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E. Aranda15† & R. Salazar1,2*†, on behalf of the Spanish Cooperative Group for the Treatment of Digestive
Tumours (TTD)
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d’Oncologia-Hospital Germans Trias i Pujol, Badalona; 12Department of Medical Oncology, Hospital Universitario Virgen de la Victoria, Málaga;
13Department of Medical Oncology, Hospital Universitari Arnau de Vilanova, Lleida; 14Clinical Research Unit, Institut Català d’Oncologia, L’Hospitalet de Llobregat;
15Department of Medical Oncology, IMIBIC, Hospital Universitario Reina Sofı́a, Universidad de Córdoba, CIBERONC, Córdoba, Spain
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Background: Several studies show the importance of accurately quantifying not only KRAS and other low-abundant mutations
because benefits of anti-EGFR therapies may depend on certain sensitivity thresholds. We assessed whether ultra-selection of
patients using a high-sensitive digital PCR (dPCR) to determine KRAS, NRAS, BRAF and PIK3CA status can improve clinical
outcomes of panitumumab plus FOLFIRI.

Patients and methods: This was a single-arm phase II trial that analysed 38 KRAS, NRAS, BRAF and PIK3CA hotspots in tumour
tissues of irinotecan-resistant metastatic colorectal cancer patients who received panitumumab plus FOLFIRI until disease
progression or early withdrawal. Mutation profiles were identified by nanofluidic dPCR and correlated with clinical outcomes
(ORR, overall response rate; PFS, progression-free survival; OS, overall survival) using cut-offs from 0% to 5%. A quantitative PCR
(qPCR) analysis was also performed.

Results: Seventy-two evaluable patients were enrolled. RAS (KRAS/NRAS) mutations were detected in 23 (32%) patients and
RAS/BRAF mutations in 25 (35%) by dPCR, while they were detected in 7 (10%) and 11 (15%) patients, respectively, by qPCR.
PIK3CA mutations were not considered in the analyses as they were only detected in 2 (3%) patients by dPCR and in 1 (1%)
patient by qPCR. The use of different dPCR cut-offs for RAS (KRAS/NRAS) and RAS/BRAF analyses translated into differential clinical
outcomes. The highest ORR, PFS and OS in wild-type patients with their lowest values in patients with mutations were achieved
with a 5% cut-off. We observed similar outcomes in RAS/BRAF wild-type and mutant patients defined by qPCR.

Conclusions: High-sensitive dPCR accurately identified patients with KRAS, NRAS, BRAF and PIK3CA mutations. The
optimal RAS/BRAF mutational cut-off for outcome prediction is 5%, which explains that the predictive performance of qPCR
was not improved by dPCR. The biological and clinical implications of low-frequent mutated alleles warrant further
investigations.
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Introduction

Panitumumab is a fully human monoclonal antibody that binds

to epidermal growth factor receptor (EGFR), inhibiting EGFR

pathway and tumour growth. 5-fluorouracil-based chemother-

apy and panitumumab improved survival outcomes in metastat-

ic colorectal cancer (mCRC) [1, 2], although the absolute

benefits are limited and disease course depends on RAS muta-

tions [3].

Mutated KRAS exon 2 was initially claimed responsible for

panitumumab resistance [4], but subsequent analyses revealed

the detrimental effect of other KRAS (exons 3/4) and NRAS

(exons 2/3/4) mutations [5]. Treatment indication was then

restricted to patients without mutant RAS (KRAS/NRAS) exons

2/3/4 in 2013. However, not all wild-type RAS tumours respond

to panitumumab and additional predictive markers should be

identified. Despite the need for further evidence, patients with

mutated BRAF exon 15 appear less likely to benefit from EGFR

antibodies [6, 7] and those with PIK3CA exon 20 mutations may

exhibit worse outcomes [8]. Indeed, tumours with RAS, BRAF or

PIK3CA mutations display a shared gene expression pattern that

can explain resistance to anti-EGFR drugs [9]. Extended muta-

tional analyses may therefore contribute to optimizing the identi-

fication of patients that are more likely to respond to anti-EGFR

therapies.

