the
minimum number of observations in the terminal nodes of the trees (10), and shrinkage
(0.1) with the caret package in R; the Lasso and Ridge Logistic models had the lowest
deviance among several trials with shrinkage values). This can be attributed to the fact
that high predictive performance algorithms such as tree-based methods reduce the global
error, which is mainly influenced by the majority class (usually coded as 0) when data are
imbalanced. Thus, observations modelled using this type of method show high levels of
error when Y = 1. This means that the riskiest observations (with misclassifications costs)
are poorly detected, and observations whose probability is not high enough are more likely
to be misclassified.

The RiskLogitboost regression had the lowest error for observations whose estimated
probability was in the lower extremes. This is an important result since the proportion
of cases for this set of observations usually tends to be underestimated by traditional
predictive modeling techniques. Moreover, the RiskLogitboost regression perfectly pre-
dicted observations whose estimated probability was in the highest extremes, suggesting
that observations that are more likely to belong to the rare event (Y = 1) will never be
misclassified. From a risk analysis perspective, this is a valuable achievement since it
reduces misclassification costs for this group.

Observations classified with SMOTEBoost and RUSBoost outperform Logitboost,
Ridge Logistic, Lasso Logistic, and Boosting Tree; however, their predictive performance
is still below that of the RiskLogitboost regression. Even though the SMOTEBoost and
RUBoost are designed to handle imbalance data sets, RiskLogitboost seems to be more
efficient at detecting rare events.

Similar performance is obtained between the Weighted Logistic Regression (WLR) [26],
Penalized Logistic regression for complex surveys (PLR), with the two weighting mecha-
nisms PSWa and PSWb [9], and SyntheticPL (Synthetic Penalized Logitboost) [56]. Both
WLR and PLR with PSWa provide exactly the same result because the PLR incorporates
the sampling design, as well as a resampling correction. The sampling correction of both
methods coincide when data are simple random samples. RiskLogitboost still outperforms
these modern methods for imbalanced and rare event data. The Weighted Logistic for
rare events (WeiLogRFL) [10] might be considered as the second best. In contrast, when
Y = 0 the Boosting Tree, Ridge Logistic regression and Lasso Logistic had a lower RMSE
than the RiskLogitboost regression. These three methods classify the non-events (Y = 0)
accurately whereas the RiskLogitboost regression tends to underestimate their occurrence.
The results obtained by the RiskLogitboost are quite close to the WeiLogRFL. Moreover,
WLR, RLR and boosting tree obtained the lowest RMSE of highest and lowest prediction
scores. SyntheticPL outperforms RUSBoost and SMOTEBoost, even though its purpose
improves the predictive performance of imbalanced data.

The results when Y = 1 also showed that Logitboost was superior, in predictive
capacity terms, to the Ridge Logistic regression, Lasso Logistic regression and Boosting
Tree in the testing data set. In this particular case, the Ridge Logistic regression and Lasso
Logistic performed similarly in the training data set.
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Table 1. Root Mean Square Error (RMSE) for observations with Y = 1.

Training Data Set (RMSE Y = 1)

Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4

RiskLogitboost regression 0.2454 0.1825 0.1496 0.1132 0.0927 0.0803 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ridge Logistic 0.9629 0.9629 0.9629 0.9629 0.9628 0.9628 0.9627 0.9627 0.9627 0.9627 0.9627 0.9627

Lasso Logistic 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628

Boosting Tree 0.9787 0.9747 0.9727 0.9700 0.9679 0.9665 0.9162 0.9293 0.9417 0.9495 0.9522 0.9539

Logitboost 0.9829 0.9799 0.9781 0.9736 0.9707 0.9688 0.9416 0.9479 0.9505 0.9530 0.9545 0.9557

SMOTEBoost 0.6963 0.6901 0.6852 0.6800 0.6761 0.6725 0.6046 0.6090 0.6117 0.6178 0.6222 0.6264

RUSBoost 0.5811 0.5742 0.562 0.5517 0.5447 0.5391 0.4466 0.4727 0.4853 0.4931 0.4970 0.5001

