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Abstract 

Mutations and expression changes of epigenetic modifiers are pervasive in 

human tumours, making epigenetic factors attractive anti-tumour targets. The 

open-versus-closed chromatin state within cancer cells-of-origin correlates with 

the uneven distribution of mutations. However, the long-term effect on 

mutability of targeting epigenetic modifiers in cancer patients is unclear. Here 

we show that increasing chromatin accessibility by deleting histone H3 lysine 9 

(H3K9) methyltransferase G9a in murine epidermis does not alter the single-

nucleotide variants (SNVs) burden or global genomic distribution in chemical 

mutagen–induced squamous tumours. G9a-depleted tumours developed after a 

prolonged latency compared to their wild-type counterparts but were more 

aggressive and had an expanded cancer progenitor pool, pronounced genomic 

instability and frequent loss-of-function p53 mutations. Thus, we call for caution 

when assessing long-term therapeutic benefits of chromatin modifier inhibitors, 

which may promote more aggressive disease.  
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Introduction 

Histone posttranslational modifications correlate with chromatin accessibility and 

epigenetically establish distinct gene expression programs that specify cell lineage 

during embryonic development1-3. In adulthood, histone modifications ensure SCs 

retain flexibility to respond to different stresses3-6. Importantly, epigenetic factors are 

often mutated or misexpressed in human tumours and are being considered as 

potential anti-tumour targets7-16. Intriguingly, the distribution of open and closed 

chromatin of untransformed cells evident in heterochromatin histone marks17 or 

DNase hypersensitivity18,19 of megabase-scale chromosomal domains is correlated 

with accumulation of single nucleotide variants (SNVs) in tumours, and has been 

considered a possible causal influence. Other genomic features associated with 

mutational profiles, including DNA replication timing in the cell-of-origin20-22, could 

provide alternative mechanistic hypotheses to explain mutation rate variability in 

human cancer genomes. The question thus arises whether targeting epigenetic 

modifiers that modulate chromatin accessibility can result in changes in the 

mutational profile in cancer patients and whether such changes could influence the 

long-term evolution of tumour cells and, consequently, patient prognosis. Functional 

studies addressing these important yet often overlooked questions are currently 

missing. 

 

Di- and trimethylated histone H3 lysine 9 (H3K9me2/3) correlates with increased 

mutational burden in human tumours17. H3K9me2 (deposited by the histone 

methyltransferases G9a and GLP) prevents transcription of large genomic domains 

containing repetitive elements23, gene enhancers and promoters24-27 during embryonic 

SC differentiation. G9a expression is elevated in several human cancers28-33, and 
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preclinical studies show that its inhibition causes growth arrest and cell death of 

tumour cells.  

Here we show that the epidermis-specific loss of a single chromatin modifier, G9a, 

resulted in substantial chromatin opening, without affecting the morphology or 

function of the tissue, therefore serving as an ideal model system to experimentally 

investigate the causal relationship between chromatin accessibility and mutability. 

Upon carcinogenic insult, tumour initiation in G9a-depleted skin was less efficient 

and delayed. Strikingly, G9a-ablated tumours were more aggressive and genomically 

unstable, but did not exhibit alterations in their mutation burden or topography. 

Mechanistically, we demonstrate that the differences in tumour initiation between wt 

and G9a-ablated tumours stem in large part from overactive p53 signalling. Our data 

further suggests that clinical inhibition of G9a will select for p53 mutant tumour cells 

and therefore will be detrimental for patients in the long run.  

 

Results 

Epidermis-specific deletion of G9a results in higher chromatin accessibility 

without major morphological alterations 

To study the consequences of altering chromatin accessibility on tumour formation, 

progression and mutability, we conditionally deleted G9a in mouse keratin 14–

positive epidermal keratinocytes (G9acKO) (Supplementary Fig. 1). Deleting G9a 

strongly reduced H3K9me2 levels, and slightly reduced H3K9me3 levels, in all 

epidermal lineages (Fig. 1a–c, Supplementary Fig. 7), but did not affect global levels 

or nuclear localization of other epigenetic marks (H3K4me3, H3K4me1, H3K27ac or 

H3K27me3) (Supplementary Figs. 1 and 7). ATAC-seq of FACS-sorted hair follicle 

SCs (HFSCs) and epidermal SCs (EpSCs) indicated that G9a deletion significantly 
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opened a large number of genomic regions, corresponding to an increased opening of 

15–69.3 Mb (Fig. 1d,e and Supplementary Fig. 1). Regions specifically opened in 

G9acKO SCs were preferentially intergenic regions 50 to 500 kb up- or downstream 

of transcription start sites (TSS), suggesting that G9a and/or H3K9me2 predominantly 

act at distal regulatory regions (Supplementary Fig. 1).  

  

Strikingly, G9a deletion–induced chromatin opening did not majorly change gene 

expression (Supplementary Fig. 2, Supplementary Table 1). Only 27 and 21 genes 

were differentially expressed in HFSCs and EpSCs lacking G9a, respectively, 

compared to wild-type (fold-change > 2, FDR < 0.05). Although upregulated genes 

were related to early development or inflammation, G9acKO mice had no major 

changes in skin, pelage or immune cell infiltration, as compared to wild-type 

(Supplementary Fig. 2, Supplementary Table 1). They only presented a slightly 

thinner epidermis, a small reduction in the number of epidermal proliferative cells, 

and fewer HFSCs, resulting in longer distance between hair follicles during ageing 

(Supplementary Fig 2).   

 

G9acKO tumours are delayed in their initiation but more aggressive 

Although epidermal and hair follicle homeostasis were largely unscathed upon 

epidermal deletion of G9a, carcinogen-induced squamous tumorigenesis was delayed 

in G9acKO mice as compared to wild-type, with ~12% of G9acKO mice remaining 

tumour-free during the one-year follow-up period. In stark contrast, all wild-type mice 

developed tumours within 20 weeks after treatment (Fig. 2a,b and Supplementary Fig. 

3). G9acKO mice also developed on average three times fewer skin lesions 

(specifically fewer benign tumours) (Fig. 2c,d). Critically, however, after a long 
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latency period, G9acKO mice developed highly malignant squamous cell carcinomas 

(SCCs), with lower levels of H3K9me2 and epidermal differentiation markers, and 

significantly smaller areas of keratinisation (indicative of loss of differentiation), than 

wild-type (Fig. 2e–i). Compared to wild-type carcinomas, G9acKO tumours displayed 

higher levels of basal membrane disorganization and more Ki67+ proliferative cells 

and integrin alpha6bright/CD34+ tumour progenitors, signs of increased malignancy 

and tumour-initiating potential (Fig. 2e,j–m and Supplementary Fig. 2)34-37. Thus, 

although a strong reduction in H3K9me2/3 delayed tumorigenesis after carcinogen 

insult, it resulted in highly malignant, late-onset tumours.  

 

Gene expression in pre-neoplastic G9acKO HFSCs/EpSCs (isolated from carcinogen-

treated non-tumour bearing skin) was not majorly different from wild-type 

HFSCs/EpSCs (with only approximately 50 differentially expressed transcripts; fold-

change > 2, FDR < 0.05) (Supplementary Fig. 3, Supplementary Table 2). Some of 

these genes upregulated in G9acKO HFSCs/EpSCs were associated with cell death, 

consistent with the increased levels of apoptosis in pre-neoplastic G9acKO epidermis 

(Supplementary Table 2).  

