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Abstract: 

Electron tomography is a widely spread technique for recovering the three 

dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to 

achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to 

date, energy filtering of the images in the transmission electron microscope (EFTEM) is 

the usual spectroscopic method even if most of the information in the spectrum is lost. 

Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) 
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spectrum images (SI) for tomographic reconstruction retains all chemical information, 

and the possibilities of this new approach still remain to be fully exploited. In this letter 

we prove the feasibility of EEL spectroscopic tomography at low voltages (80kV) and 

short acquisition times from data acquired using an aberration corrected instrument and 

data treatment by Multivariate Analysis (MVA), applied to FexCo(3-x)O4@Co3O4 

mesoporous materials. This approach provides a new scope into materials: the recovery 

of full EELS signal in 3D. 

 

1. Introduction: 

Despite its low energy resolution, EFTEM has prevailed over EELS-SI [1] for 

analytical electron tomography because of the lower acquisition times and more 

favorable conditions for sample stability [2-4]. Only a few images (i.e. energy windows) 

per tilt angle are acquired in EFTEM, which reduces the time of acquisition as well as 

the energy dose received by the sample. Conversely, EELS-SI had the hindering of high 

acquisition times and therefore high energy dose. Many samples are beam-sensitive to 

an extent that impaired this technique to be applied. However, as the new generations of 

transmission electron microscopes become widely spread, Cs correctors, 

monochromated sources and more sensitive detectors have enabled higher spatial and 

energy resolution as well as a decreasing in acquisition time of images and spectra [5]. 

Operation of the microscope at low voltage also reduces the energy dose on the 

samples. If we consider MVA [6,7] of the final data, low signal to noise ratio is 

acceptable, further reducing acquisition times. And last but not least, the proposed low 

voltage EELS-SI-tomography technique provides a wide range of signals fulfilling the 

projection requirement, as core-loss signals [1,8], as well as high-angle annular dark 

field (HAADF) signal, which have already been used for 3D reconstruction [8-11]. 

Moreover, mathematical treatment of spectra to identify independent components maps 

from independent component analysis (ICA) is demonstrated to be a useful procedure to 

retrieve signals which give complementary information to direct elemental 

quantification from EELS spectra 

2. Materials and methods: 

In this work 3D spectrum image tomography analysis is applied to antiferromagnetic 

(AFM) mesoporous Co3O4 nanocast replicas of Si KIT-6 filled with ferrimagnetic (FiM) 

FexCo(3-x)O4. A detailed report about the synthesis, structural and magnetic 

characterisation of these materials as a function of the different concentrations of the 

FiM phase used for impregnation has been already published [ref paper eva]. 

Preliminary tomographic results revealed the sequence of deposition of the FexCo(3-x)O4 

in the porous wall as the charge of impregnation was increased. Nevertheless, iron 

saturation was detected for an amount of FexCo(3-x)O4 of 2.4 Fe(III):Co3O4 molar ratio. 

Previous EELS studies also showed an increased Fe content for higher charge. 

However, 2D EELS was unable to detect the spatial distribution of Fe in depth, as the 

signal is integrated along the thickness of the particle. Therefore one of the samples 

(charge 1.2 Fe(III):Co3O4 molar ratio) has been selected to demonstrate low voltage 

EELS-SI-tomography as a suitable technique to assess the iron distribution in 3D. 
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Data acquisition was carried out on a probe corrected FEI Titan operated at 80 kV 

acceleration voltage. The whole data set consisted of 48 SI ranging from 68.99 º to -

64.74 º following a saxton scheme angle step with 55x55 spectra each, acquired during 

0.1s. High angle annular dark field (HAADF) signal was acquired simultaneously. 

Afterwards, for data treatment, MVA methods were applied, namely principal 

component analysis (PCA) and ICA using EELSLab [12].  

A whole set of EELS-SI tomograms contains an extremely large amount of spectra in 

comparison to conventional EELS experiments in 2D. Thus, despite the inconveniently 

original noisy data because of the reduced primary beam energy and exposure times 

used to prevent sample damage, those statistical approaches provide high quality results. 

In the following we will describe the mathematical steps applied to the original 

signal to retrieve significant dataset of intensity I distribution of the form I(x, y, θ), 

suitable as input data for the 3D tomographic reconstruction algorithm. 

The first step of data treatment was merging the data together in EELSLab in order to 

obtain a greater SI onto which the statistical analysis could be applied. Therefore, the 

original four dimensional (x, y, θ, ΔE) data set was transformed to (x, y (θ), ΔE), the 

same format as a regular SI. After energy drift correction, PCA was applied on the data. 