Mutational testing remains challenging as no clearly standar-

dized procedures have been established and an increasing num-

ber of techniques have been recently developed, including

hypersensitive techniques that may ultra-select patients more ac-

curately [10]. Digital PCR (dPCR) is an increasingly applied tech-

nique based on a sample split into hundreds of smaller reactions

followed by target PCR amplifications. Nanofluidic dPCR

improved the sensitivity of detecting KRAS-mutant alleles in clin-

ical samples, reaching 0.05%–0.1%, and allows a better tumour

classification with a commercially available platform [11].

Subsequent extended RAS and BRAF hotspot analyses suggested

a threshold of 1% of mutated alleles to predict anti-EGFR therapy

response, though the optimal cut-off for the clinical setting

remains to be defined [12, 13].

In light of the above, we prospectively assessed whether ultra-

selection of mCRC patients using high-sensitive nanofluidic

dPCR genotyping of KRAS, NRAS, BRAF and PIK3CA can im-

prove the selection of patients and so optimize clinical outcomes

of panitumumab plus FOLFIRI treatment.

Patients and methods

Study design and participants

This was an open-label, single-arm, phase II trial conducted in the
Departments of Medical Oncology at 12 Spanish hospitals according to
the Declaration of Helsinki and national regulations. It was approved by

the ethics committee and all patients gave their written informed consent
before enrolment.

The study included patients aged �18 years with histologically con-
firmed colorectal adenocarcinoma, wild-type KRAS exon 2 as per the
local or central laboratory conventional technique (wild-type KRAS and
NRAS exons 2/3/4 after the approval of a protocol amendment on 25
July 2013), with �1 initially measurable and unresectable metastatic le-
sion, Karnofsky performance status �70% and adequate bone marrow,
renal, hepatic and metabolic functions. Patients must have received
irinotecan-based chemotherapy for mCRC for �6 weeks and have
exhibited disease progression during this treatment or within the
6 months after its end. DNA extracted from tumour blocks must also be
suitable for high-sensitive analysis. Previous treatment with anti-EGFR
antibodies or small-molecule EGFR tyrosine kinase inhibitors was not
allowed.

Patients received panitumumab 6 mg/kg over a 60-min intravenous
infusion on day 1 in 2-week cycles. FOLFIRI was intravenously adminis-
tered on day 1 in 2-week cycles according to the following schema: irino-
tecan 180 mg/m2 over 30–90-min infusion, leucovorin 400 mg/m2 over
120-min infusion, 5-fluorouracil 400 mg/m2 bolus, 5-fluorouracil
2400 mg/m2 over 46-h infusion. Doses of panitumumab, irinotecan and
5-fluorouracil could be reduced/delayed in case of adverse events (AEs)
as per protocol. Treatment continued until disease progression or un-
acceptable toxicity. Patients were subsequently followed every 3 months
to document progression and survival. The study ended 1 year after the
last patient enrolment.

Tumour assessments were conducted every 10 6 2 weeks until disease
progression according to the Response Evaluation Criteria in Solid
Tumors version 1.1. Overall response rate (ORR) was defined as the pro-
portion of patients with a partial or complete response. Progression-free
survival (PFS) was measured from study inclusion to progression or
death, and overall survival (OS) from enrolment to death. Toxicity was
assessed at every study visit according to the Common Toxicity Criteria
for Adverse Events version 4.0.

Mutational analysis

Mutational analysis was conducted at the Institut Català d’Oncologı́a
(L’Hospitalet de Llobregat, Spain). DNA was extracted from formalin-
fixed paraffin-embedded tumour tissues (primary tumour or metastasis)
and a 38-hotspot panel of KRAS (exons 2/3/4), NRAS (exons 2/3/4),
BRAF (exon 15) and PIK3CA (exon 20) mutations was assessed using a
conventional quantitative PCR (qPCR) machine (LightCycler

VR

480;
Roche Applied Science) and a nanofluidic dPCR platform (Digital
ArrayTM and BioMarkTM Real-Time PCR System; Fluidigm Europe) as
described previously [11, 12]. Mutations assessed in this study are
described in supplementary Table S1, available at Annals of Oncology on-
line. Investigators remained blind to mutational status until the end of
study treatment.