 

G9acKO tumours are more genomically unstable 

To study whether increased chromatin accessibility in G9acKO SCs affected the 

mutational burden of their related tumours, and whether this underlies the increased 

tumour aggressiveness of G9acKO SCCs, we performed whole-exome sequencing 

(WES) of the FACS-sorted epithelial compartment from nine individual wild-type 

and eight individual G9acKO SCCs (Supplementary Figs 3). No differences were 

observed in the total number of SNVs accumulated in wild-type versus G9acKO 
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SCCs (Fig. 3a). Both had very similar mutational trinucleotide profiles harbouring 

predominantly A>T transversions (characteristic of the carcinogen DMBA38,39), with 

only slight differences in the preferred trinucleotide contexts and transcribed strand 

biases (Fig. 3b-d and Supplementary Fig. 4). However, G9acKO tumour cells showed 

more large-scale genomic instability (as assessed by DNA content analysis) as well as 

more and longer focal copy number gains (Fig. 3f–g). 

 

Mutation burden remains unchanged despite increased chromatin accessibility 

in G9acKO tumours 

To assess the SNV topography in greater detail, we performed whole-genome 

sequencing (WGS) on three G9acKO and three wild-type tumours (Supplementary 

Fig. 4). Note that G9acKO tumour #37 did not show the mutation pattern 

characteristic of DMBA/TPA-induced tumours; we concluded that it is likely a 

spontaneous tumour and excluded it from further analyses. Our WGS results 

confirmed A>T transversions in a CAG or CAC context as the principal substitutions 

in DMBA/TPA-induced tumours (Supplementary Fig. 4). Importantly, these 

carcinogen-induced SCCs had a global mutation burden (4–47 SNVs/Mb across six 

WGS tumours; mean 29.7 SNVs/Mb) which was broadly similar to that previously 

reported for human UV-mutagenized skin SCCs (average 62 SNVs/Mb) and 

melanomas (average 13 SNVs/Mb)40. 

 

G9acKO tumour mutational signature analysis reveals impairment of nucleotide 

excision repair 

To determine whether loss of G9a in the tissue-of-origin alters the tumour mutation 

types, we performed NMF-based mutational signature discovery in our dataset and 
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compared our signatures to previously identified mutational signatures from human 

tumours41,42. This analysis takes into account the adjacent 5 and 3′ nucleotides of 

each SNV and allows us to ascribe putative underlying causes for identified 

mutational signatures (e.g., ageing or DNA repair pathway disturbances). We 

identified two robust signatures within the somatic SNVs from DMBA/TPA-derived 

tumours (Fig. 4a): i) Signature “M1-DMBA”, abundant in all tumours, accounted for 

the majority of A>T transversions (particularly in the DMBA-characteristic CAN 

context) and resembled the previously defined COSMIC Signature 22 (cosine 

similarity = 0.91) produced by aristolochic acid, which –similarly to DMBA – creates 

bulky DNA adducts43-45; ii) Signature “M2-G9a” most closely matched COSMIC 

Signature 5 (at a modest cosine similarity = 0.65) previously associated with ageing46 

and defects in nucleotide excision repair47. Importantly, the median contribution of 

M2-G9a in G9acKO tumours was about twice that of wild-type tumours (Fig. 4b). 

Although G9acKO mice were on average two months older than wild-type controls 

(due to delay in tumour initiation; Fig. 2b), we speculate that M2-G9a reflects at least 

in part a defect in nucleotide excision repair. Indeed, pathway analysis of whole-

transcriptome gene expression changes between tumour progenitors isolated from 

either wild-type or G9acKO tumours using GAGE revealed that genes involved in 

nucleotide excision repair were underrepresented in G9acKO tumours 

(Supplementary Fig. 5 and Supplementary Tables 3 and 4). 

 

Chromatin accessibility does not determine global mutational topography 

To assess the global mutation topography within tumours, we used a statistical 

framework based on negative binomial regression48. We interrogated several factors 

previously shown to be associated with mutation rate variation: the heterochromatin 
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mark H3K9me317,18,49, chromatin accessibility19,49 (via DNase hypersensitivity), DNA 

replication time20,21 and trimethylated histone 3 lysine 36 (H3K36me3)48,50. As 

expected, SNVs were depleted in areas of open chromatin (1.06–1.31× reduction, 

range across the 6 individual tumors) and early-replicating genomic regions (1.12–

1.48× reduction) (Fig. 4c and Supplementary Fig. 5). We also observed the previously 

reported increased mutation density in regions marked by H3K9me3 (1.16–1.39× 

increase)17. Therefore, our DMBA-induced mouse tumours recapitulated the global 

pattern of single-nucleotide substitutions known from human cancer genomes. 

Strikingly, there was no major difference in these patterns between wild-type and 

G9acKO tumours. Quantitatively the strongest association was with the H3K36me3-

marked regions, which had 1.54 to 1.66× lower mutation rates in our set of mouse 

tumours after controlling for the other variables. This is in agreement with recent 

work that explicitly addressed the overlap between various epigenetic features in 

human genomes, proposing H3K36me3 (but not other active chromatin marks) as a 

determinant of mutation rates across many human cancer types, due to differential 

DNA repair48. Again, G9acKO and wild-type tumours showed the same degree of 

association between their rate of mutations and the H3K36me3 regions (Fig. 4c and 

Supplementary Fig. 5). In addition, the DMBA-associated A>T transversions had a 

very similar distribution to the remainder of mutations, which are less likely to result 

from DMBA (Supplementary Fig. 5).  

 

To directly link this analysis to the alterations in chromatin opening we observed 

specifically in G9acKO mice, we overlaid the ATAC data from homeostatic 

epidermis (see Fig.1dand Supplementary Fig. 1) with WGS data. Both EpSCs and 

HFSCs can constitute cells-of-origin of epidermal squamous tumours36,51, and the 
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effects of G9a deletion were strikingly similar across the two SC types; thus, we 

pooled the two datasets as “epidermis ATAC regions”. Importantly, chromatin 

opening of the G9acKO epidermis only mildly affected mutation rates (median 0.87-

fold difference in ATAC regions; genome 35, 95% CI: 0.72–1.06) compared to wild-

type counterparts (median 1.01-fold difference; genome 27, 95% CI 0.82–1.24) (Fig. 

4d and Supplementary Fig. 5). Thus, chromatin accessibility, while associated with 

mutation rates in certain regions, is not a quantitatively major determining feature of 

single-nucleotide mutability across genomes. Indeed, early replication timing (median 

0.72-fold and 0.68-fold difference in mutation rates for wild-type and G9acKO 

tumours, respectively) was more strongly associated with mutation rate than 

chromatin accessibility (Fig. 4d and Supplementary Fig. 5). Our experiments 

therefore provide evidence that open chromatin has only a limited causal influence on 

mutation rates in cancer genomes, in apparent contrast to previous studies18,19. 

Instead, we suggest that competing hypotheses, such as the DNA repair-recruiting 

H3K36me3 mark48,50,52 and early versus late replication time in the cell-of-origin20,22 

are more likely causal determinants of mutation rates in mammalian somatic cells. 

