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Abstract

We study groundwater management under a regime shock a�ecting water avail-

ability, using a dynamic common-property resource game. The di�erent players corre-

spond to di�erent groundwater uses (irrigation or urban water supply), enabling us to

consider competition between economic sectors for the stock with limited availability.

The players have di�erent water demand functions and, under certain circumstances

depending on the shock, di�erent discount rates. The e�ects of asymmetries in both

demand and discount rates are analyzed, comparing cooperative and non-cooperative

solutions. A numerical analysis for the particular case of the Western La Mancha

aquifer in Spain is conducted to analyze the degree of ine�ciency of non-cooperative

solutions with respect to cooperative solutions in terms of welfare. We show that a

higher asymmetry in discount rates reduces the ine�ciency of non-cooperative solu-

tions. The opposite result is obtained when considering the asymmetry in demand.
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1 Introduction

Many studies have analyzed and compared cooperative versus non-cooperative solutions

for common groundwater resources used for irrigation (e.g., Gisser and Sanchez [1980],

Negri [1989], Provencher and Burt [1993], Rubio and Casino [2001]), given that ground-

water is mainly used for irrigation in the majority of aquifers. These studies indicate that

non-cooperative solutions are ine�cient in terms of stock when compared to cooperative

(or Pareto e�cient) solutions. However, Gisser and Sanchez [1980] showed analytically

that these solutions get closer when the capacity of the aquifer is very large, giving rise

to the so-called Gisser-Sánchez e�ect (GSE). In the calculation of the non-cooperative (or

competitive) solution, these authors considered that farmers behave myopically, that is,

farmers make decisions over a short period of time without considering the future conse-

quences of their actions at each moment. Subsequent studies (Negri [1989], Provencher

and Burt [1993], Rubio and Casino [2001] and de Frutos Cachorro et al. [2019]) extended

the work of Gisser and Sánchez by using game theory, con�rming the GSE after taking into

account the dynamic and strategic interactions among farmers. However, previous studies

also pointed out that cooperation could not be justi�ed if the di�erence in welfare between

the solutions is relatively low. To estimate the degree of ine�ciency of non-cooperative

solutions in terms of welfare, numerical applications have been performed using real cases.

When there is a structural lack of water or a regime shock a�ecting water availability in

an aquifer, competition tends to increase not only among the farmers, but also among the

di�erent types of uses due to the limited availability of the stock (i.e., stock externality).

For example, as explained in De Stefano et al. [2015], the domestic water supply company

uses groundwater mostly only during drought periods in the city of Madrid. Furthermore,

recent studies have warned that due to the growing concerns about environmental issues,

competition between uses (Kahil et al. [2016]) and/or the con�ict between economic and

environmental objectives (Pereau [2018]) could increase, especially under water scarcity.

However, there are only a few studies in the literature on cooperative solutions where

the users are heterogeneous (or asymmetric) and on the consequences of shocks on these

solutions.

Concerning the optimal extraction behavior under water scarcity, most agro-economic

studies treat it as a short-term problem (i.e., agronomic drought), where water scarcity is

modeled as a decrease in potential crop yields (e.g., Reynaud [2009], Graveline and Mérel

[2014], De Frutos Cachorro et al. [2017]). In this paper, we consider water scarcity as a long-

term problem a�ecting the water availability of the resource (hydrological drought). We
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model a shock on the aquifer dynamics that decreases the recharge rate and, subsequently,

water availability, with this decrease maintained over time. E�ects of similar shocks have

already been studied in Tsur and Zemel [2014] and de Frutos Cachorro et al. [2014] for

centralized management, as well as in de Frutos Cachorro et al. [2019] considering dynamic

and strategic interactions among several farmers.

Focusing on the few economic studies on common resources that combine the above

mentioned research lines, there are those that have assumed symmetric players (e.g., de

Frutos Cachorro et al. [2019]) and those that have considered asymmetric users (e.g., Karp

and Tsur [2011]). However, most of the studies on groundwater resources that have taken

into account asymmetric players, such as Roseta-Palma and Brasão [2004] (asymmetric

water demands and costs), Erdlenbruch et al. [2008] (asymmetric opportunity costs) and

Saleh et al. [2011] (revenue parameters and quantity stock access), have not considered

the possibility of shock occurrences in their modeling. Karp and Tsur [2011] addressed a

relatively similar methodological problem to ours, that is, a consumption problem, with

heterogeneous agents facing a shock in the system. They considered an intergenerational

model in which each generation is represented by one agent and has di�erent time pref-

erences, giving rise to a problem of non-constant discounting over time. When we depart

from the standard assumption of a common (unique) and constant discount rate of time

preferences, a problem of time-inconsistency1 arises, as had been already observed by Strotz