Statistical analysis

The primary end point was ORR, which was calculated according to RAS
(KRAS/NRAS), RAS/BRAF and RAS/BRAF/PIK3CA status (as per proto-
col amendment) assessed by dPCR. ORRs were correlated with dPCR
cut-offs from 0% to 5%, estimating odds ratios, 95% confidence intervals
(CIs) and P-values. The sample size was calculated assuming 55% of
RAS/BRAF/PIK3CA (‘ultra’) wild-type patients, with an expected ORR of
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30% versus 5% in those with mutations. Considering a type I error of
15%, type II error of 20%, loss rate of 10%, the estimated sample size was
82 patients. It was required 45 KRAS/NRAS and BRAF wild-type patients.

Secondary end points included PFS and OS, which were correlated
with the previously described mutational status based on dPCR cut-offs
from 0% to 5%. They were calculated using the Kaplan–Meier method
and log-rank test, estimating hazard ratios, 95% CIs and P-values.

Missing data were not considered in the analyses. All statistical analy-
ses were performed using the Statistical Package for the Social Sciences
version 18.0, with a significance level of 0.05.

Results

Patient characteristics and treatment exposure

Ninety-six patients were consecutively recruited from November

2012 to July 2015, 24 of whom were screening failures (supple-

mentary Figure S1, available at Annals of Oncology online). Thus,

72 patients were finally included in the study; their baseline char-

acteristics are described in Table 1. The median 5-flourouracil-

free interval was 1.7 months (range 0.9–6.4), the median

irinotecan-free interval was 1.6 months (range 0.9–5.6) and the

median oxaliplatin-free interval was 3 months (range 0.9–37.4).

Patients received a median of 11 (1–42) cycles of panitumu-

mab, 10 (1–42) of irinotecan, 9 (1–35) of 5-fluorouracil bolus

and 10 (1–42) of 5-fluorouracil infusion. Their median relative

dose intensities were 81% (38%–104%), 78% (25%–103%), 70%

(0%–102%) and 74% (13%–102%), respectively. Grade 3/4 tox-

icities were reported in 48 (67%) patients (supplementary Table

S2, available at Annals of Oncology online) and treatment discon-

tinuations were mainly due to disease progression (n¼ 47, 65%)

or AEs (n¼ 8, 11%).

Mutational profiles

Primary tumour and liver metastasis samples were available for

mutational analysis in 63 and 9 patients, respectively. Specific

mutations in the population of patients included in the study are

shown in supplementary Table S3, available at Annals of Oncology

online. Mutations in RAS, BRAF or PIK3CA were detected in 12

(17%) patients by conventional qPCR and in 26 (36%) by nano-

fluidic dPCR (detection limited by the technique sensitivity).

qPCR found RAS mutations in 7 (10%) patients (KRAS: n¼ 5;

NRAS: n¼ 2), while dPCR detected them in 23 (32%) (KRAS:

n¼ 20; NRAS: n¼ 5) (Table 2). RAS or BRAF mutations were

detected in 11 (15%) patients using qPCR and in 25 (35%) using

dPCR. Two of the four patients with BRAF mutant tumours by

qPCR showed additional KRAS mutations at low allele fraction.

As only one PIK3CA mutation (H1047R) was detected in 1 (1%)

patient by qPCR and in 2 (3%) by dPCR, it was not considered in

the efficacy outcome analyses.