 

G9acKO tumour accumulate loss-of-function p53 mutations to overcome 

overactive p53 signalling in G9a-deficient epidermis 

Analysing driver mutations known to be prevalent in cutaneous SCCs38,39, we found 

that loss of G9a did not alter the incidence of Hras or Kras mutations (Supplementary 

Table 5). Notably, however, 73% (8/11) of G9acKO tumours, but none of their wild-

type counterparts, contained at least one loss-of-function mutation in p53 

(Supplementary Tables 5 and 6). Critically, the mutation rate in the genomic region 

adjacent to Trp53 was not increased in G9acKO tumours (Supplementary Fig. 5). 
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Thus, G9acKO tumours likely had a strong functional selective pressure to inactivate 

the p53 tumour suppressor pathway. We therefore hypothesised that G9a loss resulted 

in higher baseline p53 signalling, sensitising untransformed cells to stress and 

preferentially directing them to cell cycle arrest or apoptosis (Supplementary Fig. 2). 

Only highly aggressive tumour cells (e.g. with inactivating mutations in Trp53) would 

overcome this selection barrier. In support of this, inhibition of G9a methyltransferase 

activity upregulated p53 and p21, and induced replication stress in keratinocytes in 

vitro (Fig. 5a, b and Supplementary Fig. 7). Induction of replication stress was 

independent of p53 status, suggesting that activation of p53 signalling was not causal, 

but rather a consequence of this G9a-loss-induced stress response (Fig. 5a,b and 

Supplementary Fig. 7). In vivo, G9acKO homeostatic epidermis also showed signs of 

replication stress (Fig. 5c), and the expression of several p53 target genes was 

upregulated (Fig. 5d). Additionally, p21, whose expression leads to cell cycle arrest, 

was upregulated in pre-neoplastic epidermis (Fig. 5e). Importantly, p53 signalling was 

downregulated in tumour progenitors of G9acKO tumours as compared to wild-type 

counterparts (Supplementary Table 4), as expected from loss of function mutations in 

Trp53.   

 

Tumour initiation is rescued in mice deficient for both p53 and G9a  

We next generated mice deficient for both G9a and p53 in the epidermis (dKO mice) 

and tested whether they overcome the G9acKO-induced delay of tumorigenesis onset. 

Indeed, epidermal thickness, proliferation rates and number of HFSCs were restored 

to wild-type levels in dKO animals (Supplementary Fig. 6). Strikingly, dKO mice 

developed tumours with the same timing as wild-type counterparts, whereas G9acKO 

mice lacked tumours using the DMBA/TPA protocol adjusted for the more sensitive 
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dKO skin (Fig. 5f-h). Importantly, dKO tumours were predominantly aggressive 

SCCs showing: i) very low levels of differentiation markers, ii) an expanded tumour 

progenitors pool, and iii) similar proliferation levels and numbers of tumour 

progenitors as the previously observed highly aggressive G9acKO tumours; under 

these conditions, wild-type tumours did not undergo malignant conversion (Figs. 2e–

m and 5i-n).  

 

Ablation of G9a in established lesions selects for more aggressive tumours 

As G9a expression is elevated in multiple tumour types28-33, it has been proposed as a 

therapeutic target in a number of cancers. To test the effects of G9a ablation within 

tumours as a clinically relevant situation, we crossed the G9afl/fl mice with tamoxifen-

inducible K14-CreERT2 mice. G9a ablation in established tumours led to lesion 

regression, showing great promise for clinical intervention using G9a inhibitors (Fig. 

6a,b,d). Strikingly, however, tumours that succeeded to grow in tamoxifen-induced 

G9acKO mice underwent malignant conversion more readily than wild-type controls 

(Fig. 6c). Additionally, several G9a-deleted tumours relapsed post-regression; these 

had low levels of epidermal differentiation markers as compared to wild-type tumours 

(Fig. 2e–k and Fig. 6e-g), suggesting they, too, were aggressive SCCs.   

 

Discussion 

Overall, we demonstrate that inhibition of a single epigenetic modifier, G9a, is 

sufficient to substantially increase chromatin accessibility in vivo. Although G9a 

expression levels are elevated in multiple tumour types, its deletion postnatally results 

in relatively mild phenotypes during normal epidermal (our results), hematopoietic, 

adipocyte, neural, and skeletal muscle differentiation3, making it an attractive 
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candidate for cancer therapy. Additionally, the increased chromatin accessibility in 

G9a-deficient epidermis constitutes a model system to functionally test previously 

reported associations between accessible chromatin in the cell-of-origin and lower 

mutation rate. Our results indicate that mutation burden, type and topography are 

largely unaffected in G9a-deficient skin tumours. Although chemical skin 

carcinogenesis is not encountered in human SCCs, we show that the total mutational 

burden in the resulting tumours is not dissimilar to that of human SCCs, which 

undergo extensive UV-damage. As our data reproduced associations of mutation rates 

with chromatin accessibility, H3K36me3 status and replication timing previously 

reported in a variety of human cancers of different origin and different carcinogen 

exposure, we expect our findings may hold true in other tissues or using other means 

of mutagenesis. However, whether this is the case remains to be experimentally 

determined.  

 

Our results also raise concerns with respect to therapeutic inhibition of G9a, as it may 

lead to increased genomic instability (directly or indirectly through enrichment in p53 

loss-of-function mutations), and the development of highly aggressive carcinomas.  

Developing anti-tumour strategies based on epigenetic factors could thus be a double-

edged sword, as chromatin modifiers can skew the evolutionary path of a tumour, 

making long-term outcomes unpredictable despite potential short-term improvements. 

Possible effects of inhibition on the tumour mutational profile and genome stability 

should be determined for each chromatin modifier individually, especially in 

conjunction with (mutagenic) chemotherapy or radiotherapy. Our results therefore 

call for caution when assessing the long-term clinical benefits of targeting epigenetic 

factors for treating diseases such as cancer, as initial strong anti-tumour responses 
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may be followed by selection and expansion of aggressive tumour clones as a result 

of the newly imposed selection pressure.  
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Figure legends 

Figure 1. Loss of G9a results in chromatin opening in homeostatic epidermis. (a) 

Representative immunoblots for the indicated histone marks on wt or G9acKO 

epidermal cells. (b) Quantification of (a). Data shown are mean ± SEM. wt, n = 5 

independent animals; G9acKO, n = 6 independent animals. Two-sided Student´s t-

test. (c) Immunofluorescence for H3K9me2 (red) and H3K9me3 (green) on wt and 

G9acKO skin. Nuclei are counterstained with DAPI (blue). White dashed line marks 

the epidermis. Yellow dashed line indicates the dermal papilla. Scale bar, 100 µm. 

Images shown are representative of n = 4 (wt) and n = 4 (G9acKO) independent 

animals. (d) Correlation heatmap showing regions of differential chromatin opening 

between wt and G9acKO HFSCs and EpSCs. About 36,000 and 115,000 regions in 

G9acKO HFSCs and EpSCs, respectively, with 65-70% of these more open in 

G9acKO stem cells. (e) Examples of regions with differential chromatin opening in 

G9acKO stem cells. Similar results were obtained in n = 3 (wt) and n = 3 (G9acKO) 

independent animals. HFSCs, hair follicle stem cells; EpSCs, epidermal stem cells. 

See Supplementary Table 8 for source data.  

 

Figure 2. G9a is critical for tumour initiation but mitigates tumour 

aggressiveness. (a) Schematic of carcinogenesis model used. (b) Tumour-free 

survival of DMBA/TPA-treated mice over time. Data shown are mean ± SEM. wt, n = 

8 independent animals; G9acKO, n = 18 independent animals. Two-sided Mantel-Cox 

test. (c) Total number of tumours per mouse at time of sacrifice. Data shown are mean 

± SEM. wt, n = 8 independent animals; G9acKO, n = 18 independent animals.  Two-

sided Student´s t-test. (d) Total number of benign tumours or SCCs per mouse at time 

of sacrifice. Data shown are mean ± SEM. wt, n = 8 independent animals; G9acKO, n 
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= 18 independent animals. Two-way ANOVA with Dunnett multiple comparisons 

test. (e) Hematoxylin/eosin staining on wt or G9acKO SCCs. Scale bar, 100 µm. 