WLR 0.9992 0.9982 0.9973 0.9961 0.9950 0.9939 0.4788 0.7092 0.7961 0.8676 0.8996 0.9183

PLR (PSWa) 0.9992 0.9982 0.9973 0.9961 0.9950 0.9939 0.4788 0.7092 0.7961 0.8676 0.8996 0.9183

PLR (PSWb) 0.9820 0.9790 0.9771 0.9725 0.9697 0.9678 0.9407 0.9470 0.9496 0.9520 0.9536 0.9547

SyntheticPL 0.9830 0.9803 0.9783 0.9736 0.9708 0.9689 0.9380 0.9467 0.9497 0.9523 0.9540 0.9552

WeiLogRFL 0.3696 0.2860 0.2386 0.1826 0.1498 0.1297 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Testing Data Set (RMSE Y = 1)

Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4

RiskLogitboost regression 0.4690 0.3725 0.3133 0.2421 0.1991 0.1724 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ridge Logistic 0.9629 0.9629 0.9629 0.9629 0.9628 0.9628 0.9627 0.9627 0.9627 0.9627 0.9627 0.9627

Lasso Logistic 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628 0.9628

Boosting Tree 0.9788 0.9750 0.9731 0.9705 0.9683 0.9669 0.9156 0.9297 0.9424 0.9498 0.9525 0.9542

Logitboost 0.8745 0.8723 0.8710 0.8688 0.8674 0.8665 0.8558 0.8577 0.8586 0.8595 0.8601 0.8606

SMOTEBoost 0.6959 0.6901 0.6854 0.6801 0.6762 0.6727 0.6042 0.6088 0.6116 0.6180 0.6226 0.6270

RUSBoost 0.5781 0.5600 0.5515 0.5425 0.5358 0.5312 0.4434 0.4539 0.4727 0.4858 0.4913 0.4948

WLR 0.9993 0.9982 0.9973 0.9961 0.9950 0.9938 0.4523 0.7057 0.7959 0.8664 0.8989 0.9178

PLR (PSWa) 0.9993 0.9982 0.9973 0.9961 0.9950 0.9938 0.4523 0.7057 0.7959 0.8664 0.8989 0.9178

PLR (PSWb) 0.9822 0.9792 0.9773 0.9729 0.9700 0.9681 0.9409 0.9471 0.9497 0.9522 0.9537 0.9549

SyntheticPL 0.8745 0.8721 0.8708 0.8686 0.8673 0.8664 0.8559 0.8577 0.8587 0.8596 0.8602 0.8607

WeiLogRFL 0.4690 0.3725 0.3133 0.2421 0.1991 0.1724 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The results are presented for observations that correspond to policy holders who suffered an accident (Y = 1). All results were analyzed by groups of prediction scores, also known as predicted probabilities. Each
RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under “Lower Extreme”, and each RMSE for 1%, 5%, 10%, 20%, 30% and 40% of
the highest accumulated prediction scores is shown on the right-hand side of the table under “Upper Extreme”. Abbreviations: WLR (Weighted Logistic Regression) [26], PLR (Penalized Logistic regression for
complex surveys), with two weighting mechanisms PSWa and PSWb [9]. SyntheticPL (Synthetic Penalized Logitboost) [56], WeiLogRFL (Weighted Logistic) of [10].
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Table 2. Root Mean Square Error (RMSE) for observations with Y = 0.

Training Data Set (RMSE Y = 0)

Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4

RiskLogitboost regression 0.7508 0.8219 0.8605 0.9062 0.9352 0.9514 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ridge Logistic 0.0371 0.0371 0.0371 0.0371 0.0371 0.0372 0.0373 0.0373 0.0373 0.0373 0.0373 0.0373

Lasso Logistic 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372

Boosting Tree 0.0197 0.0221 0.0247 0.0273 0.0294 0.0313 0.0773 0.0583 0.0513 0.0470 0.0451 0.0436

Logitboost 0.0157 0.0188 0.0202 0.0227 0.0264 0.0289 0.0574 0.0510 0.0485 0.0460 0.0445 0.0434