[1955]. As a result, standard dynamic optimization techniques fail to characterize time-

consistent optimal policies (in the sense that solutions calculated at a given time t are

no longer optimal at a di�erent time t′, for t < t′), and modi�ed dynamic programming

equations are required (see, for instance, Karp [2007] or De-Paz et al. [2013]). Moreover,

Karp and Tsur [2011] introduced an uncertain and catastrophic shock that depended on

the stock of greenhouse gasses and a�ected the utility function, comparing the Markov

perfect equilibrium with the case of constant preferences over time.

In this paper, we study how the occurrence of an exogenous shock that decreases

water availability in�uences competition between groundwater users showing asymmetries

in demand and time preferences. Our contribution with respect to previous studies can be

summarized as follows. First of all, in contrast to Karp and Tsur [2011], we consider the

players to be simultaneous users of a groundwater resource and not the di�erent generations

that exploit a common resource over time. Moreover, as explained previously, the players

1Collective temporal decisions when agents have di�erent rates of time preferences - as is the case in our

cooperative setting - lead to time-inconsistent aggregate time preferences, giving rise to e�ciency problems

(Jackson and Yariv [2015]).
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face a di�erent type of shock compared to that in Karp and Tsur [2011], which consists in

an abrupt decay in the recharge rate of the aquifer at a given date. Second, in our work,

the di�erent players correspond to two types of groundwater uses, namely irrigation and

drinking water (or domestic use), which have di�erent water demands, as in Roseta-Palma

and Brasão [2004]. As is usual in most economic studies, if we ignore the shock e�ect, the

di�erent players making the same use of groundwater (such as farmers) apply the same

time preferences. However, we consider that the di�erent users can also show di�erences

in time preferences in some situations. In particular, we assume that farmers using water

for irrigation react in advance to the future period of water scarcity by increasing their

valuation of their current use of water (i.e., their discount rate) until the shock occurs.

Indeed, since urban water use is usually prioritized over agricultural use in periods of

drought (Molle and Berko� [2006]), it is realistic to assume that farmers may become more

impatient to extract water (leading to a higher discount rate) before the shock arrives.

An application to the Western La Mancha aquifer is performed to analyze the e�ect of

di�erent types of asymmetries between the users (demand and discount rates asymmetries)

on extraction behavior. We compare cooperative and non-cooperative solutions to estimate

the ine�ciency of non-cooperative solutions with respect to cooperative solutions in terms

of stock and welfare. We �nd that the consideration of asymmetric uses in groundwater

exploitation does not necessarily increase the ine�ciency of non-cooperative behavior. This

will depend on the type of asymmetry considered.

The paper is organized as follows. In Section 2, we present the theoretical game, while

in Section 3 we solve the model for non-cooperation and (time-consistent) cooperation. In

Section 4 we describe the results from the numerical analysis of the Western La Mancha

aquifer, while Section 5 provides the conclusion.

2 The model

In this work, we adapt the game of exploitation of a common groundwater resource de-

scribed in Rubio and Casino [2001] and de Frutos Cachorro et al. [2019] for two type of

uses, namely irrigation and urban water supply. To simplify the modeling, the �rst use

is characterized by a representative farmer, while the second use corresponds to a private

urban water supplier operating over the entire water cycle (extraction, water treatment,

storage and distribution). Concerning the private participation in the provision of urban

water services, this has been an increasing movement since the the privatization wave of

public monopolies and public services from the 1980s (see, e.g., González-Gómez et al.
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[2014] for an analysis of this trend in Spain). In particular, in the Spanish case, while ur-

ban water supply and sanitation services are under municipal jurisdiction, municipalities

can decide on how to provide these water services, and choose between a public, private

or joint management model. As reported in Dige et al. [2017], a 40% of the population is

provided by the private urban industry, although regardless of the type of management,

tari�s must be approved by the public administration. In the case of the European Union,

the EU Water Framework Directive (Directive 2000/60/EC) establishes that water-pricing

policies must provide the adequate incentives to use water resources e�ciently, under the

principle of recovery of cost for water services, including the environmental cost. These

services include abstraction, impoundment, storage, treatment and distribution of surface

water or groundwater, as well as waste-water collection and treatment facilities. In the

following, we describe the elements of the model.