Images representative of n = 44 (wt) and n = 50 (G9acKO) individual SCCs. (f-g) 

Immunostaining for cytokeratin 14 (green) and H3K9me2 (red) (f) or Cytokeratin 14 

(green) and filaggrin (red) (g) in wt and G9acKO SCCs. Nuclei counterstained with 

DAPI (blue). White dashed line delineates tumour (T) from stroma (S). K, keratin 

pearls. Scale bar, 100 µm. Images representative of n = 10 (wt) and n = 12 (G9acKO) 

individual SCCs. (h) Histopathological classification of wt and G9acKO DMBA-

induced tumours. wt, n = 44 individual tumours; G9acKO, n = 50 individual tumours. 

(i) Hyperkeratosis score of wt or G9acKO tumours indicating level of differentiation. 

wt, n = 44 individual tumours; G9acKO, n = 50 individual tumours. Chi-squared test. 

(j, k) Immunostaining for Ki67 in wt and G9acKO SCCs and quantification. Scale 

bar, 50 µm. Data shown are mean ± SEM. wt, n = 5 independent SCCs; G9acKO, n = 

7 independent SCCs. Two-sided Student´s t-test. (l-m) Representative FACS plots 

showing gating of tumour progenitors in DMBA/TPA-induced SCCs from wt and 

G9acKO mice and quantification. Data shown are mean ± SEM. wt, n = 6 

independent SCCs; G9acKO, n = 5 independent SCCs. Two-sided Student´s t-test. 

SCC - squamous cell carcinoma. See Supplementary Table 8 for source data. 

 

Figure 3. Loss of G9a does not alter the gross mutational landscape of 

DMBA/TPA-induced SCCs but promotes genomic instability (a) Number of 

SNVs per tumour by genotype. Data shown are mean ± SEM. wt, n = 9 independent 

SCCs; G9acKO, n = 8 independent SCCs. Two-sided Student´s t-test. (b) Frequency 

of different types of SNVs found in wt and G9acKO DMBA/TPA-induced SCCs. 

Data shown are mean ± SEM. wt, n = 9 independent SCCs; G9acKO, n = 8 
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independent SCCs. Two-way ANOVA with Dunnett multiple comparisons test. A>T 

is the dominant substitution caused by DMBA. (c) Frequency of different types of 

single nucleotide substitutions subdivided by their location on the transcribed (T) or 

untranscribed (U) strand. Data shown are mean ± SEM. wt, n = 9 independent SCCs; 

G9acKO, n = 8 independent SCCs. Two-way ANOVA with Dunnett multiple 

comparisons test. (d) 96-element profile of wt and G9acKO DMBA/TPA-induced 

SCCs. Data shown are mean ± SEM. wt, n = 9 independent SCCs; G9acKO, n = 8 

independent SCCs. Two-way ANOVA with Dunnett multiple comparisons test. (e) 

Heatmap of copy number gains and losses in wt or G9acKO DMBA/TPA-induced 

SCCs. Copy number gains and losses are indicated in red and blue, respectively. 

Chromosome numbers are indicated underneath the panel. wt, n = 9 independent 

SCCs; G9acKO, n = 8 independent SCCs. (f) Quantification of focal CNAs in wt and 

G9acKO SCCs. Total number or length of rearranged areas are indicated. Data shown 

are mean ± SEM. wt, n = 9 independent SCCs; G9acKO, n = 8 independent SCCs. 

Two-way ANOVA with Dunnett multiple comparisons test. (g) Large-scale genomic 

instability as assessed by FACS for DAPI (DNA content). Red histograms represent 

DNA content of tumour cells; grey histograms denote DNA content of stromal cells 

within the same sample. Two representative examples illustrating SCCs with low or 

high levels of genomic rearrangements within each genotype group are shown. A total 

of n = 8 (wt) and n = 10 (G9acKO) SCCs were analysed. SCC, squamous cell 

carcinoma; SNV, single nucleotide variant. See Supplementary Table 8 for source 

data. 

 

Figure 4. G9acKO tumours display only minor alterations in mutational 

signatures and topography. (a) Signature discovery using non-negative matrix 
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factorization (NMF) from absolute counts of SNVs yielded two signatures of somatic 

mutations with high confidence. (b) NMF signature weight per tumour sample. Violin 

plot represents 1st quartile, median and 3rd quartile of the density estimate. wt, n = 9 

independent SCCs; G9acKO, n = 8 independent SCCs.. Weight within germline 

variants is shown, demonstrating that the identified signatures were not due to 

germline contamination. (i) Enrichment in SNV densities in genomic regions with 

high levels of DHS, H3K36me3, H3K9me3 and Repli-Chip signal. Each enrichment 

was adjusted for all other shown variables and for trinucleotide content in the 

genomic regions. Data for all SNVs are shown. Log enrichments are coefficients from 

negative binomial regression and their 95% CI, shown in base 2. Enrichments are 

relative to the lowest genomic bin of each feature (bin 0, below-baseline signal; see 

Methods), which thus by definition has log enrichment = 0 and is not shown on plots. 

SCC, squamous cell carcinoma; SNV, single nucleotide variant. See Supplementary 

Table 8 for source data. 

 

Figure 5. Loss of G9a delays tumour initiation through p53 overactivation. (a,b) 

Immunoblots showing activation of p53 signalling (a) or replicative stress (b) 

following five day treatment with 1 µM UNC0638 G9a inhibitor in immortalized 

keratinocytes wt (C5N) or null for p53 (NK). Data representative of 2 (a) or 3 (b) 

independent experiments. (c) Immunostaining for phospho-S4/8-RPA2 (red) in wt 

and G9acKO homeostatic epidermis. White line: epidermis/dermis boundary. Scale 

bar, 50 µm. Representative images of n = 4 (wt) and n = 4 (G9acKO) independent 

animals.  (d) Real-time quantitative PCR for p53 target genes in EpSCs. Mean ± 

SEM. wt, n = 6 independent animals; G9acKO, n = 6 independent animals. One-way 

ANOVA with Sidak´s multiple comparison´s test. (e) Immunostaining for p21 (red) in 
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wt and G9acKO pre-neoplastic epidermis. White line: epidermis/dermis boundary. 

Arrowheads: p21-positive nuclei. Scale bar, 50 µm. Representative images of n = 4 

(wt) and n = 4 (G9acKO) independent animals. (f) Tumour-free survival. Number of 

independent animals: wt, n = 15; G9acKO, n = 4; p53cKO, n = 3; dKO, n = 9. Two-

sided Mantel-Cox test. (g,h) Number of all tumours (g) or benign tumours/SCCs (h) 

per mouse 22 weeks post-treatment. Mean ± SEM. Number of independent animals: 

wt, n = 15; G9acKO, n = 4; p53cKO, n = 3; dKO, n = 9. One-way ANOVA with 

Sidak´s multiple comparison´s test. (i,j) Immunostaining for cytokeratin 14 (green) 

and H3K9me2 (red) (i) or filaggrin (red) (j) in p53cKO and dKO SCCs. White line: 

tumour(T)/stroma(S) boundary. Scale bar, 100 µm. Representative images of n = 4 

(p53cKO) and n = 4 (dKO) independent SCCs. (k, l) Immunostaining for Ki67 in wt 

and G9acKO SCCs with quantification. Scale bar, 50 µm. Mean ± SEM. p53cKO, n 

= 3 independent SCCs; dKO, n = 3 independent SCCs. (m, n) Representative FACS 

plots of tumour progenitors in SCCs from p53cKO and dKO mice, with 

quantification. Note: only three DMBA administrations (see methods). Mean ± SEM. 

p53cKO, n = 6 independent SCCs; dKO, n = 4 independent SCCs. SCC - squamous 

cell carcinoma. See Supplementary Table 8 for source data. 

