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Abstract: We review and show the connection between three different theories proposed for the
thermodynamic treatment of systems not obeying the additivity ansatz of classical thermodynamics.
In the 1950s, Landsberg proposed that when a system comes into contact with a heat bath, its energy
levels are redistributed. Based on this idea, he produced an extended thermostatistical framework
that accounts for unknown interactions with the environment. A decade later, Hill devised his
celebrated nanothermodynamics, where he introduced the concept of subdivision potential, a new
thermodynamic variable that accounts for the vanishing additivity of increasingly smaller systems.
More recently, a thermostatistical framework at strong coupling has been formulated to account for
the presence of the environment through a Hamiltonian of mean force. We show that this modified
Hamiltonian yields a temperature-dependent energy landscape as earlier suggested by Landsberg,
and it provides a thermostatistical foundation for the subdivision potential, which is the cornerstone
of Hill’s nanothermodynamics.

Keywords: thermodynamics at strong coupling; temperature-dependent energy levels; thermodynamics
of small systems; nanothermodynamics

1. Introduction

Systems are always in contact with an environment that influences their energy, volume, and mass.
In certain cases, the presence of the environment is of little significance and, for simplicity, the system
may be described as though it were isolated. In other cases, surroundings significantly affect the
properties of systems, and external interactions need to be taken into account. Systems subject to
the latter scenario may be referred to as small, where small is not an attribute determined by the
system’s sheer size, but rather by how the size compares to the range of the interactions affecting the
system [1–3].

In contrast to their macroscopic analogues, small systems are non-extensive, and consequently,
also non-additive, i.e., the total system is not just a sum of its parts. Clearly, this lack of additivity
escapes the paradigms of classical thermodynamics, and a modified thermophysical theory is needed
to describe small systems.

In 1940, Rushbrooke proposed a novel statistical mechanical method to account for the
non-additivity of a system whose interactions with the environment are unknown [4]. This method,
which consisted on allowing the energy levels of the system to depend on the temperature of the bath,
was later refined by Landsberg in the 1950s [5,6]. In the decades that followed, Landsberg’s theory
of temperature-dependent energy levels was directly invoked to study the temperature dependence of
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energy gaps in semiconductors [7], as well as bosonic systems where the standard thermodynamic
description breaks down due to strong interactions [8,9]. Temperature-dependent energy levels
have since become ubiquitous in the study of semiconductors (see e.g., [10,11] and references
therein) and bosonic systems (see e.g., [12] and references therein). The theory has also been
applied to superconductivity [13], optomechanical oscillators [14], irreversible effects in thermoelectric
phenomena [15,16], small-system thermalization [17], and even information theory [18].

Despite the many applications of Landsberg’s framework, nobody used it to develop an alternative
thermodynamic theory for nonadditive systems. In fact, the first thermodynamic theory valid for
nonadditive systems did not appear until 1962, when Hill independently proposed his celebrated
thermodynamics of small systems [19,20], later termed nanothermodynamics [21–23]. In contrast to
Landsberg’s approach, Hill’s thermodynamic theory is not based on modified energy levels, but rather
on the introduction of a subdivision potential to account for nonadditive effects. Hill’s theory has
proven fruitful to describe nanoscale phenomena [24–29], and also the nonadditivity that occurs in
macroscopic systems subject to long-range interactions [2].

In recent times, Landsberg’s idea of a statistical mechanics with temperature-dependent energy
levels has covertly reappeared in a framework known as statistical mechanics at strong coupling [30].
This framework is based on the formulation of a Hamiltonian of mean force, which accounts for
environmental perturbations on the small system of interest [30]. This thermostatistical approach has
recently been applied to describe nanomechanical systems [31], nanoscale interfacial phenomena [3]
and the advent of negative thermophoresis [32].

In this work, we show that Landsberg’s physical theory of temperature-dependent energy
levels [6] is the foundation of the Hamiltonian of mean force upon which the recent statistical mechanics
at strong coupling [30] is based. Furthermore, we show that statistical mechanics at strong coupling
provides a thermostatistical foundation for the subdivision potential, which, as we shall see below,
is the cornerstone of Hill’s nanothermodynamics [20]. Although the inception and evolution of these
three powerful theories has been completely independent, and despite their apparent differences,
they are indeed indeed deeply connected.