SMOTEBoost 0.2978 0.3070 0.3116 0.3171 0.3206 0.3240 0.3958 0.3909 0.3865 0.3797 0.3752 0.3704

RUSBoost 0.4219 0.4403 0.4488 0.4579 0.4646 0.4692 0.5566 0.5463 0.5281 0.5149 0.5094 0.5058

WLR 0.0008 0.0020 0.0029 0.0043 0.0055 0.0067 0.5230 0.3106 0.2356 0.1733 0.1433 0.1250

PLR (PSWa) 0.0008 0.0020 0.0029 0.0043 0.0055 0.0067 0.5230 0.3106 0.2356 0.1733 0.1433 0.1250

PLR (PSWb) 0.0166 0.0198 0.0212 0.0237 0.0274 0.0299 0.0582 0.0519 0.0495 0.0470 0.0455 0.0444

SyntheticPL 0.0157 0.0183 0.0198 0.0225 0.0262 0.0287 0.0601 0.0521 0.0493 0.0466 0.0450 0.0439

WeiLogRFL 0.6258 0.7202 0.7758 0.8467 0.8945 0.9212 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Testing Data Set (RMSE Y = 0)

Lower Extreme Upper Extreme

0.01 0.05 0.10 0.20 0.3 0.4 0.01 0.05 0.10 0.20 0.3 0.4

RiskLogitboost regression 0.5446 0.6488 0.7134 0.7988 0.8598 0.8957 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ridge Logistic 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

Lasso Logistic 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372 0.0372

Boosting Tree 0.0197 0.0220 0.0246 0.0272 0.0293 0.0312 0.0774 0.0583 0.0512 0.0470 0.0451 0.0436

Logitboost 0.1247 0.1269 0.1279 0.1295 0.1311 0.1322 0.1440 0.1420 0.1411 0.1401 0.1395 0.1390

SMOTEBoost 0.2976 0.3069 0.3116 0.3171 0.3206 0.3240 0.3959 0.3909 0.3865 0.379 0.375 0.3705

RUSBoost 0.4189 0.4259 0.4383 0.4487 0.4558 0.4614 0.5534 0.5280 0.5154 0.5074 0.5034 0.5003

WLR 0.0009 0.0020 0.0029 0.0043 0.0055 0.0067 0.5294 0.3119 0.2364 0.1738 0.1438 0.1254

PLR (PSWa) 0.0008 0.0020 0.0029 0.0043 0.0055 0.0067 0.5230 0.3106 0.2356 0.1733 0.1433 0.1250

PLR (PSWb) 0.0167 0.0198 0.0212 0.0236 0.0273 0.0298 0.0582 0.0519 0.0495 0.0470 0.0455 0.0444

SyntheticPL 0.1247 0.1271 0.1283 0.1298 0.1313 0.1323 0.1438 0.1418 0.1409 0.1400 0.1394 0.1389

WeiLogRFL 0.5446 0.6488 0.7134 0.7988 0.8598 0.8957 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

The results are presented for observations that correspond to policy holders who did not suffer an accident (Y = 0). All results were analyzed by groups of prediction scores also known as predicted probabilities.
So, eEach RMSE for 1%, 5%, 10%, 20%, 30% and 40% of the lowest accumulated prediction scores is shown on the left-hand side of the table under “Lower Extreme”, and each RMSE for 1%, 5%, 10%, 20%, 30%
and 40% of the highest accumulated prediction scores is shown on the right-hand side of the table under “Upper Extreme”. Abbreviations: WLR (Weighted Logistic Regression) [26], PLR (Penalized Logistic
regression for complex surveys), with two weighting mechanisms PSWa and PSWb [9]. SyntheticPL (Synthetic Penalized Logitboost) [56]. WeiLogRFL (Weighted Logistic) of [10].
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Figure 2 shows the highest and lowest prediction scores for all observed response Y.
The RiskLogitboost regression started with higher levels of RMSE in the first iterations,
after which they decreased until becoming stable. The RMSE did not vary from the fortieth
iteration onwards. As a result, we were able to maintain the convergence process since
the proposed transformation for the weighting procedure (Section 3.1) achieved identical
stability to that of the original Logitboost.