 

Figure 6. G9a-loss in established tumours selects for aggressive tumours. Loss of 

p53 in G9a-ablated epidermis rescues tumour delay and burden. (a) Schematic of 

approach to delete G9a after DMBA/TPA tumours are established. (b) Proportions of 

tumours per mouse that regress, arrest their growth or continue growing 7 weeks after 

tamoxifen (TAM)-induced G9a ablation in induced wt or G9acKO mice. Data shown 

are mean ± SEM. Number of mice: wt, n = 2; G9acKO, n = 6. Number of tumours 

before TAM: wt, n = 9; G9acKO, n = 70. Number of tumours after 7 weeks of TAM: 
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wt, n = 12; G9acKO, n = 30. (c) Proportion of SCCs per mouse after 7 weeks of 

TAM. Data shown are mean ± SEM. wt, n = 2 independent animals; G9acKO, n = 6 

independent animals. (d) Representative photographs of mice of the indicated 

genotype at 4 or 7 weeks after TAM treatment. Asterisks mark tumours that regress. 

Images shown are representative of n = 4 (wt) and n = 6 (G9acKO) independent 

animals. (e) Hematoxylin/eosin staining on wt SCC or SCC that relapsed post-

regression in TAM-induced G9acKO animals. Scale bar, 50 µm. Images shown are 

representative of n = 2 (wt) and n = 6 (G9acKO) independent SCCs.  (f) 

Immunostaining for cytokeratin 14 (green) and H3K9me2 (red) in wt SCC or SCC 

relapsed post-regression in TAM-induced G9acKO mice. Nuclei are counterstained 

with DAPI (blue). White dashed line delineates tumour (T) from stroma (S). Scale 

bar, 100 µm. Images shown are representative of n = 2 (wt) and n = 6 (G9acKO) 

independent SCCs. (g) Immunostaining for cytokeratin 14 (green) and filaggrin (red) 

in wt SCC or SCC re-growing post-regression in TAM-induced G9acKO mice. 

Nuclei are counterstained with DAPI (blue). White dashed line delineates tumour (T) 

from stroma (S). Keratin pearls (K) within the wt tumour are indicated. Scale bar, 100 

µm. Images shown are representative of n = 2 (wt) and n = 6 (G9acKO) independent 

SCCs. See Supplementary Table 8 for source data. 



Methods 

Cell lines and treatments. Immortalised wild-type (C5N) or p53-null (NK) 

keratinocytes53 (a kind gift from Allan Balmain; University of California San 

Francisco) and primary dermal fibroblasts were maintained in high-glucose DMEM 

(41965039 Life Technologies) containing 10% FBS (10270106, Life Technologies), 2 

mM L-glutamine (25030024, Life Technologies) and 100 ug ml-1 penicillin and 

streptomycin (15140122, Life Technologies) at 37C and 5% CO2. Primary 

keratinocytes were maintained for up to three passages in FAD medium (three parts 

DMEM (41965039), one part Ham´s F12 (21765029); both from Life Technologies) 

containing 10% chelated FBS (10270106, Life Technologies), 2 mM L-glutamine 

(25030024, Life Technologies), 1.8  10-4 M adenine (A3159, Sigma-Aldrich), 0.5 g 

ml-1 hydrocortisone (386698, Sigma-Aldrich), 5 µg ml-1 insulin, 10-10 M cholera 

enterotoxin (100, Gentaur Molecular Products BVBA) and 10 ng ml-1 EGF (315-09, 

Peprotech). For G9a inhibition, cells were treated with 1 µM UNC0638 (4343, 

Tocris) for five days before analysis.  

 

Mouse strains. Animal experiments were approved by the Ethical Committee for 

Animal Experimentation (CEEA) of the Scientific Park of Barcelona (PCB) and the 

Government of Catalunya and complied with their ethical regulations. All mice were 

maintained on a C57/Bl6 genetic background. Rosa26YFP, K14-Cre, K14-CreERT2 

and p53fl/fl mice were obtained from Jackson Laboratories. G9afl/fl animals were 

kindly supplied by Yoichi Shinkai (Saitama University). Both female and male mice 

were used for studies. Littermate controls were used for all experiments. For 

induction of G9a deletion after tumour formation, both G9a+/+; K14-CreERT2+ and 

G9afl/fl; K14-CreERT2+ animals were fed tamoxifen diet. 



 

Chemical skin carcinogenesis. DMBA (7,12-dimethylbenz[a]anthracene) (D9542, 

Sigma-Aldrich)/TPA (12-O-tetradecanoylphorbol-13-acetate) (P8139, Sigma-

Aldrich)–based chemical skin carcinogenesis was performed as previously 

described38,54,55. Briefly, DMBA and TPA (200 µl of 0.25 mg ml–1 or 0.02 mg ml–1 

solution in acetone, respectively) were applied once weekly to the shaved back skin of 

8-week-old mice for 6 weeks, at which point animals were sacrificed for pre-

neoplastic epidermis experiments. For tumour formation studies, TPA treatment was 

continued twice weekly for up to 20 weeks. In experiments that contained G9a/p53 

dKO mice, DMBA was applied according to the above regimen for 3 instead of 6 

weeks due to toxicity in the G9a/p53 dKO mice. Mice were sacrificed when their 

largest tumour reached 1.5 cm diameter.  

 

Tamoxifen administration. To delete G9a in pre-existing tumours, mice were fed a 

diet containing 400 mg kg–1 tamoxifen citrate (TD.55125.I, ENVIGO) once tumours 

were established (approximately 4 months after treatment initiation). Mice were 

sacrificed when their largest tumour reached 1.5 cm diameter. 

 

Single-cell preparation. Homeostatic and pre-neoplastic epidermal cells, as well as 

tumour cells, were isolated as previously described54,56. Briefly, to purify epidermal 

cells, back skins from mice that were either untreated or treated with DMBA/TPA for 

6 weeks were incubated for 1 hour in 0.25 % trypsin (25300054, Life Technologies) 

at 37C. Trypsin activity was neutralized by the addition of 10% chelated FBS in 

Ca2+-free EMEM (BE06-174G, Lonza), followed by mechanical dissociation and 

sequential filtration through 100 µm and 40 µm cell strainers (SPL Life Sciences). 



Homeostatic epidermis was collected when animals were 15 weeks old, to match the 

age of mice used for collection of pre-neoplastic epidermis. 

 

To isolate tumour cells, individual DMBA/TPA–induced SCCs were carefully 

dissected to remove any surrounding normal tissue and then mechanically dissociated 

using a McIlwain Tissue Chopper (The Mickle Laboratory Engineering Co. LTD). 