The remainder of this paper is structured as follows. In Section 2, we show that Landsberg’s
theory of temperature-dependent energy levels lies at the heart of the Hamiltonian of mean force upon
which statistical mechanics at strong coupling is based. In Section 3, we show that statistical mechanics
at strong coupling provides a thermostatistical basis for the subdivision potential, the thermodynamic
variable upon which Hill’s nanothermodynamics is based. Concluding remarks are given in Section 4.

2. ‘Temperature-Dependent’ Energy Levels and the Hamiltonian of Mean Force

In 1940, Rushbrooke proposed a generalized statistical mechanics for assemblies whose energy-levels
depend on the temperature. His idea was that the physical state of either part of the assembly will depend
on the temperature, and thus so will its interaction with the other part of the assembly [4]. Rushbrooke’s
treatment was further generalized by Landsberg in the 1950s, when he applied the method to explore
the equilibrium properties of systems subject to unknown interactions with some environment [5,6].
In the following, we show that Landsberg’s theory leads to the Hamiltonian of mean force used in
statistical mechanics at strong coupling [30].

Landsberg’s theory may be summarized as follows. Considering an ensemble of systems at
temperature T, one may abstractly decompose each system into two interacting parts: part 1 in state
i1 and with energy E1(i1); and part 2 in state i2 and with energy E2(i2). It is then assumed that,
while the effective energy of part 2 does not deviate from its isolated value, the interaction between
both subsystems does affect the energy of part 1. The total energy of the interacting system may then
be written as

E(i1, i2) = E1(i1, i2) + E2(i2), (1)
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and the effective energy levels E1(i1) of part 1 become (see § 4 in [6])

E1(i1) = −kBT ln


∑
i2

e−E1(i1,i2)/kBT e−E2(i2)/kBT

∑
i2

e−E2(i2)/kBT

 . (2)

This method is useful when there is incomplete statistical mechanical information, and the
interactions between the system (part 1) and the environment (part 2) are unknown. The modified
energy levels E1(i1) are anomalous in that they are effectively temperature-dependent. Inserting these
effective energy levels into the partition function

Z1 = ∑
i1

e−E1(i1)/kBT (3)

results in effective expressions for the internal energy U1 and the entropy S1 of the system

U1 = kBT2 ∂

∂T
logZ1 = 〈E1(i1)〉 − T

〈
dE1(i1)

dT

〉
, (4)

S1 =
U1

T
+ kB lnZ1 =

〈E1(i1)〉
T

+ kB lnZ1 −
〈

dE1(i1)
dT

〉
, (5)

which differ from the usual additive expressions by the incidence of the last terms (see § 2 in [6]).
It should be noted that, in the approximation in which interactions are neglected,

then E1(i1, i2) simply becomes E1(i1), and the temperature-dependent energy levels E1(i1)
reduce to the temperature-independent, purely mechanical energies E1(i1). In general, however,
temperature-dependence does emerge into effective energy levels. Indeed, when examining energy
levels in polarons, Whitfield and Engineer found two distinct types of temperature-dependence:
while the temperature-dependent levels E1(i1) in the partition function (15) determine the probability
that state i1 is occupied, the E1(i1)− T dTE1(i1) averaged in (4) determine the contribution actually
made to the total energy by that state when it is occupied [33]. Incidentally, Landsberg’s method of
temperature-dependent energy levels is briefly mentioned in Pathria and Beale’s landmark tektbook
on statistical mechanics (see ch. 3, footnote 1 in [34]).

In recent years, and independently of Landsberg’s work, a statistical mechanics and thermodynamics
at strong coupling has been developed on the basis of a Hamiltonian of mean force [30,35–37].
The Hamiltonian of mean force is indeed a special case of (1), where the Hamiltonian of E1(i1, i2) may
be decomposed as H1(i1, i2) = H1(i1) + I(i1, i2), such that the total Hamiltonian H(i1, i2) is expressed
as a sum of three terms:

H(i1, i2) = H1(i1) + I(i1, i2) + H2(i2). (6)

The terms H1 and H2 correspond, respectively, to the bare system and the bare environment,
and I is the ineraction Hamiltonian between the system and the enviroment. Averaging H1 and I
over the bare environment H2 results in a temperature-dependent HamiltonianH1 of mean force for
the system given by [30]:

H1(i1) = −kBT ln


∑
i2

e−{H1(i1)+I(i1,i2)}/kBTe−H2(i2)/kBT

∑
i2

e−H2(i2)/kBT

 . (7)

In a regime where the interactions I with the environment are negligible compared
to the bare system’s energy H1, the Hamiltonian of mean force H1 reduces to the bare
(and temperature-independent) H1. In the following section, we show that the thermostatistical
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theory at strong coupling developed on the basis of this Hamiltonian of mean force [30] reproduces the
subdivision potential proposed by Hill in his thermodynamics of small systems [20].