2.1 Revenue function

For the group of farmers, we consider a representative agent with a linear demand for

irrigation given by gf = a − bpwf (a > 0 and b > 0), where gf represents the water

extraction rate and pwf the price of water. Under the assumption that the farmer is a price

taker in the output markets, the price of water2 will equal the value of marginal product of

water. We also assume that the agricultural production function exhibits constant returns

to scale, and that production factors other than water and land are optimized conditioned

to the water extraction rate. Under these assumptions, the representative farmer's revenue

function can be obtained by integrating the inverse of the derived demand for water∫
pwf (gf ) dgf =

∫
a− gf
b

dgf =
a

b
gf −

1

2b
g2
f .

For the the urban water supplier, we follow a similar model construction than that of

farmers, and consider a private �rm with a concession contract that manages the entire

water cycle, from abstraction to distribution. The water supplier has a linear demand for

urban water provision given by gu = au−bupwu (au > 0 and bu > 0) where gu represents the

water extraction rate and pwu the price of water as input. While urban water is provided on

an exclusivity basis, �nal consumer prices are approved by a public entity3, so we consider

2In the case that water was provided free of charge, an alternative approach is to consider that this

price represents the shadow price associated to a given maximum availability of water, i.e., how much the

farmer would pay to relax that constraint (see, e.g., Tsur et al. [2004]).
3For illustrative purpose, see for instance Picazo-Tadeo et al. [2020] for a description of the administra-

tive process of urban water pricing in Spain.
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our water supplier as a price taker in its output market, and the price of water as input will

equal the value of marginal product of water. Moreover, approved �nal water consumer

prices are assumed to guarantee positive pro�ts to the water supplier when providing the

service. We also assume that the supplier production function exhibits constant returns to

scale, and that production factors other than water and water infrastructures required for

the service provision are optimized conditioned to the water extraction rate. From this,

the water supplier �rm's revenue function can be obtained by integrating the inverse of

the derived demand for water∫
pwu (gu) dgu =

∫
au − gu
bu

dgu =
au
bu
gu −

1

2bu
g2
u .

While input water demands for both irrigation and urban uses are independent, to

simplify the analysis when introducing asymmetries, we write au = θa and bu =
θb

k
, i.e.

gu = θ

(
a− b

k
pwu

)
, with 0 < θ < 1, and k ≥ 1 . (1)

In the equation above, θ is linked to the proportion between both water demands, and

at their maximum it �xes the exact ratio. For example, according to di�erent Spanish

reports (e.g., Hernández-Mora et al. [2007]) and recent press releases (e.g., Greenpeace

[2019]), just around 17%− 19% of groundwater pumped from aquifers is devoted to urban

uses in most of places in Spain. This helps us to choose the value of the parameter θ.

Parameter k describes the ratio between the reservation prices of urban users and farmers,

and modi�es the price elasticity of the demand function of urban use with respect to that of

irrigation use. Price elasticities for both urban and agricultural water have been extensively

studied in the literature at the theoretical and empirical level, and are highly dependent

on speci�c circumstances as climate conditions, type of uses, diversity of crops, etc. In

the Spanish case, and in fact for most of the EU-28 countries, residential water demand

is price inelastic, as reported in Reynaud [2015], while water demand for agricultural use

depends on the particular region. In Berbel Vecino et al. [2005], the authors report an

elastic demand for agricultural use in the Duero basin case, in the northern of Spain, and

a two-segment elasticity demand (inelastic for low prices and elastic for high prices) in the

Guadalquivir basin case, in the southern of Spain. Since our aim is to explore the e�ects

of introducing an asymmetry between the two uses that are here considered (i.e. urban

supply and irrigation), we will assume without loss of generality that, concerning price

elasticity of demand, the groundwater demand function for urban use is comparatively

less elastic than that for irrigation use. The proposed values θ < 1 and k ≥ 1 recover all
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the above mentioned hypotheses. Considering the demand for urban water described in

equation (1), the revenue of the water supplier �rm becomes

k

(
a

b
gu −

1

2bθ
g2
u

)
.

2.2 Cost function and aquifer dynamics

In our model, the cost supported by groundwater users and the description of the aquifer

dynamics follow the standard assumptions in the literature. The marginal cost of extraction

of user i is a linear function that depends on the stock of the aquifer G. The total costs of

extraction of user i ∈ {f, u} are therefore

C̄i = (zi − cG)gi, z, c > 0 ,

where c is the slope of the marginal pumping cost function and zi is all the remaining costs

per unit. Since di�erent users will have di�erent needs (for example, in terms of water

quality), the values of zf and zu can be di�erent.