Minced tumour tissue was digested under agitation in 2.5 mg ml–1 collagenase I 

(C0130, Sigma-Aldrich) and 0.075% trypsin (25300054, Life Technologies) in 

calcium-free EMEM for 90 min at 37C. Cells were pelleted, resuspended in 0.25% 

pre-warmed trypsin/EDTA (25200056, Life Technologies) containing 100 µg ml–1 

DNase (DN25, Sigma-Aldrich), and incubated at 37C for 2 min. Trypsin activity was 

neutralized by the addition 10% chelated FBS in Ca2+-free EMEM. Cells were 

washed twice in PBS (H3BE17-516F, Lonza) and filtered sequentially through 100 

µm and 40 µm cell strainers (SPL Life Sciences). 

 

Flow cytometry. For flow cytometry, epidermal cells from individual animals or 

tumour cells from individual tumours were re-suspended at 107 cells ml–1 in PBS and 

labelled with CD49f-PE (clone NKI-GoH3, 1:200, AbD Serotec) and CD34-Biotin 

(clone RAM34, 1:50, eBioscience) followed by streptavidin-APC (1:400, BD 

Biosciences). Tumour cell suspensions were additionally labelled with lineage-BV605 

(CD31, clone 390; CD45, clone 30-F11; TER119, clone TER119; all 1:100, 

Biolegend) to exclude stromal cells. Cells were re-suspended in 2 µg ml–1 DAPI 

(32670, Sigma-Aldrich) to exclude dead cells.  

 



Due to the presence of the ROSA26-YFP cassette in the mice, both epidermal and 

tumour cells were positive for YFP. The following populations were gated within 

YFP+ cells and FACS-sorted using a BD FACSAria Fusion flow cytometer (BD 

Biosciences): total tumour cells (CD49f+/lineage–); tumour progenitors 

(CD49fbright/CD34+); HFSCs (CD49fbright/CD34+); EpSCs (CD49fbright/CD34–).  

 

For cell-cycle analysis, tumour single cell suspensions stained as above were fixed in 

4% formaldehyde (28908, Thermo Scientific) for 15 min at room temperature, 

washed twice in PBS and permeabilized using ice-cold 70% EtOH (1.00983.2500, 

Merck Millipore) for 30 min. After two washes in PBS, cells were re-suspended in 

20 µg ml–1 DAPI (32670, Sigma-Aldrich) to stain DNA and analysed on a BD 

FACSAria Fusion flow cytometer. 

 

ATAC sequencing. Library preparation for ATAC (assay for transposase-accessible 

chromatin) sequencing used 5  104 EpSCs or HFSCs FACS-sorted from three 

independent mice as previously described57. Samples were sequenced on a 

HiSeq2500 sequencer (Illumina) using V4 chemistry, generating 50-bp paired-end 

reads. After adapter-cleaning and quality correction using Trimmomatic (version 

0.33), paired-end reads were aligned to the mm9 genome (UCSC) using Burrows-

Wheeler Aligner (version 0.7.12-r1039). Duplicate reads were removed using 

SAMtools (version 1.3.1). Read alignment was offset as previously described57. To 

normalize for sequencing depth, the number of reads of all samples was down-

sampled to match the number of reads in the sample with the lowest coverage. Peaks 

were called using MACS2 (version 2.0.10) and an FDR < 0.05. Differential peaks 

were determined using the DiffBind package (version 2.4.8) in R (version 3.4.4) and 



an FDR < 0.05. THOR (version 0.11.2) with bin size 200, step 50, fold change 2, peak 

detection p-value < 0.01, TMM normalization and differential region p-value < 0.01 

was used to estimate the overall differential opening between wild-type and G9acKO 

HFSCs or EpSCs. The distance of the ATAC differential regions and the TSS was 

calculated with GREAT (version 3.0.0). The distribution of the differential regions 

within genomic features was conducted with HOMER (version 2015-03-22).  

 

DNA isolation. To isolate genomic DNA, 1–3  105 tumour cells were FACS-sorted 

directly into 10 lysis buffer (200 mM DTT, 100 mM Tris-HCl pH 7.4, 5% SDS, 5 

µg µl–1 proteinase K) and incubated at 60C for 5 h, followed by isopropanol DNA 

precipitation. DNA was resuspended in 0.2 mg ml–1 RNase A (10109169001, 

Promega) and incubated for 20 min at 37C. DNA was further purified using 

Agencourt AMPure XP DNA beads (A63881, Beckman Coulter), washed twice in 

80% ethanol and eluted in TE buffer. DNA concentration was determined using a 

Qubit Fluorometer (Thermo Scientific).  

 

Whole exome sequencing (WES). 50 ng of gDNA from each tumour was 

fragmented using a Bioruptor (Diagenode) to reach an average fragment size of 300–

350 bp, and fragmentation was monitored using a 2100 BioAnalyser (Agilent). 

Libraries for exome capture were prepared using the Kapa Library Preparation kit 

(KR0410, Roche) according to the manufacturer´s instructions, with 10 cycles of 

amplification. Amplified libraries (200 ng/library) were hybridized to the SeqCap EZ 

Mouse library (110624_MM9_Exome L2R_D02_EZ_HX1, #99990-42611, Roche). 

Purified captured DNA was then amplified by Post-LM PCR for 13 cycles and 

sequenced on a HiSeq2500 sequencer (Illumina) using V4 chemistry, generating 125-



bp paired-end reads. After adapter-cleaning and quality correction using Trimmomatic 

(version 0.33), paired-end reads were aligned to the mm9 genome (UCSC) using 

Burrows-Wheeler Aligner (version 0.7.12-r1039). Samples were sequenced with an 

average sequencing depth of 110, with 95% of the exome covered by at least 10% 

and 50% of the exome at 60.  

 

Somatic mutation calling and data processing. Downstream analysis was based on 

the GATK Best Practices guidelines for identification of SNVs and the mm9 SNP142 

database. To identify somatic mutations, each tumour was called against each of five 

control mice from the same inbred colony using Strelka (version 1.0.14). Calls with a 

coverage <10 were removed. Only variants called against all five germlines were 

retained. To further ensure that the tumour SNVs used were purely somatic, only 

SNVs occurring uniquely in each tumour were used, and germline variants from an 

additional three independent control C57/Bl6 mice58 were removed. Finally, variants 

found in the dbSNP142 database of the Sanger institute were removed. Copy number 

variants were identified using CNVkit (version 0.9.2). Variant allele frequencies 

(VAFs) were centred on a value between 0.3 and 0.4, consistent with many mutations 

arising after the tumour initiating event, and with the genomic instability observed in 

these tumours. The calculation of the trinucleotides and strand specificity of the 

somatic mutations was performed using the R package MutationalPatterns (version 

1.2.1). The annotation of mutations was done with ANNOVAR (version 0.7.11). For 

the filtering of the mutations vcftools (version 0.1.15) were used. The effect of p53 

mutations on transcriptional activity was assessed using the IARC TP53 database59 

after converting the mutated amino acid to the equivalent amino acid of human p53. 

 



Whole genome sequencing (WGS). Whole-genome DNA library preparation using 

the TruSeq Nano DNA sample preparation kit (20015964, Illumina) and whole 

genome sequencing generating 150 bp paired-end reads using a HiSeq X Ten 

sequencer (Illumina) were performed by Macrogen. On average, samples were 

sequenced with a sequencing depth of 43, with 92% of the genome covered by at 

least 10 and 50% of the genome at 50. The analysis of the WGS data was 

performed as for WES (see “Somatic mutation calling and data processing” above), 

with the following adjustments: The pipeline was adapted for 150 bp paired-end 

reads; the mutation calling was performed using Strelka (version 1.0.14) with whole-

genome parameters; and three instead of five control mice were used to call germline 

variants. 

