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Abstract: We propose a Hamiltonian-based approach to the nonextensive thermodynamics of small
systems, where small is a relative term comparing the size of the system to the size of the effective
interaction region around it. We show that the effective Hamiltonian approach gives easy accessibility
to the thermodynamic properties of systems strongly coupled to their surroundings. The theory
does not rely on the classical concept of dividing surface to characterize the system’s interaction with
the environment. Instead, it defines an effective interaction region over which a system exchanges
extensive quantities with its surroundings, easily producing laws recently shown to be valid at
the nanoscale.

Keywords: thermodynamics at strong coupling; nonextensive thermodynamics; thermodynamics of
small systems; temperature-dependent energy levels; interfacial properties

1. Introduction: The System and Its Surroundings

Systems are never truly isolated. They are in contact with an environment which influences their
energy, volume, and mass. In certain cases, the presence of the environment is of little significance
for the properties of the system, and, for simplicity, the system may be described as if it were isolated.
In other cases, surroundings significantly affect the properties of systems, and external interactions
need to be taken into account. Systems subject to the latter scenario are nonextensive, meaning that
their extensive properties do not scale linearly with one another [1].

Small-sized systems, such as single molecules [2], atomic clusters [3], biopolymers [4], molecular
motors [5], or nanoporous membranes [6,7], are typical examples of nonextensive systems. The energy,
mass, and volume of these systems can be significantly altered by what is around them, and their
scale related properties often escape the paradigms of classical thermodynamics [8]. Small-sized
systems may even exhibit anomalous properties such as negative heat capacity [9] and thermophilic
motion [10]. In contrast to small systems, the properties of their macroscopic analogs usually exhibit
negligible variations from their mean isolated values.

Yet, a system need not be small in size in order to be nonextensive. Macroscopic systems may also
exhibit this property, for what determines whether or not a system is small is not its sheer size, but how
the size compares to the range of the interactions affecting the system [1,11].

To see this, we may consider a spherical system with radius r. There is an effective interaction
region around the system; how far this region extends beyond the surface depends on how quickly the
interaction potential decays as a function of distance. This is illustrated in Figure 1. If the interaction
potential around the system decays as as a function of the distance d from the surface as (r + d)−α

(for some positive α), then the effective interaction region may be defined by the largest distance δ that
fulfills the condition

(r + δ)−α > λ r−α (1)
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for some λ ∈ (0, 1). The parameter λ is the tolerance of the approximation that is necessarily made in
describing the system as separate from its environment; together with α (the exponent that describes
how interactions fade out) it determines when the inclusion of the environment (+δ) stops being
significant. A smaller tolerance λ would demand a greater δ.

Figure 1. Graph: Interaction potential of a spherical system coupled to its environment. The potential
decays as (r+ δ)−α. The effective interaction region extends over a distance δ which fulfills condition (1).
Diagram: The system has energy E, volume V, and N particles. The system’s pressure p̂ and chemical
potential µ̂ differ from the environment by an amount pδ = p̂− p, and µδ = µ̂− µ, where pδ and µδ

are, respectively, the pressure and chemical potential at the effective interaction region. The interaction
region is a phase with thickness δ, volume Vδ, energy Eδ, and Nδ particles.

Once the effective interaction region is included, the total volume V is given by

V = V + Vδ (2)

where V ≡ 4πr3/3 is the volume of the bare system, and Vδ ≡ 4π (r + δ)3 /3−V is the volume of the
interaction phase surrounding it. Likewise, the total energy E and number of particles N are given by

E = E + Eδ, (3)

N = N +Nδ, (4)

where E and N are, respectively, the energy and number of particles in the absence of interactions,
and Eδ and Nδ are the energy and amount of particles in the interaction region, respectively.