3. Strong Coupling and Hill’s Nanothermodynamics

In this section, we show that statistical mechanics at strong coupling provides a thermostatistical
basis to Hill’s nanothermodynamics. We start by providing a modest introduction to Hill’s
thermodynamic theory. We then use statistical mechanics at strong coupling to show that the
subdivision potential in Hill’s theory is reproduced when one considers the temperature-dependence of
the effective Hamiltonian which results from the interaction between the system and the environment.

3.1. Hill’s Subdivision Potential

In his nanothermodynamics [20], Hill starts by considering a traditional, homogeneous
thermodynamic system with temperature T, pressure p and chemical potential µ. As this system is
abstractly divided into smaller and smaller identical subsystems, the internal energy of each subsystem
becomes eventually comparable to the energy of interaction amongst the subsystems, and, in contrast
to traditional additive thermodynamics, the interaction can no longer be neglected. A new pair of
conjugate variables emerges, namely the amount M of identical subsystems, and the subdivision
potential E . This subdivision potential may be thought of as the difference between a subsystem’s true
internal energy and the energy it would have if the rest of the subsystems were absent. For sufficiently
large subsystems, the subdivision potential E is negligible.

After the subdivision process, each of the M identical subsystems has internal energy U ,
entropy S , volume V and N particles. Accounting for each subsystem’s subdivision potential E ,
the total energy of the system is given by a modified Euler equation:

MU = TMS − pMV + µMN +ME . (8)

And, for each individual subsystem, the energy becomes

U = U + E , (9)

with U given by the usual Euler expression

U = TS − pV + µN . (10)

Due to the incidence of the last term in (9), the internal energy U ceases to be a linear homogeneous
function of S , V and N . This extra term, the subdivision potential E , is the cornerstone of Hill’s
nonadditive nanothermodynamics. Paraphrasing Hill: small-system thermodynamics departs from
macroscopic thermodynamics in that [U ] is not a linear homogeneous function of [S , V and N ]. Hence and
extra term occurs in (9). This last two sentences epitomize the whole book (see p. 24 in [20]).

When the subsystem of interest is an open system with a definite chemical potential µ and
temperature T (imposed by the heat and particle reservoir made up of all other subsystems), then the
additional energy term E in (9) must stem from an alteration in pressure. Interactions with the
environment cause the system’s pressure to deviate from p and become instead an effective pressure p̂.
Then, the system’s internal energy is changed by an amount (see pp. 10, 24 in [20])

E = − ( p̂− p)V . (11)

If the subsystem of interest is, instead, a closed system with a definite pressure p and temperature
T, then the additional energy must result from an alteration in chemical potential. Interactions with the
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environment cause the system’s chemical potential to deviate from µ and become instead an effective
µ̂. Then, the system’s internal energy is altered by an amount (see pp. 16, 24 in [20])

E = (µ̂− µ)N . (12)

If the subsystem’s only environmental constraint is the temperature T, then interactions with the
environment will cause deviations in pressure (which becomes p̂ instead of p) and chemical potential
(which becomes µ̂ instead of µ). As a result, the additional subdivision energy E becomes

E = − ( p̂− p)V + (µ̂− µ)N , (13)

or, as Hill wrote it (p. 24 in [20]),
E = A+ pV − µN , (14)

with A ≡ U − TS = µ̂N − p̂V . As the subsystem’s size approaches the macroscopic limit,
the difference between ( p̂, µ̂) and (p, µ) vanishes, and, as a result U ≈ U � E in every case.

3.2. Statistical Mechanics at Strong Coupling

Like in the previous section, we consider a small system with internal energy U , volume V andN
particles. For simplicity, we constrain the system’s temperature to be T, while we allow the pressure
and chemical potential to fluctuate as a result of interactions with the environment. The partition
function Z1 may be written using the Hamiltonian of mean force (7):

Z1 = ∑
i

e−H1(i)/kBT , (15)

where, due to the nonvanishing interaction term in (7), H1(i) is temperature-dependent. In the
following, and for notational simplicity, we drop the subindex 1 used to label the system in Equation (7).
The partition function (15) may be used to find the internal energy (4) of the system, resulting in a
expression of the form (9), with

U ≡ 〈H(i)〉 , (16)

and

E ≡ −T
〈

∂H(i)
∂T

〉
. (17)

The quantity U is the reference energy for the bare system in the absence of coupling.
The additional term E is an excess energy resulting from strong interactions with the environment,
which cause the effective Hamiltonian to be temperature-dependent. When the interaction I is
absent (isolated system) or negligible (large system), Equation (7) simplifies and the derivative in (17)
becomes zero.