 

Epigenomic data sources and processing. The epigenomic data that describes local 

levels of various histone marks and DNase hypersensitivity were downloaded from 

encodeproject.org. Bigwig tracks were from ENCODE (aligned mm10 assembly), 

containing enrichment signal for chromatin marks, and read-depth normalized signal 

for DNase-seq. We collected H3K9me3, H3K36me3 and DHS datasets from 

encodeproject.org for seven normal mouse tissues (see Data avalability for 

accessions). 

The enrichment signal is the ratio of observed ChIP-seq counts relative to input, as 

determined and provided by ENCODE. The signal was smoothed by a moving 

average over a 1000 nucleotide window and then averaged over the seven tissues. 

For chromatin marks, enrichment of ≤ 0.5 was considered to indicate absence of 

signal, and for DNase-seq, read-depth of normalized values of ≤ 0.1 was considered 



as absence of signal. Genomic regions where the signal was fully absent constituted 

the ‘bin 0’ in regional mutation enrichment analyses (using regression; see below). 

The remainder of the genome with chromatin mark enrichment > 0.5 (for DNase-seq 

> 0.1) was divided into 3 equal-frequency bins. This implies that the bins 1, 2 and 3 

cover approximately equal amounts of genomic DNA, while bin 0 (no measurable 

signal) may be of a different size. The coordinates of the bin boundaries were then 

converted to the mm9 assembly using UCSC liftover tool. Specifically, in the case of 

H3K36me3, bin 0 spans 776 Mb of the mm9 assembly, and bins 1–3 span 453-456 

Mb each; for H3K9me3 signal, bin 0 spans 206 Mb of the genome, and bins 1–3 span 

626–654 Mb each; for DNase hypersensitive sites (DHS), bin 0 corresponded to 1908 

Mb, with 73–74 Mb for bins 1–3.  

ATAC-seq data of HFSCs and EpSCs from our own experiments (see above) were 

combined to yield the epidermal ATAC dataset, normalized to RPKM and processed 

by smoothing over a 5 kb sliding window. Regions with RPKM ≤0.5 were considered 

bin 0, i.e., the background level of ATAC-seq signal for the purposes of this analysis 

(1859.48 Mb and 1847.2 Mb for wild-type and G9acKO epidermis, respectively), and 

the remainder of the genome was divided into three bins as above (each 94 Mb and 98 

Mb for wild-type and G9acKO epidermis, respectively).  

Replication time data was collected from Repli-Chip experiments from 

ReplicationDomain.com and ENCODE, where it was provided for the mm9 assembly. 

Signal was averaged over seven datasets (see Data avalability for accessions). The 

genome was divided into four approximately equal-sized genomic bins (503–592 Mb 

each), where bin 0 represents the latest-replicating regions, while bin 3 represents the 

earliest-replicating regions. 



The genome alignability mask (CRG75 track for mm9) was applied to filter out non-

unique DNA across all bins, minimizing the effects of alignment or mutation calling 

artefacts; the alignable DNA by this definition covers a total of 2145.2 Mb of the 

genome. Further, regions with <10 reads coverage in any of the WGS samples were 

excluded, leaving 2141.9 Mb for the final analyses. 

Association of mutation density with epigenomic variables. Histone marks and 

other epigenomic features tend to co-occur across the genome. In order to establish 

independent associations of individual chromatin marks (or of DHS/ATAC-seq 

signal, or replication time) with mutation rates at single-nucleotide resolution, 

negative binomial regression was used to account for confounding effects, as we 

described recenlty48 In particular, the glm.nb function from the package MASS 

(version 7.3.45) in R 3.2.3 was used, with parameters at default values, where the 

input dataset for the regression was formed as follows: (i) the dependent variable is 

the mutation counts, pooled over the analyzed set of tumor samples and broken down 

by the 96 possible contexts/mutation types (see below); (ii) the independent variables 

are indicators (encoded as unordered factors) of genome bins that reflect an 

epigenomic variable, and all possible combinations of these bins and 96 

contexts/mutation types are represented in the dataset; (iii) the exposure variable 

(passed to glm.nb via the offset option) is the log nucleotides-at-risk: the number of 

base pairs in the mouse genome (passing the CRG alignability filters, see above) for 

each particular trinucleotide context and in each particular combination of genome 

bins; this quantity is multiplied by the number of tumor samples examined. 

The coefficients of the obtained regression model are the log (base e) enrichments of 

the mutation rate in each bin of the epigenomic variables, compared to genomic bin 0 



of the same variable. As these coefficients are converted to base 2, plots show log2 

enrichments. The confidence intervals were extracted from the model by the R confint 

function (which invokes confint.glm from the MASS package. All p-values were 

determined by two-tailed Z-test on the regression coefficient, as provided by the R 

summary function (which invokes summary.glm). 

Mutational signature analysis. Mutational signatures were inferred as previously 

described48, which is itself a methodology similar to that described previously41 based 

on non-negative matrix factorization (NMF). 

In particular, absolute mutation counts for the 96 contexts per tumor sample were 

used, i.e. without normalizing to relative frequencies within each tumor sample, 

thereby providing the 96 columns in the NMF input matrix. Both the n = 6 whole-

genome sequenced tumors and the n = 17 exome-sequenced tumors were included in 

this analysis, providing 23 rows in the NMF input matrix. A further 23 rows were 

added that contained a sample of putative germline mutations from the same tumours 

(see “Somatic mutation calling and data processing” above). 

Furthermore, bootstrap sampling of mutations (n out of n from each tumor, with 

replacement) was applied to this table to make 500 resampled tables with mutation 

counts, which each contain 96 columns and 23 + 23 rows. NMF was run for each of 

these 200 tables using the function nmf in the R package NMF (version 0.20.6), with 

maxiter = 10,000, the rank parameter (number of extracted factors) varying from 2 to 

10 and other parameters left at default, thus using the ‘brunet’ algorithm. The seed for 

the random number generator was changed before every NMF run. For each value of 

rank, the NMF factors (extracted from the H-matrix) from all 500 NMF runs are 

further clustered using the k-medoids algorithm (the pam function in R package 



cluster) and different values of k. The same function also calculates the silhouette 

index (SI) for the clusters, which is the average SI of all NMF factors within each 

cluster. SI is a clustering quality measure and higher values thereof signify a higher 

consistency of the clustering solution (here, a set of mutational signatures) across 

repetitions of the bootstrap sampling. The minimum value of SI across all clusters for 

a given clustering is used to guide the selection of the number of NMF factors and 

clusters (here, we chose 6 and 5, respectively). The medoids of these 5 clusters are the 

mutational signatures. Three of the five NMF signatures had high weights on the rows 

containing germline variants and were thus discarded; the remaining two NMF 

signatures (Signatures M1 and M2) did not have appreciable germline contributions 

and were thus considered to result only from somatic mutations. They were compared 

to the known COSMIC mutational signatures using cosine similarity.  

 
Whole genome expression analysis. For homeostatic and pre-neoplastic epidermis 

whole genome expression profiling, 1–2  105 cells were sorted and lysed in TRIzol 

(15596018, Thermo Scientific), and RNA was extracted following the manufacturer´s 

recommendations. For tumour progenitors, RNA was isolated and libraries prepared 

from 1000 cells as previously described60. cDNA was hybridized to the GeneChip 

MG-430 PM Array Strip (901570, Thermo Scientific) and scanned on a GeneAtlas 

Imaging station (Affymetrix). After RMA normalisation and batch correction using 

the ComBat function of the SVA package in R, differentially expressed genes were 

determined using the limma package (version 3.32.10) in R and a FDR < 0.05. 