When the thickness δ of the effective interaction region is small, the resulting perturbations are
small, and they only become significant for small r systems. However, if the interaction region is large,
i.e., large δ, then perturbations can be significant also for large r systems. It is the parameter α that
determines how the size of the interaction region compares to the system. Their length scales are
related by

r + δ

r
< λ−1/α, (5)

and their volumes by
V
V

< λ−3/α. (6)

When α is large, the interaction region does not reach very far, and the system interacts with its
environment only through a relatively thin boundary. On the other hand, when α is small, δ may
far exceed the system’s radius, making it capable of significant interactions with systems that are far
away. In either case, when the interactions are significant, the system’s energy is no longer extensive,
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and it needs to be described by an effective Hamiltonian that accounts for perturbations from the
environment.

In this work, we show that a thermostatitical framework based on an effective Hamiltonian of mean
force yields a theory very well suited to describing the thermodynamic properties of nonextensive
systems. The Hamiltonian framework does not rely on the concept of surface to characterize the
system’s interaction with the environment. Instead, it defines an effective interaction region over
which a system exchanges extensive quantities with its surroundings. This provides insight into
interphases beyond the dividing surface of discontinuity paradigm, and it predicts thermodynamic
relations valid at the nanoscale.

The rest of the paper is organized as follows. In Section 2, a Hamiltonian of mean force including
strong interactions with the environment is briefly introduced. In Section 3, we use the Hamiltonian of
mean force to describe how the effective thermodynamic properties of the strongly coupled system
deviate from those of the bare system. Section 4 focuses on the interaction region surrounding the
system—the interphase, producing thermodynamic laws valid at the nanoscale in a rather simple
manner. Final remarks are given in Section 5.

2. Hamiltonian of Mean Force: A Framework for Nonextensive Thermodynamics

The Hamiltonian of mean force is an extended Hamiltonian that accounts for interactions with the
environment. It forms the basis of thermodynamics at strong coupling [12–14], a framework recently
shown to provide a simple thermostatistical description of negative thermophoresis [15].

If a system A in state a can exchange energy with a bath in state η, then the total energy is given
by the sum of the system’s energyHA

a , the bath’s energyHBATH
η , and the interaction energy IA,BATH

a,η

between the system and the bath. Averaging the sum of the bare system’s energy and the interaction
energy over the bath results in a Hamiltonian of mean force EA

a for the system given by

e−βEA
a =

∑
η

e−β
(
HA

a +I
A,BATH
a,η +HBATH

η

)

∑
η

e−βHBATH
η

, (7)

where β ≡ 1/kBT, kB is Boltzmann’s constant, and T is the temperature.
If the coupling energy term IA,BATH

a,η is negligible compared to the system’s own energyHA
a , then

the effective Hamiltonian simply reduces to the bare system’s HamiltonianHA
a . However, for systems

with sufficiently low energy or sufficiently strong interactions, the system’s energy is comparable to the
interaction energy, and the latter may no longer be neglected. Indeed, the presence of the interaction
IA,BATH

a,η causes the effective Hamiltonian EA
a to be temperature-dependent, as long suggested by

Elcock and Landsberg [16] and others [15,17–20].
As the Hamiltonian of mean force captures the effects of the interaction region surrounding a

system, it is a natural starting point towards a thermodynamic description of systems, large or small,
whose scale related properties break the paradigms of extensive (i.e., classical) thermodynamics.

Meanwhile, it must be noted that the Hamiltonian approach of thermodynamics at strong coupling
(TSC) is fundamentally different from the classical thermodynamic framework proposed by Hill in the
early 1960s, where it was proposed that Euler’s equation (i.e., extensivity) be corrected by fictitiously
replicating a system and then regarding it as a member in a homogeneous collection of many identical
subsystems interacting with a so-called replica energy [21,22]. Instead, TSC takes into account the
microscopic origin of nonextensivity from the outset, offering a framework well suited to the modeling
and simulation of complex systems (large or small) subject to strong interactions.
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3. Strongly Coupled System

If we consider a closed system with volume V and N particles in contact with a bath at inverse
temperature β, the partition function Z may be written using the effective energy (7):

Z = ∑
i

e−βEA
i , (8)

where, due to the nonvanishing interaction term in (7), EA
i is temperature-dependent. In the following,

and for notational simplicity, we drop the superindex A used to label the system in Equation (7).
The partition function may be used to find the internal energy E of the system:

E = − ∂

∂β
logZ , (9)

resulting in expression (3) with
E ≡ 〈Ei〉 , (10)

and

Eδ ≡ −T
〈

∂Ei
∂T

〉
, (11)

where 〈·〉 denotes the average over all microstates of the bare system.
Expression (3) gives us the effective internal energy. The quantity E is the reference energy for the

bare system in the absence of coupling. The additional term Eδ is an excess energy resulting from the
strong interactions happening at the effective interaction region; when those interactions are absent
(isolated system) or negligible (extensive system), Equation (7) simplifies and the derivative in (11) is
simply zero.

The system’s effective pressure p̂ may be defined as

p̂ = − ∂E
∂V , (12)

with E given by (3). We may then write
p̂ = p + ∆p, (13)

where p ≡ −∂E/∂V is the pressure in the absence of coupling, and

∆p ≡ −∂Eδ

∂V (14)

is the additional pressure due to the energy exchange with the environment through the interaction region.
Likewise, the effective chemical potential µ̂ may be defined as

µ̂ =
∂E
∂N , (15)

which, invoking (3), becomes
µ̂ = µ + ∆µ, (16)

where µ ≡ ∂E/∂N is the chemical potential in the absence of coupling, and

∆µ ≡ ∂Eδ

∂N (17)

is the additional chemical potential resulting from the energy exchange with the environment.
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Only in systems where (6) is sufficiently close to 1, the interfacial energy contribution Eδ is
negligible, and the internal energy E is extensive with respect to the system’s volume V and number of
particles N :

Eδ

E → 0 =⇒ ∂ (ξE)
∂ (ξV) → −p &

∂ (ξE)
∂ (ξN )

→ µ ∀ξ > 0.

The nonextensivity of the energy E stems from the additional pressure (14), which increases the
system’s energy by an amount

Eδ,p = −V∆p, (18)

and the additional chemical potential (17), which increases the energy with

Eδ,µ = N∆µ. (19)

The total interfacial energy Eδ in (3) is given by the sum of these two contributions:

Eδ = Eδ,p + Eδ,µ. (20)

While the analysis above was done for a system subject to the canonical constraints (β,N ,V),
a similar analysis may be carried out for other environmental variables by simply expanding the
effective Boltzmann factor in (8). In the isothermal-isobaric (β, p,N ) ensemble, the system may
exchange work with its surroundings, and the Boltzmann factor is augmented with e−pVj , where p is
the environmental pressure and Vj are effective volume states. This results in a volume V given by (2)
with V ≡

〈
Vj
〉

and Vδ ≡ −T
〈
∂Vj/∂T

〉
. In this case, the nonextensive energy contribution Eδ is given

by (19) alone.
In the grand canonical (β, µ,V) ensemble, the Boltzmann factor is corrected with eµn, where µ is

the chemical potential and n is the effective number of particles in the strongly coupled system. This
results in a number of particles N given by (4) with N ≡ 〈n〉 and Nδ ≡ −T 〈∂n/∂T〉. In this case, the
nonextensive energy contribution is simply (18).

The nonextensive energy contribution in each of the three ensembles is different, making
them nonequivalent. However, as the system becomes large with respect to the interaction region,
expressions (18)–(20) all become zero, and, as expected, all ensemble descriptions are equivalent.

4. The Interaction Region

Traditional treatments of the system’s boundary regard it as an infinitely thin dividing surface [23]
with excess variables [24]. As we illustrate in Figure 1, the framework of thermodynamics at strong
coupling allows us to construct an effective interaction region containing not only Nδ particles and
energy Eδ, but also a volume Vδ that surrounds a bare system with N particles, energy E, and volume V.