The system’s true pressure p̂ is given by the usual

p̂ = −∂U
∂V , (18)

or
p̂ = p + ∆p, (19)

where p ≡ −∂U/∂V is the pressure in the absence of coupling, and

∆p ≡ −∂E

∂V (20)
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is the additional pressure due to the interactions with the environment captured in E . Likewise,
the chemical potential µ̂ is given by

µ̂ =
∂U
∂N , (21)

or
µ̂ = µ + ∆µ, (22)

where µ ≡ ∂U/∂N is the chemical potential of the bare system, and

∆µ ≡ ∂E

∂N (23)

is the additional chemical potential resulting from interactions. Combining (20) and (23), we see that
the additional pressure and chemical potential change the internal energy of the strongly coupled
system by an amount

E = −V∆p +N∆µ. (24)

Expression (24) is equal to the subdivision potential (13) introduced by Hill for the canonical
case using thermodynamic arguments. However, in contrast to Hill’s purely thermodynamic
approach, the subdivision potential has now a thermostatistical interpretation in terms of the
temperature-dependence of the effective Hamiltonian (17). The method of statistical mechanics
at strong coupling has recently been used to analyze interfacial phenomena, easily producing laws
shown to be valid at the nanoscale [3].

Generalization to Other Ensembles

While the strong coupling analysis above was done for a system subject to canonical constraints,
a similar statistical mechanical analysis may be carried out for other environmental variables.

In the grand canonical ensemble, the system has a fixed chemical potential, and the energy
adjustment due to strong coupling is simply given by the first term in the right hand side
of (24), which is the same as expression (11) of Hill’s thermodynamic theory. Likewise, in the
isothermal-isobaric ensemble, the pressure of the system is fixed, and the energy correction E due to
strong coupling is given by the second term in the rhs of (24) alone, which is the same as expression (12)
in Hill’s theory.

The strong coupling contribution in each of the three ensembles is different, making them
nonequivalent. However, for large systems, the coupling term I in (7) becomes negligible with
respect to the bare system’s Hamiltonian. As a result, the temperature dependence of the effective
Hamiltonian vanishes, and, as expected, all ensemble descriptions become equivalent.

It should be noted that, in addition to the energy adjustment (17) needed to match the
environment’s temperature T, in the grand-canonical ensemble, the open system must also exchange
particles in order to match the surrounding chemical potential µ. Therefore, the Boltzmann factor
in (15) must be corrected with eµn(i), where n(i) is the effective number of particles in the open system.
A statistical mechanical analysis of this strongly coupled system results, not only in a modified energy
U = U + E , but also a modified number of particles N consisting of the bare 〈n(i)〉, and an additional
adjustment term −T 〈∂n(i)/∂T〉 resulting from the strong coupling.

Likewise, in the isothermal-isobaric ensemble, the small system must not only match the
environmental temperature T by modifying its energy. It must also match the environmental pressure
p by exchanging volume with its surroundings. Therefore, the Boltzmann factor in (15) must be
augmented with e−pV(i), where V(i) are effective volume states. This results, not only in a modified
energy U = U + E , but also a modified volume V consisting of two terms: the bare system’s volume
〈V(i)〉, and an additional term −T 〈∂V(i)/∂T〉 representing adjustments caused by strong coupling.
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4. Concluding Remarks

The additivity of extensive quantities is an assumption upon which classical thermodynamics
is based. However, this property does not apply to small systems [20] or, generally, to systems with
sufficiently long-range interactions [1]. In this article, we have reviewed and shown the connection
between three different theories proposed for the thermodynamic treatment of systems not satisfying
the additivity ansatz. The differences and similarities between the three theories are illustrated
in Figure 1.

Figure 1. Illustration of the main features of the three small-system theories. In Landsberg’s theory,
the energy levels E1 of the system (blue sphere) are modified into E1 due to its interaction with the
(red) environment. Statistical mechanics at strong coupling starts with a total Hamiltonian consisting
of the environment (red), the system (blue) and the interaction (green); averaging the system and the
interaction over the environment results in a temperature-dependent Hamiltonian of mean forceH1.
Hill’s nanothermodynamics considers the system of interest as if it were surrounded by a macroscopic
set of interacting replicas; the interaction causes the effective energy to depart from U and become U .