Efficacy outcomes according to mutational profiles

In the RAS wild-type population by qPCR (N¼ 65), radiologic

tumour response was evaluable in 64 of 65 patients. An inverse

correlation between the proportion of mutant allele and tumour

response is shown in supplementary Figure S2, available at

Annals of Oncology online, although it did not reach statistical

significance (P-value ¼ 0.058). The median percentage of

mutated DNA was 0.8% for responders (0.1%–6.1%) and 9.6%

for non-responders (0.4%–48%). RAS mutations were detected

in 7 of 31 responders (23%) by qualitative dPCR genotyping. In 4

of these 7 responders (57%), the major mutant allele fraction was

below 1% and in 6 of these 7 responders (86%), the major mutant

allele fraction was below 5% (Figure 1). When analysed by qPCR,

ORRs were 48% in patients with wild-type RAS and 51% in those

with wild-type RAS/BRAF and no patient with mutations showed

a response. The bottom line is that when analytical sensitivity is

increased beyond 5%, response rate significantly increases in new

‘ultra’ mutant but not in the new ‘ultra’ wild-type groups, re-

spectively, which remarkably worsens the prediction ability of the

mutational status (Table 3).

As mentioned previously, four of the RAS wild-type tumours

harboured BRAF mutations, detected either by qPCR or dPCR.

In an attempt to exclude the potential negative role of BRAF

mutations, we evaluated the predictive value of low-frequent

RAS-mutant alleles in the RAS/BRAF wild-type population

assessed by qPCR. Results were similar to those observed in

the RAS wild-type population, since the higher sensitive cut-

off did not improve the predictability to treatment response

(supplementary Table S4, available at Annals of Oncology

online).

At database lock (July 2016), the median follow-up was 12.3

(0.7–34.2) months. Patients showed a median PFS of 7.1 months

(95% CI, 5.8–8.5) and OS of 13.7 months (95% CI, 9.4–18).

Survival outcome analyses according to RAS and RAS/BRAF sta-

tus by qPCR and dPCR cut-offs in the RAS wild-type population

are described in Table 4. When using dPCR, the 5% cut-off

showed the highest PFS in wild-type patients with the lowest PFS

in those with mutated RAS (7.6 versus 4.0 months, P-value ¼
0.048) and RAS/BRAF (8.8 versus 4.0 months, P-value < 0.001).

These figures were similar to those observed when using qPCR,

with the exception of a slightly higher PFS in wild-type RAS/

BRAF patients by dPCR compared to qPCR (8.8 versus

7.6 months). We also evaluated survival in the RAS/BRAF wild-

type population by qPCR according to different RAS mutant al-

lele fractions. We observed that the presence of RAS mutations at

frequency below 5% did not improve survival outcomes, since

PFS was similar in RAS wild-type and mutant patients (supple-

mentary Table S5, available at Annals of Oncology online).

Discussion

The identification of predictive biomarkers to EGFR inhibitors to

select patients more likely to benefit from these therapies is still a

matter of concern. The expanded mutational analysis to KRAS

and NRAS exon 2, 3 and 4 has been widely explored in retrospect-

ive and prospective studies associated to clinical trials and its as-

sessment is mandatory before anti-EGFR therapies, whereas

there is still insufficient data for BRAF [6, 7], although it is highly

recommended by international guidelines [14]. The role of add-

itional low-abundant mutations in the EGFR pathway genes ra-

ther than RAS exon 2, 3 and 4 mutations has been addressed

previously in retrospective studies suggesting that the optimal

cut-off for patient selection is >1% [12, 13, 15, 16]. However,
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there is a need for further validation. In this sense, we report the

results of the first published clinical trial addressing this question.

Nanofluidic dPCR allowed the identification of higher rates

of gene mutations, most of them located in KRAS exons 2/3. It

is remarkable that additional low-abundant mutations in

KRAS exon 4, NRAS and/or PIK3CA were detected in more

than 20% of patients, similar to data published previously [12,

13, 15, 16].

Table 1. Baseline patient characteristics (overall population and patients with RAS wild-type population by qPCR)

Characteristics Value Value
Overall population RAS wild-type by qPCR
N 5 72 N 5 65

Median age, years (range) 62 (38–83) 62 (38–83)
Gender, n (%)

Male 51 (71) 46 (71)
Female 21 (29) 19 (29)

Tumour stage at initial diagnosis, n (%)
II 4 (5.6) 4 (6.2)
III 16 (22.2) 14 (21.5)
IV 52 (72.2) 47 (72.3)

Karnofsky performance status, n (%)
70–80 18 (25) 14 (21.5)
90–100 54 (75) 51 (78.5)