From (2), (4), and (18)–(20), it follows that the interaction energy Eδ is given by

Eδ = − (V + Vδ)∆p + (N +Nδ)∆µ. (21)

Then, the pressure pδ and chemical potential µδ in the interaction region are, respectively, given by

pδ = −
∂Eδ

∂Vδ
= ∆p, (22)

µδ =
∂Eδ

∂Nδ
= ∆µ, (23)

where the second equalities stem from (14) and (17).
In contrast to classical thermodynamic theory, this framework considers the possibility of

nonextensivity by describing the system always in conjunction with the interaction phase (Eδ,Vδ,Nδ)

surrounding it. As is well known, while classical thermodynamics does have its range of applicability,
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it cannot be relied upon to describe the properties of nanoscale systems where perturbations from
the surroundings are very significant. However, increasingly accurate experiments and simulations
show that select expressions of classical thermodynamics are surprisingly accurate at describing the
properties of nanosystems. In the following, we show that TSC’s treatment of the system’s interaction
region naturally produces thermodynamic laws that are valid at the nanoscale.

4.1. Capillary Pressure

Despite its strictly classical origin (over two centuries ago), the Young–Laplace law was recently
shown to accurately describe capillary pressure in nanopores as small as 1–2 nm [25]. As we shall
see, this law’s adequacy to describe strongly coupled systems emerges as a simple result from the
framework of TSC.

The capillary pressure between two static fluids separated by a curved surface is nothing but the
pressure in the interaction region connecting both fluids. In contrast to a classical treatment of the
interface as a geometrical surface, TSC treats the interaction region as a phase with volume Vδ and
energy Eδ. The pressure in this phase is given by (22), and it may be expressed as

pδ = −
∂XEδ

∂XVδ
, (24)

for some variable X. If X is taken to be the area A of the bare system’s boundary, then (24) becomes

pδ = −γ
∂A
∂Vδ

, (25)

where
γ ≡ ∂Eδ

∂A
(26)

is known as the surface tension. If the sum of the system’s radius r and the shell thickness δ is assumed
constant, then the total volume V in (2) is constant, and (25) produces the Young-Laplace law:

pδ = γ
∂A
∂V

= γ
∂r A(r)
∂rV(r)

=
2
r

γ, (27)

where the last equality applies to a variety of geometries, including spherical systems, toroidal droplets,
and capillary tubes.

4.2. Capillary Condensation

Just like expression (27) is valid in the strong coupling regime described by TSC, recent
experiments in capillary tubes with radii as small as 8 nm [26] have shown the nanoscale validity of
Kelvin’s classical relation for vapor pressure and capillary condensation. In the framework of TSC,
capillary condensation is governed by the chemical potential (23) in the interaction region, which,
using (22) and (27), may be expressed in terms of the surface tension as

∆µ = − pδ

ρδ
= − 2γ

rρδ
(28)

where ρδ is the density in the interaction phase, defined, like (22) and (23), as

ρδ ≡
∂Nδ

∂Vδ
= ρ̂− ρ, (29)
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ρ̂ is the density of the system, and ρ is the density of the surrounding bath. If we consider the system
to be a vapor bubble with saturated vapor pressure p̂ inside a liquid phase with vapor pressure p,
then ρ� ρ̂ and ∆µ ≈ kBT log p̂/p, which inserted in (28) and (29) results in the Kelvin equation

p ≈ p̂ exp
(
−2γ/rρ

kBT

)
. (30)

This result is valid for bubbles and, as shown by recent nanoscale experiments [26], even in capillary
tubes that are far too narrow for bubbles to form.

4.3. Wetting

Applying TSC in narrow capillary tubes demands that, in addition to the three phases
(liquid, vapor, and solid), we also consider three interaction regions, namely, liquid–vapor (LV),
liquid–solid (LS), and vapor–solid (VS). Each of the three interaction phases has its volume (VLV

δ , VLS
δ ,

VVS
δ ), energy (ELV

δ , ELS
δ , EVS

δ ), and its corresponding pressure

pi
δ = −

∂E i
δ

∂V i
δ

, (31)

where i = {LV, LS, VS}, as shown in Figure 2.