Figure 2. The highest and lowest prediction scores for all observed response Y within 50 iterations
(D = 50) obtained with the RiskLogitboost regression.

5.2. Interpretable RiskLogitboost Regression

Table 3 presents the coefficient estimates, standard errors and confidence intervals
obtained by the RiskLogitboost regression. Due to the design and the way of fitting the
RiskLogitboost regression, similar to generalized linear models (i.e., logistic regression) as
fully explained in Section 3, we may obtain the odds ratio by exponentiating the estimated
coefficient estimates.

The results provided by the RiskLogitboost regression suggest that the likelihood of a
policy holder having an accident increased if they had e, k, l, m, n, o type Power vehicle; in
particular, drivers with o–type Power were the most likely to have an accident among all
types of Power.

The policy holder was more likely to have an accident if they drove in the Regions
of Haute-Normandie and Limousin, whereas driving in the Regions of Bretagne, Centre,
Haute Normandie, Ile de France, Pays de la Loire, Basse Normandie, Nord Pas de Calais
and Poitou Charentes did not influence the likelihood of a person having an accident.

Policy holders driving Renault, Nissan or Citroen cars were less likely to have an
accident than those driving other brands of car.

As expected, the Lasso Logistic regression shrunk all coefficients to zero except the
one corresponding to the intercept; in this sense, this method is not informative and is
actually disadvantageous for analyzing the effects. The Ridge Logistic Regression provided
a very small magnitude of the coefficient estimates, and overall the covariates in the Ridge
Logistic regression seemed to have a small effect on the final prediction, which makes
sense because 96.25% of the cases had not reported an accident. However, this model risks
underestimating the probability of having an accident.
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Table 3. Coefficient Estimates, Standard Error and Confidence Intervals provided by the RiskLogitboost regression.

Variables Categories RiskLogitboost
Regression

RiskLogitboost
Regression

(Standard Error)

RiskLogitboost
Regression

(Confidence Intervals)

* Intercept 20.874 7.4130 (6.3445; 35.4035)

Power

e −0.6527 3.5641 (−7.6383; 6.3329)

f −1.3379 3.4769 (−8.1526; 5.4768)

g −0.8003 3.4506 (−7.5635; 5.9629)

h 4.9061 4.9344 (−4.7653; 14.578)

i 7.8770 5.4611 (−2.8268; 18.5808)

j 8.0675 5.5682 (−2.8462; 18.9812)

* k 18.1880 7.1178 (4.2371; 32.1389)

* l 45.3320 1.0540 (43.2662; 47.3978)

* m 99.6840 1.5136 (96.7173; 102.6507)

* n 144.1900 1.7590 (140.7424; 147.6376)

* o 145.8000 17.6033 (111.2975; 180.3025)

Brand

Japanese (except Nissan) or Korean −7.6774 5.7732 (−18.9929; 3.6381)
Mercedes, Chrysler or BMW −2.0130 6.7667 (−15.2757; 11.2497)

Opel, General Motors or Ford −6.5298 5.7170 (−17.7351; 4.6755)

other 8.2048 7.9329 (−7.3437; 23.7533)

* Renault, Nissan or Citroen −10.3760 4.9954 (−20.1669; −0.5850)

Volkswagen, Audi, Skoda or Seat −5.5055 5.8621 (−16.9952; 5.9842)

Region

Basse-Normandie 10.279 7.1850 (−3.8036; 24.3616)
Bretagne −3.4953 4.9434 (−13.1844; 6.1938)

Centre −6.5749 4.2924 (−14.9880; 1.8382)

* Haute-Normandie 27.6060 9.3055 (9.3672; 45.8448)

Ile-de-France −4.1033 5.12264 (−14.1437; 5.9371)

* Limousin 34.5520 10.0028 (14.9465; 54.1575)

Nord-Pas-de-Calais 0.0897 5.7443 (−11.1691; 11.3485)

Pays-de-la-Loire −2.7310 5.0910 (−12.7094; 7.2474)

Poitou-Charentes 2.4523 5.9926 (−9.2932; 14.1978)