Primary tumour site, n (%)
Right colon 10 (14) 9 (13.8)
Left colon 31 (43) 31 (47.7)
Rectum 31 (43) 25 (38.5)

Primary tumour surgery, n (%)
Yes 53 (74) 49 (75.4)
No 19 (26) 16 (24.6)

Number of metastatic sites, n (%)
<3 49 (68) 45 (69.2)
�3 23 (32) 20 (30.8)

Adjuvant chemotherapy (non-metastatic disease)
Flouropyrimidine monotherapy 4 (5.6) 4 (6.1)
Flouropyrimidine þ oxaliplatin 12 (16.7) 11 (17)
Observation 4 (5.6) 3 (4.6)

Previous therapies for metastatic disease
Neoadjuvant/adjuvant

Oxaliplatin-based chemotherapy 6 (8.3) 5 (7.7)
Irinotecan-based chemotherapy 1 (1.4) 0 (0)
Folfoxiri-based chemotherapy 1 (1.4) 1 (1.5)

First line
Oxaliplatin-based chemotherapy 30 (41.7) 25 (38.5)
Irinotecan-based chemotherapy 38 (52.7) 36 (55.4)
Folfoxiri-based chemotherapy 4 (5.6) 4 (6.2)

Second line
Oxaliplatin-based chemotherapy 7 (9.7) 6 (9.2)
Irinotecan-based chemotherapy 27 (37.5) 23 (35.4)
Flouropyrimidine monotherapy 2 (2.8) 2 (3.1)

Third line
Irinotecan-based chemotherapy 4 (5.6) 4 (6.2)
Oxaliplatin-based chemotherapy 1 (1.4) 1 (1.5)

Fourth line and beyond
Irinotecan-based chemotherapy 3 (4.2) 2 (3.1)
Others 1 (1.4) 1 (1.5)
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In terms of efficacy, we have shown that BRAF mutations

are clearly associated with poor outcome, independently of the

technique used, as reported previously from randomized clinical

trials [5, 17]. Additionally, extended mutational RAS (KRAS/

NRAS) and RAS/BRAF status translated into differential clinical

outcomes defined by dPCR sensitivity cut-offs.

This is in line with the more evident benefit of anti-EGFR

therapies in patients with wild-type RAS/BRAF tumours observed

in retrospective extended analyses of tumour tissues from case

series and clinical trials using dPCR [12, 13]. However, identify-

ing optimal fractions of mutated alleles that predict anti-EGFR-

therapy outcomes remain challenging. In this phase II clinical

Table 2. Mutation distribution (N5 72)

Conventional qPCR, n (%) Nanofluidic dPCR, n (%)

Wild-type Mutation Wild-type Mutation

KRAS 67 (93) 5 (7) 52 (72) 20 (28)
Exon 2-codon 12–13 71 (99) 1 (1) 62 (86) 10 (14)a

Exon 3-codon 58–61 70 (97) 2 (3) 65 (90) 7 (10)a

Exon 4-codon 117 72 (100) 0 (0) 71 (99) 1 (1)
Exon 4-codon 146 70 (97) 2 (3) 69 (96) 3 (4)

NRAS 70 (97) 2 (3) 67 (93) 5 (7)
Exon 2-codon 12–13 71 (99) 1 (1) 69 (96) 3 (4)a,b

Exon 3-codon 59–61 71 (99) 1 (1) 69 (96) 3 (4)a,b

Exon 4-codon 117 72 (100) 0 (0) 72 (100) 0 (0)
Exon 4-codon 146 72 (100) 0 (0) 71 (99) 1 (1)

BRAF 68 (94) 4 (6) 68 (94) 4 (6)
Exon 15-codon 600 68 (94) 4 (6) 68 (94) 4 (6)