Landsberg’s pioneering work consisted of assuming that when an otherwise isolated system
comes into contact with a thermal bath, its energy levels are redistributed due to the interaction [6].
This results in an effective energy landscape that depends on the temperature of the bath, and it
produces an extended thermostatistical framework that accounts for unknown interactions with the
thermal environment (see Equations (4) and (5) above).

Years later, Hill proposed a thermodynamic framework for nonadditive systems by describing the
mismatch between the internal energy of a small system when it is isolated vs. when it is embedded in
a macroscopic ensemble of identical replicas. To account for this difference, he introduced the concept
of subdivision potential, a new thermodynamic variable also known as replica energy. See [20,23] and
Section 3.1 above.

More recently, a thermostatistical framework at strong coupling [30] has been formulated to account
for the presence of the environment through a Hamiltonian of mean force (7). We show this modified
Hamiltonian yields a temperature-dependent energy landscape as earlier suggested by Landsberg
(see Equation (2)), and that it provides a thermostatistical foundation (17) for Hill’s subdivision
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potential E as it makes its appearance in the internal energy (9). Furthermore, we show that the
thermostatistical treatment of the temperature-dependent Hamiltonian of mean force in the canonical
ensemble results in (24), which is the subdivision potential (13) obtained by Hill. Hence, we assert that
statistical mechanics at strong coupling is the bridge between Landsberg’s ’temperature-dependent
energy levels’ and Hill’s nanothermodynamics. Indeed, and despite their independent inception and
evolution, these three powerful theories describe similar phenomena, namely the nonadditivity caused
by strong interactions.

Author Contributions: Conceptualization and Formal Analysis, R.d.M.; Supervision and Validation, J.M.R.,
R.d.M.; Writing, review & editing, R.d.M. Both authors have read and agreed to the published version of
the manuscript.

Funding: J.M.R. is grateful to the Research Council of Norway for its Center of Excellence funding scheme,
project No. 262644, PoreLab.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S. Physics of Long-Range Interacting Systems; Oxford University
Press: Oxford, UK, 2014.

2. Latella, I.; Peréz-Madrid, A.; Campa, A.; Casetti, L.; Ruffo, S. Thermodynamics of Nonadditive Systems.
Phys. Rev. Lett. 2015, 114, 230601. [CrossRef] [PubMed]

3. de Miguel, R.; Rubí, J.M. Strong Coupling and Nonextensive Thermodynamics. Entropy 2020, 22, 975.
[CrossRef] [PubMed]

4. Rushbrooke, G.S. On the statistical mechanics of assemblies wose energy-levels depend on temperature.
Trans. Faraday Soc. 1940, 36, 1055. [CrossRef]

5. Landsberg, P.T. Statitical Mechanics of Teperature-Dependent Energy Levels. Phys. Rev. 1954, 95, 643.
6. Elcock, E.W.; Landsberg, P.T. Temperature Dependent Energy Levels in Statistical Mechanics. Proc. Phys. Soc.

Lond. Sect. B 1957, 70, 161. [CrossRef]
7. Cuden, C.B. The Temperature Dependence of the Energy Gaps in Semiconductors. Ph.D. Thesis, University of

British Columbia, Vancouver, BC, Canada, 1969. [CrossRef]
8. Bendt, P.J.; Cowan, R.D.; Yarnell, J.L. Excitations in Liquid Helium: Thermodynamic Calculations. Phys. Rev.

1959, 113, 1386. [CrossRef]
9. Donnelly, R.J.; Roberts, P.H. A theory of temperature-dependent energy levels: Thermodynamic properties

og He II. Low Temp. Phys. 1977, 27, 687. [CrossRef]
10. Allen, P.V.; Heine, V. Theory of the temperature dependence of electronic band structures. J. Phys. C Solid

State Phys. 1976, 9, 2305. [CrossRef]
11. Patrick, C.E.; Giustino, F. Unified theory of electron-phonon renormalization and phono-assisted optical

absorption. J. Phys. Condens. Matter 2014, 26, 365503. [CrossRef]
12. Dykman, M.I.; Kono, K.; Kostantinov, D.; Lea, M.J. Ripplonic Lamb Shift for Electrons on Liquid Helium.

Phys. Rev. Lett. 2017, 119, 256802. [CrossRef]
13. Erez, A.; Meir, Y. Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition.

Phys. Rev. B 2013, 88, 184510. [CrossRef]
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