Density 0.0003 0.00025 (−0.0003; 0.0009)

Gas Regular 0.0187 2.1895 (−4.2727; 4.3101)

Car Age 0.1053 0.1969 (−0.2806; 0.4912)

Driver Age 0.0217 0.0712 (−0.1179; 0.1613)

The base category is other for the covariates Power, Brand and Region, and diesel for the covariate Gas. * Indicates that the coefficient is
significant at the 95% confidence level. The standard error (se) root square of the diagonal of the variance-covariance matrix was computed
as
(
X′i wi

DXi
)−1. We built a 95% confidence interval for β as [β − 1.96 se; β + 1.96 se].

All in all, the coefficients obtained by the RiskLogitboost regression are much big-
ger than those obtained by the other regressions since this type of algorithm tends to
overestimate the probability of occurrence of the target variable to avoid classifying risky
observations as Ŷi = 1 instead of Ŷi = 0.



Mathematics 2021, 9, 579 16 of 21

Table 4. Variable importance of the six most relevant covariates according to RiskLogitboost, Boosting Tree, Ridge Logistic
regression and Logitboost.

Order RiskLogitboost Boosting Tree Ridge Logistic Logitboost

First Power o Driver Age Brand Japanese (except
Nissan) or Korean Region Limousin

Second Power n Brand Japanese (except
Nissan) or Korean

Region
Haute-Normandie Power m

Third Power m Car Age Brand Opel, General Motors
or Ford Power l

Fourth Power l Density Brand Volkswagen, Audi,
Skoda or Seat Power n

Fifth Region Limousin
Brand

Opel, General
Motors or Ford

Region Nord-Pas-de-Calais Region
Haute-Normandie

Sixth Region
Haute-Normandie

Region
Haute-Normandie

Brand Mercedes, Chrysler
or BMW Power k

The Lasso Logistic regression has no significant coefficient estimates with which to compute the variable importance technique.

Table 4 shows the variable importance of the six most relevant covariates according
to RiskLogitboost, Boosting Tree, Ridge Logistic and Logitboost regressions. The results
show no consensus between the methods; however, the Boosting Tree and Ridge Logistic
regression have certain categories of Brand and Region as the most important covariates,
while certain categories of Power and Region seem to be the most relevant according to
Logitboost and RiskLogitboost.

As a consequence, it seems that there is no consensus in the results provided by the
variable importance technique, which is risky in terms of interpretation. Analysts should
consider that the results of a Boosting Tree, Ridge Logistic or Lasso Logistic regression can
generate misleading inferences because they underestimate the occurrence of rare events;
the covariates that appear to be most contributive will be those with more effect on non-
events (Y = 0). By contrast, the variable importance technique suggests that RiskLogitboost
better identifies the covariates that are the most influential in the occurrence of rare events
(Y = 1).

Figure 3 shows the partial dependence plot (PDP) obtained from a Boosting Tree.
Each plot shows an average model prediction for each value of the covariate of interest.
The intuitive interpretation of this plot is that the magnitude on the y axis shows more
or less likelihood of the occurrence of the event (Y = 1). In this particular case, drivers
with m–type Power were more likely to have an accident than drivers with d–type Power.
Newer vehicles were less likely to be involved in an accident than older ones. Drivers aged
between approximately 30 and 80 were less likely to have an accident than very old or
very young drivers. Moreover, policy holders who drove in the region of Limousin were
the least likely to have an accident in comparison with other regions of France. Last but
not least, it seems that Japanese (except Nissan) or Korean vehicles were more likely to be
involved in an accident than other brands.
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Figure 3. Partial dependence plots from the Boosting Tree. Abbreviations: B-N (Basse-Normandie),
Ile (Ile-de-France), N.C. (Nord-Pas-de-Calais), Pays (Pays-de-la-Loire), Poitu (Poitou-Charentes),
Japanese (Japanese (except Nissan) or Korean), M/C/B (Mercedes, Chrysler or BMW), V/A/S/S
(Volkswagen, Audi, Skoda or Seat), Opel (Opel, General Motors or Ford).