Pathway analysis was performed using the GAGE (Generally Applicable Gene-set 

Enrichment) package (version 2.22) in R using FDR < 0.25.  

 



Real-time quantitative PCR (RT-qPCR). RNA was isolated as described above, 

followed by cDNA synthesis using the RevertAid First Strand cDNA Synthesis Kit 

(K1621, Thermo Scientific) according to the manufacturer´s instructions. RT-qPCR 

analysis was performed using the SYBR Select Master Mix (4472918, Life 

Technologies) according the manufacturer´s instructions. The reference gene Pum1 

was used for normalisation. Primer sequences are as follows: Bax-Fw: 

TGAAGACAGGGGCCTTTTTG; Bax-Rev: AATTCGCCGGAGACACTCG; Gls2-

Fw: CGTCCGGTACTACCTCGGT; Gls2-Rev: 

TGTCCCTCTGCAATAGTGTAGAA; Phlda3-Fw: CCGTGGAGTGCGTAGAGAG; 

Phlda3-Rev: TCTGGATGGCCTGTTGATTCT; Pmaip1-Fw: 

GCAGAGCTACCACCTGAGTTC; Pmaip1-Rev: CTTTTGCGACTTCCCAGGCA; 

Pml-Fw: CCAGAGGAACCCTCCGAAGA; Pml-Rev: 

GGCAGCGCAGAAACTGAAAT; Sesn1-Fw: CGGACCAAGCAGGTTCATCC; 

Sesn1-Rev: TGATGTTATCCAGACGACCCAAA; Xpc-Fw: 

TCCAGGGGACCCCACAAAT; Xpc-Rev: GCTTTTTGGGTGTTTCTTTGCC; 

Mdm2-Fw: TAAAGTCCGTTGGAGCGCAAA; Mdm2-Rev: 

CTGCTGCTTCTCGTCATATAACC; Pum1-Fw: 

AGGCGTTAGCATGGTGGAGTA; Pum1-Rev: 

TCCATCAAACGTACCCTTGTTC; B2m-Fw: 

CTCGGTGACCCTGGTCTTTC; B2m-Rev: 

GGATTTCAATGTGAGGCGGG.  

 

Immunostaining. Tissues were fixed in 10% formalin (HT501128, Sigma-Aldrich) 

for 2 h at room temperature and embedded in paraffin; 4 µm sections were stained. 

For immunofluorescence, sections were blocked in 10% donkey serum (D9663, Life 



Technologies) for 1 h at room temperature and stained with primary antibodies 

overnight at 4C. Sections were washed three times in PBS before incubation with 

secondary antibodies for 1 h at room temperature. Slides were washed three times in 

PBS containing 2 µg ml–1 DAPI (D9542, Sigma-Aldrich) and mounted in Vectashield 

(H-1000, Vector laboratories). Immunofluorescence pictures were acquired using a 

Leica TCS SP5 confocal microscope.  

 

For immunohistochemistry, sections were stained with primary antibodies at room 

temperature for 2 h, washed twice, and then incubated with secondary antibodies, 

followed by 5 min incubation with DAB (K346711-2, Dako). Sections were 

counterstained with hematoxylin (CS70030-2, Dako) and mounted using Toluene-

Free Mounting Medium (CS70530-2, Dako).  

Stained immunohistochemistry sections were scanned using a high-resolution 

NanoZoomer 2.0 HT (Hamamatsu); images were quantified using the positive cell 

detection tool or the ruler tool of QuPath software.  

 

Immunoblotting. To obtain nuclear protein extracts, single cell suspensions of 

homeostatic epidermis were washed twice in ice-cold PBS and lysed in Swelling 

Buffer (1.5 mM MgCl2, 10 mM KCl, 0.1 % NP-40, 25 mM HEPES pH 7.9, complete 

mini protease inhibitor cocktail [Roche]) on ice for 10 min. Nuclei were isolated with 

a Dounce homogenizer (Sigma-Aldrich) with a tight pestle (50 strokes). Extracts were 

then centrifuged at 3000  g for 5 min at 4C. Pelleted nuclei were lysed in RIPA 

(150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5 % DOC, 50 mM TrisHCl pH 8.0, 

complete mini protease inhibitor cocktail [5056489001, Roche]) for 15 min. For 

whole cell extracts, cells in culture were washed twice with ice-cold PBS and lysed 



either in RIPA (150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5 % DOC, 50 mM TrisHCl 

pH 8.0, complete mini protease inhibitor cocktail [5056489001, Roche]) or in NP40 

buffer (150 mM NaCl, 1% NP-40, 50 mM TrisHCl pH 8.0, complete mini protease 

inhibitor cocktail [5056489001, Roche]). Cleared nuclear extracts were assayed for 

protein concentration using Pierce BCA Protein Assay Kit (23223, Thermo 

Scientific). Equal amounts of protein were separated on 10% SDS-PAGE gels or 4%–

15% Mini-PROTEAN TGX Precast Gels (4561085, BioRad) and transferred onto 

PVDF membranes (IPFL00010, Merck Millipore). Western blot analysis was 

performed according to standard protocols. Band signals were quantified using Image 

J, and normalized using histone 3 as a loading control. 

 

Antibodies. The antibodies used in this study are listed in Supplementary Table 7. 

 

Statistics and reproducibility. Sample sizes, statistical tests and definitions of error 

bars are indicated in the figure legends. All statistical tests were two sided. P-values > 

0.005 were considered not significant (ns). All p-values are indicated in the 

corresponding figures. Each experiment was repeated successfully at least twice with 

similar results, as described in the figure captions. Statistical analyses were performed 

using Prism 7 (GraphPad) software. Flow cytometry data were analysed using FlowJo 

10 (Treestar). Adobe Photoshop CS6 and Adobe Illustrator CS6 were used for figure 

presentation.  

 

Data availability. Whole genome expression, ATAC-seq and WES data that support 

the findings of this study have been deposited in the Gene Expression Omnibus 

(GEO) under accession code GSE99956. WGS data that support the findings of this 



study are available from the Sequence Read Archive (SRA) under accession code 

SRP133918. The epigenomic data for seven normal tissues (epidermis, heart, 

intestine, kidney, liver, lung, stomach) that describes local levels of various histone 

marks and DNase hypersensitivity was downloaded from encodeproject.org. 

Secondary accessions are as follows: DHS (ENCFF513QAB, ENCFF650OFZ, 

ENCFF299KAN, ENCFF890IPV, ENCFF540VTK, ENCFF417SAZ, 

ENCFF197TQR); H3K36me3 (ENCFF256PWZ, ENCFF085HHF, ENCFF103TPF, 

ENCFF706SAT, ENCFF555EBK, ENCFF165DVJ, ENCFF307IYH); H3K9me3 

(ENCFF485MEK, ENCFF363IUI, ENCFF664YAD, ENCFF033IOU, 

ENCFF040LFN, ENCFF399KQJ, ENCFF591NXE). Replication time data was from 

ReplicationDomain (Int52769503, Ext42528275, Int20705995, Int61896107) and 

encodeproject.org (ENCFF001JTQ, ENCFF001JTL, ENCFF001JVQ). 

Source data for Figs. 1-6 and Supplementary Figs. 1-4 and 6 have been provided as 

Supplementary Table 8. All other data supporting the findings of this study are 

available from the corresponding author on reasonable request.  

 

Code availability. The software and algorithms for data analyses used in this study 

are all well-established from previous work and are referenced throughout the 

manuscript. 
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