This technique, which allows separating signals in a spectrum according to their 

variance [13], enhanced the signal-to-noise ratio by keeping only higher variance 

components. An example is shown in figure 2. From the noisy raw spectra obtained in 

the thinnest region (2b) and thickest region (2c) of the particle, enhanced OK, Fe (L3,2) 

and Co (L3,2) edges were retrieved after PCA analysis (figures 2e and 2f). Nevertheless, 

thickness effects were clearly noticed in figures 2c and 2f as revealed by the higher 

background contribution in the central part of the particle.  

Further ICA was also carried out. This analysis consists on reducing the energy 

space, of a dimension given by the number of channels to a smaller space of orthogonal 

axes onto which every spectrum can be easily projected. The new basis axes (the 

independent components) are found according to the non-gaussian distribution (i.e. their 

independence from other signals) [14]. This analysis successfully retrieved the Fe oxide 

and Co oxide signals of the sample as well as the background signal before the oxygen 

K edge, which are three orthogonal axes of our new energy basis (figure 3a). Every 

single spectrum on the dataset can be represented as a function of the independent 

signals. Looking the other way round, every independent component has a scalar map 

for each spectrum image, which means that we have distribution maps for iron oxide, 

cobalt oxide and thickness. An example of these scalar maps at different angles are 

shown in figure 3b.  

After PCA noise-reduction, the data were transformed back to the original four 

dimensions in order to proceed to traditional core loss quantification using the Egerton 

method [15]. Following background removal, edge intensities given by equation (1) 

were experimentally determined.  
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where A

kI  is the edge intensity of a k transition for an element A, 
AN  is the areal 

density of element A, A

k  is the k ionization cross-section of element A, 
TI the total 

transmitted beam intensity, t is the sample thickness and   the ionization mean free 

path. The experimental results for the three extracted intensities for one projection are 

shown in figure 4 first column. The extracted O (K), Co (L32) and Fe (L32) edge 

intensity maps (figures 4a, c and f respectively) reveal a drop of intensity at the centre 

of the particle, again a clear indication of thickness effects. Plural scattering 

(convolution of the ionization edges with the low loss region) can be held responsible 

for the loss of intensity of these edges. The effects of plural scattering are avoided for 

thickness (t) of the sample 3.0/ t  [15], where   is the inelastic scattering mean free 

path. The thickness of the particle is around 100 nm (as seen in figure 1) and the 

ionization mean free path for the extreme compositions (i.e. Co3O4 and Fe3O4), is of 

73.5 nm and 74 nm respectively [15], which means that plural scattering is found for 

22t  nm. The experimental edge maps fail to fulfil the projection requirement [16] 

near the centre of the particle, where this drop in intensity is systematically found, but 

this problem is not found near the surface.  

In a second step, quantification of O, Fe and Co concentrations was extracted 

according to eq. 2 for three component quantification.  
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The results are shown in figure 4 second column. In these maps, the signals are only 

proportional to the areal densities and the ionization cross-sections, as the total intensity 

and the exponential factor cancel, if we consider that the mean free path through the 

sample does not effectively change, which is consistent with the previous calculations 

of mean free paths only changing 0.5 nm at most. Effectively, comparison of second 

and first column in figure 4 illustrates that quantification maps overcome the contrast 

inversion observed in edge maps. They fulfil the projection requirement, as the signal 

changes monotonically with a property of the sample, in this case elemental 

concentration, and it is not angle depending [10]. 

Combining the data of the ICA thickness maps and the quantification, a new kind of 

signal was extracted. As quantification images are directly proportional to the areal 

density of a given element and we have extracted a signal only proportional to 

thickness, both signals can be merged multiplying pixel by pixel the projection images. 

The intensity of this new signal can be also regarded as the contribution of a given 

element to the thickness found for every pixel, giving a signal proportional to the 
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absolute number of atoms of that given element, density-thickness contrast images, 

which fulfil the projection requirement. 

Spatial drift was measured on the Fe quantification using Imod [17] because of the 

higher signal to background ratio of this signal. Afterwards, these measures were used 

to correct all of the 9 datasets, which consisted on iron, cobalt and oxygen 

quantification, HAADF, sample thickness and iron oxide signal from ICA and the ICA 

thickness combined with core loss quantifications of Fe, Co and O. The same tilt axis 

correction, measured with Inspect3D software, was also applied. The latter software was 

used to reconstruct the tomograms, with 40 to 60 iterations of SIRT [18] in order to 

maximise the signal-to-background ratio.  

3. Results: 

In figure 5, the Fe signal is used to exemplify the information from an original 

projection, a voltex visualization of the reconstructed volume and a slice through that 

volume for the quantification maps (Fig.5 a-c), the ICA signals (Fig.5 d-f) and the 

density-thickness maps (Fig.5 g-i); showing the ability of those signals to reconstruct 

chemical information in 3D. Moreover, a visualization of the reconstructed volume for 

the HAADF signal is shown (Fig.5j), as well as a comparison between the 

quantification reconstructions of Fe and Co (Fig.5k) and the superposition of HAADF 

and thickness maps from ICA (Fig.5l). The comparison of iron and cobalt is extended in 

figure 6, where orthoslices of density-thickness reconstructions for both elements are 

shown. 