PIK3CA 71 (99) 1 (1) 70 (97) 2 (3)
Exon 20-codon 1043–1047 71 (99) 1 (1) 70 (97) 2 (3)

dPCR, digital PCR; qPCR, quantitative PCR.
aOne patient exhibited two mutations: one in codon 12 and another in codon 59.
bOne patient exhibited two mutations: one in codon 12 and another in codon 61.
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Figure 1. Overall response rates in wild-type versus RAS and RAS/BRAF mutations detected by nanofluidic digital PCR (N¼ 65). Odds ratios
and their 95% confidence intervals are represented, along with the description of overall response rates for each cut-off value. CI, confidence
interval; OR, odds ratio; vs, versus; wt, wild-type.
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trial, sensitivity of RAS/BRAF mutational analysis of dPCR cut-

offs for clinical outcome prediction was 5%, as the presence of

mutations <5% was not associated with inferior response rate

or survival. We have to point out that it was not possible to

evaluate the predictive/prognostic value of BRAF minor sub-

clones since BRAF-mutant allele fraction was>10% in all cases.

Increasing analytical sensitivity using dPCR may entail draw-

backs in terms of patient selection, as clinical outcomes

observed in patients with RAS and BRAF mutations were higher

when using lower cut-offs. This effect was less evident and com-

parable to conventional qPCR when a 5% dPCR cut-off was

used. However, previous retrospective analyses have reported

even lower optimal thresholds when using nanofluidic dPCR

[12, 13].

Other types of high-sensitive dPCR have also faced the chal-

lenging scenario of assessing the most appropriate threshold to

identify patients most likely to benefit from anti-EGFR thera-

pies [15, 16]. While an analysis of the clinical relevance of

KRAS-mutated subclones assessed by picodroplet dPCR

reported a 1% threshold in mCRC patients treated with cetuxi-

mab or panitumumab [15], another outcome analysis using

BEAMING dPCR showed that mCRC patients with RAS muta-

tion signals from 0.1% to 5% may benefit from adding cetuxi-

mab to FOLFIRI [16]. Despite the current evidence suggests

different optimal cut-offs for outcome prediction, it is note-

worthy that a minimum of mutant alleles is required to confer

primary resistance to anti-EGFR drugs. Several hypotheses be-

yond those related to the retrospective nature of the studies, the

heterogeneity of patient populations and analytical methods

could explain the slight discrepancies among publications.

Intratumour heterogeneity has been recently described as a

mechanism likely to affect the response to anti-EGFR [18, 19],

pointing out the potential cooperative effect of EGFR pathway

genes mutations on outcome, even though these mutations

were present in a low frequency. The clonal selection under

treatment pressure has also been involved in the treatment effi-

cacy to target agents such as anti-EGFR [20–22]. Moreover,

additional factors such as tumour site (right versus left colon)

and other molecular alterations could be responsible for intrin-

sic resistance [9, 23–26].

The authors acknowledge certain study limitations that

should be considered when interpreting its findings, including

the impossibility to assess the role of PIK3CA status due to the

low number of mutations. In addition, initially enrolled

patients may have had mutations in KRAS 3/4 exons and NRAS

2/3/4 exons, while patients must have had no mutation in KRAS

and NRAS exons 2/3/4 after the approval of protocol amend-

ment on 25 July 2013. The analysis of KRAS/RAS status to assess

patient eligibility could have been performed either by the local

laboratory conventional technique or by conventional qPCR in

the central laboratory. Nonetheless, tumour tissues from

enrolled patients were analysed by conventional qPCR in the

central laboratory to ensure homogeneity in study results. As

expected, 10% of tumour samples harboured mutations in

KRAS exon 3 or 4 or in NRAS exon 2, 3 or 4 by standard of care,

which translated into a RAS wild-type population of 65

patients.

In conclusion, although the predictive role of PIK3CA status

within this extended mutational analysis remains unclear, the
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optimal RAS/BRAF mutational cut-off for outcome prediction is

5% within the range of analytical sensitivity of conventional

methods, which explains that the predictive performance

of qPCR was not improved by dPCR in our study. Further re-

search on the biological role and clinical relevance of low-fre-

quent mutations (1%–5%) is warranted. Larger datasets may be

important to re-assess the effect of ultra-selection, since minimal

but significant effect would need greater numbers to be proven.