6. Conclusions

On balance, RiskLogitboost brings a key advantage to the prediction of rare events,
principally when the detection of the minority class is fundamental or extremely important
in the case study, and the impact of false negatives is irrelevant or barely important.
The treatment and the interpretation of rare events is more accurate when using the
RiskLogitboost, and it may contribute to the prevention of events whose occurrence would
be disastrous, and whose cost policy holders are not willing to accept or able to afford.

The RiskLogitboost regression is a boosting-based machine learning algorithm shown
to improve the prediction of rare events compared to certain well-known tree-based and
boosting-based algorithms. It will be of most value where the failure to predict the occur-
rence of the rare event and when it will occur is high. RiskLogitboost regression implements
a weighting mechanism and a bias correction that lower prediction error to better predict
such rare events by overestimating their probabilities. The results presented here show
that the lowest RMSE in the upper and lower extremes occurs when Y = 1. This comes at a
cost. The RiskLogitboost regression RMSE tended to increase when Y = 0 in the extreme
observations due to the fact that the algorithm adjusts misclassified observations, which, in
the context of rare events with a binary response, are coded as Y = 1. This cost is low, when
the cost of false negatives is much smaller than the cost of false positives.

While regularization procedures can be incorporated in econometric methods such as
logistic regression, they have two main drawbacks. First, the resulting models may not
be adequately interpretable because the shrinkage from such procedures depends on the
penalty term, causing loss of the real effect of the covariates on the final prediction. Second,
such procedures cannot classify rare events efficiently.

The Tree Boosting regression had the lowest RMSE in the majority class observations
(Y = 0) but showed poor performance in the minority class observations. It is also more
in the nature of a black box in terms of interpretability, requiring more reliance on the
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variable importance method and PDP. The PDP from the Tree Boosting regression is
relatively informative, but all covariates are treated as significant or relevant for the final
prediction, which is sometimes inconsistent with an econometric model like a regression.
Moreover, while a PDP is easy to implement when there are only a few variables, with
more variables interpretation is more difficult. It is often desirable to achieve both high
predictive performance for rare events and interpretability. Tree-based and boosting-based
methods may be unsuitable in such situations because they underestimate the probability
that the rare event will occur while also underestimating the effect of the covariates that are
most important to predicting the rare event rather than the majority class. RiskLogitboost
delivers high predictive performance while also facilitating interpretation by identifying
the covariates most important to prediction of the rare event.

The RiskLogitboost has still limitations when decreasing the false negative rate since
it focuses on reducing efficiently the error of observations Yi = 1. However, for those case
studies whose cost of false negative rate tends to be high, the proposed method could be
redesigned so as to improve the detection of observations Yi = 0. This would be a proposal
for further research.
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Appendix A. Computation of zi as Transformed Response

A Taylor transformation is applied in (2) so that ηi is expanded around πi. Let ηi be
expressed as (Yi).

(Yi) ∼= (π(Xi)) + (Yi − π(Xi))
′
(π(Xi))

(Yi) ∼= log
(

πi
1− πi

)
+ (Yi − π(Xi))

(
− 1
(π(Xi)− 1)π(Xi)

)
(Yi) ∼= ηi +

Yi − π(Xi)

(1− π(Xi))π(Xi)
. (A1)

We denote (Yi) as the transformed response zi shown in Algorithm 5.

zi
∼= ηi +

Yi − π(Xi)

(1− π(Xi))π(Xi)
. (A2)

Appendix B. Computation of Weights

The weights of the Logitboost are obtained by computing the variance of the trans-
formed response Var[zi|X] .

Var
[
zi|X]= Var[ (π(Xi ))|X] + Var

[
(Yi − π(Xi ))

′
(π(Xi ))|X]
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Var
[
zi|X ]= 0 + ′

(π(Xi ))
2 Var[Yi

]
+ π(Xi )

2 Var[ (π(Xi ))]

Var[zi[X] =
′
((π(Xi)))

2Var[Yi]

=
(
− 1

π(Xi)(π(Xi)−1)

)2
[π(Xi)(1− π(Xi))]

= [π(Xi)(1− π(Xi))].

(A3)
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