4. Discussion: 

Interestingly, all the chosen signals could be properly reconstructed, leading to 

volumes containing chemical information. It must be taken into account that those 

signals suffering from thickness effects show lower intensities in the center of the 

reconstruction, but that have no effect on the shape information. The reconstruction of 

the HAADF STEM tomography is the most well established 3D reconstruction 

technique in the TEM and thus the HAADF signal co-acquired during the tilt series will 

be used for assessment of the quality of the other reconstructions.  

Regarding chemical information, an interesting result was revealed: the comparison 

between iron and cobalt signals showed that some of the iron which was intended to 

penetrate the structure remains instead on the outer surface. Moreover, the rest of the 

iron content is uniformly distributed inside the particle, as seen in the density-thickness 

maps reconstruction (Fig.5 g-i).  

We can observe that the oxygen and cobalt reconstructions for extracted signal and 

quantification (not shown) are coincident with HAADF volume. This was expected, as 

cobalt oxide formed the original mesoporous structure. Conversely, iron signals 

reconstruct volumes greater than the HAADF. The particles are richer in iron at the 

border and therefore, iron related chemical signals give a sharp interface between the 

particle and the background, especially quantification and density-thickness maps, 

where HAADF signal is very low and has fallen to background levels due to the small 

thickness. These results show that iron signals reconstruct more precisely the edge of 

the particles than HAADF. On the other hand, the thickness signal has the drawback of 

underestimating the border more than the HAADF signal, as observed in the original 
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projections. This is due to the statistical nature of the signal, which assigns it a low 

contribution to the spectra at the border. However, the most interesting feature of this 

signal is that it is insensitive to the chemistry of our sample and independent of multiple 

scattering, a characteristic not found in any other signal used for electron tomography. 

5. Conclusions: 

As a conclusion, EELS SI tomography is shown to be able to reconstruct chemical 

information of a sample in three dimensions. Moreover, the application of MVA to the 

data opens a new range of applications, reducing the limitations due to beam sensitive 

materials or samples with components with overlapping edges, where core-loss 

extraction using background estimation fails. This has been illustrated on mesoporous 

Co3O4 particles filled with FexCo(3-x)O4. 
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Highlights: 

 EELS-SI tomography was performed at low voltage and low acquisition 

times. 

 MVA has been applied for noise reduction and information extraction. 

 Tomographic reconstruction has been achieved for chemical information. 

 Elemental distribution extraction in 3D has been proved. 

 



7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: a) HAADF projection of the particle used in the analysis. b) Reconstruction using the 

HAADF projections and c orthoslice through the volume of the particle. Note that this HAADF 

signal is not the one acquired with the SI.  

a) b) c) 
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Figure 2: Spectrum images at 68.99º before (framed in blue) and after (framed in green) PCA 

assisted noise reduction. Sample spectra from the border of the particle (b and e, in red) and the 

thicker part (c and f, in yellow) are shown. 
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Figure 3:  Independent components (unity vectors of our new basis) and extracted IC maps for 

four different projections: cobalt oxide (CoOx) in red, thickness (T) in green and iron oxide 

(FeOx) in blue. RGB composites are given for the four tilt angles in order to compare the spatial 

distribution and magnitude of each component. 
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Figure 4: First column: Edge intensity maps for Oxigen K (a), Cobalt L32 (c) and Iron L32 (e) 

calculated from equation 1 after noise reduction. Second column: Elemental quantification 

maps for O (b), Co (d) and Fe (f) from equation 2. Third column: Cobalt oxide (g) and iron 

oxide (h) maps extracted from ICA analysis. Note that the quantification maps overcome the 

intensity inversion at the centre of the particles. Remark also the similarities between the 

independent components and their respective metal map. 
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Figure 5: a) iron map at 68.99º from Egerton quantification, b) voltex visualization of the 

reconstruction of iron maps and c) slice through the reconstructed volume. d) Iron oxide map 

from ICA, e) voltex visualization of the reconstruction of ICA iron oxide maps and f) slice 

through the reconstructed volume. g) Iron density-thickness map from ICA, h) voltex 

visualization of the reconstruction of ICA thickness maps related to iron quantification and i) 

slice through the reconstructed volume. j) HAADF reconstruction from the co-acquired signal. 

k) Superposition of the voltex visualizations of Co (blue) and Fe (orange) obtained from 

quantification and l) HAADF (yellow) and thickness maps from ICA (violet). 
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Figure 6: a) Orthoslice through the volume of the reconstructed iron density-thickness map 

with a red isoline at the border. b) Orthoslice through the volume of the reconstructed cobalt 

density-thickness map with the same isoline. It can be observed that the iron has higher intensity 

than the cobalt at the edges of the particle for the same slice. 

a) b) 
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