Figure 2. Capillary tube with three phases and three interfacial regions. The difference between pVS
δ

and pLS
δ causes the wetting angle θ to deviate from 90o. This causes in turn an interfacial pressure

pLV
δ = pVS

δ − pLS
δ between the liquid and the vapor phases.

The curvature between the liquid and vapor phases is caused by an imbalance between pVS
δ and

pLS
δ . When pVS

δ > pLS
δ , more vapor than liquid is pushed away from the solid surface, and the wetting

angle θ becomes acute. On the other hand, if pVS
δ < pLS

δ , the contact angle θ becomes obtuse. In either
case, the resulting curvature creates a surface tension γLV with its corresponding pressure pLV

δ given
by the Young–Laplace law (27)

pLV
δ =

2
r

γLV =
2
a

γLV cos θ, (32)
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and by the imbalance between pVS
δ and pLS

δ

pLV
δ = pVS

δ − pLS
δ , (33)

each of which is given by (27)

pLS
δ =

∂AL

∂VL γLS =
2
a

γLS, (34)

pVS
δ =

∂AV

∂VV γVS =
2
a

γLS. (35)

Combining the last four expressions produces Young’s wetting equation:

γLV cos θ = γVS − γLS. (36)

The accuracy of this old expression for describing strongly coupled nanosystems has been verified by
experiments and simulations with carbon nanotubes and nanocones [27].

4.4. Tolman Length

How much does the surface tension γ between two curved phases deviate from the planar
value γ0? In 1949, Tolman used elaborate classical theory and proposed a law (see in [28] eq. 4.3)
whose applicability at the nanoscale has just been established [29]. As shown below, this law,
and its applicability to small, strongly coupled systems, becomes a straightforward result in the
framework of TSC.

Considering an interaction phase of thickness δ around a spherical system with volume V,
as illustrated in Figure 1, the right hand side of (25) becomes

∂Vδ

∂A
=

∂VVδ(V; δ)

∂V A(V)
= δ

(
1 +

δ

r
+

1
3

δ2

r2

)
, (37)

and (25) obeys
dγ

dpδ
= −δ

(
1 +

δ

r
+

1
3

δ2

r2

)
. (38)

Inserting (27) into (38) produces the the Gibbs–Tolman–Koening–Buff equation (see in [28] eq. 4.1):

1
γ

dγ

dr
=

2 δ
r2

(
1 + δ

r +
1
3

δ2

r2

)
1 + 2 δ

r

(
1 + δ

r +
1
3

δ2

r2

) , (39)

which integrated from ∞ to r results in Tolman’s law

γ

γ0
= 1− 2

δ

r
+O

(
δ

r

)2
, (40)

where the quantity δ, i.e., the thickness of the interaction phase, is classically known as the Tolman length.
The examples above show that TSC’s framework naturally captures the properties of systems

subject to strong coupling, smoothly predicting laws recently shown to be surprisingly accurate at
the nanoscale. The method may be applied to predict the thermal properties of a wide range of
nonextensive systems, such as macromolecules, nanoclusters, and quantum nanodevices.

5. Concluding Remarks

We have presented a theoretical framework capable of describing the thermodynamic properties
of nonextensive systems by including the influence of the interaction phase surrounding the system.
In contrast to theories based on a purely thermodynamic starting point, the Hamiltonian of mean



Entropy 2020, 22, 975 9 of 10

force can account for the microscopic origin of nonextensivity and provide a general framework for
nonextensive thermodynamics. Moreover, the Hamiltonian approach provides a better foundation for
the modeling and simulation of complex systems regardless of their size.

A proper characterization of the interaction phase is indeed important to describe inherently
nonextensive interfacial phenomena. While classical interfacial theory assumes an infinitely thin
surface of discontinuity, thermodynamics at strong coupling directly accounts for the interaction
region surrounding a system, and it can describe the properties of interphases as easily as those of the
systems they surround. This descriptive accessibility of the interfacial region is increasingly important
as the scientific community becomes interested in ever smaller nanobiosystems whose properties
are strongly influenced by the immediate environment [30,31], which in turn becomes of paramount
importance for the system’s applications, design, and operation.
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