Acknowledgements

The authors acknowledge the Spanish Cooperative Group for

the Treatment of Digestive Tumours (TTD) for sponsoring the

study, which was funded by a grant provided by the Spanish

Ministry of Health, Social Services and Equality.

The authors thank the following people for their cooperation

and support:

• Study chairs: RS and GC (Institut Català d’Oncologı́a,
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Palma de Mallorca, Spain), EÉ (Hospital Universitari Vall

d’Hebrón, Barcelona, Spain); CL-L (Hospital Universitario

Marqués de Valdecilla, Santander, Spain), MV (Complexo

Hospitalario Universitario A Coru~na, A Coru~na, Spain); LR-D

(Hospital Universitario 12 de Octubre, Madrid, Spain), PG-A

(Hospital General Universitario Gregorio Mara~nón, Madrid,

Spain), J. L. Manzano (Institut Català d’Oncologia-Hospital
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Table 4. Survival according to mutational status in the RAS wild-type population (N 5 65)

Conventional qPCR Nanofluidic dPCR

Cut-off 0% Cut-off 0.1% Cut-off 1% Cut-off 2% Cut-off 3% Cut-off 4% Cut-off 5%

RAS (KRAS/NRAS)
PFS, months

wt/mut (n/n) 65/– 49/16 50/15 56/9 58/7 60/5 60/5 62/3
Median (wt/mut) 7.4/– 7.2/7.4 7.6/7.4 7.6/7.4 7.6/6.7 7.6/7.4 7.6/7.4 7.6/4.0
HR (95% CI) – 0.9 (0.5–1.6) 0.9 (0.5–1.7) 0.8 (0.4–1.8) 1.3 (0.6–2.9) 1.0 (0.4–2.5) 1.0 (0.4–2.5) 3.3 (1.0–11.0)
P-value – 0.741 0.818 0.657 0.513 0.996 0.996 0.048

OS, months
wt/mut (n/n) 65/– 49/16 50/15 56/9 58/7 60/5 60/5 62/3
Median (wt/mut) 13.9/– 11.7/17.4 11.8/16.1 12.5/16.1 13.9/16.1 13.9/16.1 13.9/16.1 13.9/16.1
HR (95% CI) – 0.6 (0.3–1.2) 0.7 (0.3–1.4) 0.6 (0.3–1.7) 0.8 (0.3–2.1) 0.8 (0.3–2.2) 0.8 (0.3–2.2) 1.5 (0.4–4.7)
P-value – 0.142 0.294 0.367 0.689 0.620 0.620 0.534

RAS/BRAF
PFS, months

wt/mut (n/n) 61/4 47/18 48/17 53/12 55/10 56/9 56/9 58/7
Median (wt/mut) 7.6/1.8 7.6/6.7 7.6/6.7 7.6/5.5 8.1/4.6 8.1/4.6 8.1/4.6 8.8/4.0
HR (95% CI) 6.0 (2.0–17.7) 1.0 (0.6–1.8) 1.0 (0.6–1.9) 1.1 (0.6–2.2) 1.7 (0.9–3.4) 1.7 (0.8–3.4) 1.7 (0.8–3.4) 5 (2.1–11.7)
P-value 0.001 0.965 0.879 0.732 0.123 0.160 0.160 <0.001

OS, months
wt/mut (n/n) 61/4 47/18 48/17 53/12 55/10 56/9 56/9 58/7
Median (wt/mut) 16.1/6.2 11.8/16.1 12.5/16.1 13.9/13.7 15.6/8.4 16.2/8.4 16.2/8.4 16.2/7.3
HR (95% CI) 8.1 (2.6–25.5) 0.7 (0.4–1.4) 0.8 (0.4–1.7) 1.0 (0.5–2.2) 1.3 (0.6–2.8) 1.5 (0.7–3.3) 1.5 (0.7–3.3) 2.8 (1.3–6.4)
P-value <0.001 0.349 0.619 0.951 0.528 0.290 0.290 0.012

CI, confidence interval; dPCR, digital PCR; HR, hazard ratio; mut, mutation; OS, overall survival; PFS, progression-free survival; qPCR, quantitative PCR; wt,
wild-type.
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