The dynamics of the aquifer is given by Ġ = −(1−γ)
∑

i gi+r, where r is the recharge

rate and γ the return �ow coe�cient4, γ ∈ [0, 1). As in de Frutos Cachorro et al. [2014,

2019], the system is disturbed by an exogenous and deterministic shock that leads to

a sudden decrease on water availability from ta on. We model this e�ect as a sudden

reduction in the recharge rate, r, at time ta, which is previously known by all the users.

Thus, at time ta, the recharge rate switches from r = r1 to r = r2, with r1 > r2. As a

result, the dynamics of the water resource becomes

Ġ =

{
−(1− γ)

∑
i gi + r1 if t ≤ ta

−(1− γ)
∑

i gi + r2 if t > ta,
(2)

with r1 > r2.

For many economic applications, assuming a deterministic value for ta is actually less

realistic than assuming a random value. However, in our model, this can be justi�ed,

for example, in case of policy implementation when the date of an exceptional extraction

of groundwater sustained over time (equivalent to a sustained recharge rate reduction) is

announced in advance. This exceptional extraction of groundwater from ta onwards can

be due to the construction of a reservoir, a transfer to another river basin or a particular

4We assume a unique return �ow coe�cient for the di�erent uses in order to simplify the model.

Potential implications of di�erent values of γ are brie�y discussed in Section 4.4.
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need for other uses in case of drought. Moreover, the choice of a deterministic setting has

important advantages for our analysis. Since we aim to study the e�ects of the di�erent

asymmetries of the players (in demand and discount rates) in the short term (before the

time the event occurs) and in the long term (later on), this analysis is clearer if ta is

deterministic. From a mathematical point of view, the problem can also be solved for a

random ta following an exponential distribution.

2.3 Discount rates

In our model, we depart from the standard assumption of a unique and constant discount

rate for both players. Moreover, the players know in advance that there will be a regime

shift in the future, so they can anticipate the future e�ects of that change. More speci�cally,

during water scarcity, the regulator could act by prioritizing urban uses over agricultural

uses through quota implementation or/and by increasing water prices5. This risk should be

taken into account by farmers. Based on these considerations, it seems natural to assume

that until the shock event at moment ta, farmers will assign a higher value to present

pro�ts (they exhibit more impatience) than urban users. Therefore, we analyze the case

in which the discount rates of farmers and urban users, ρf and ρu, are given by

ρf =

{
ρ̄f for t ≤ ta
ρ for t > ta

and

ρu =

{
ρ̄u for t ≤ ta
ρ for t > ta

with ρ̄f ≥ ρ̄u = ρ. In the numerical application in Section 4.4, we brie�y analyze the

situation in which discount rates remain unchanged under non-cooperation.

2.4 Problem statement

The problem of user i ∈ {f, u} is to maximize his individual welfare, de�ned as the present

value of his future pro�ts. If ρi is the discount rate of user i, we must solve

max
gi(.)

∫ ∞
0

Fi(G, gi) e
−ρit dt , (3)

5We acknowledge that priority rules are are not explicitly modeled in this paper and the introduction

of them could be an interesting extension to the current work, as explained in Section 5.
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where

Ff (G, gf ) =
a

b
gf −

1

2b
g2
f − (z − cG)gf , (4)

Fu(G, gu) = k

(
a

b
gu −

1

2bθ
g2
u

)
− (z − cG)gu , (5)

subject to (2), with G(0) = G0 given, and

gi ≥ 0 , G ≥ 0 , i = f, u . (6)

3 Model resolution

Our objective is to compare the results obtained under cooperation and non-cooperation

in terms of extraction levels, stock and welfare. Both types of players, farmers and urban

users, are assumed to be able to observe the level of the resource, i.e., the water table level,

during the whole planning horizon. In this context, we calculate the corresponding subgame

perfect non-cooperative and cooperative solutions. Furthermore, we brie�y consider the

non-cooperative case under myopic behavior and under open-loop information structure,

with the objective to compare the level of ine�ciency in the resource stock to that under

cooperation. Detailed calculations are presented in the Appendix.

3.1 Subgame perfect non-cooperative Nash equilibrium

Under the Markovian information structure, farmers and urban users observe the level of

the resource (i.e., the water table level) during the planning horizon, for example, by using

groundwater monitoring instruments, and make their extraction decisions accordingly. To

calculate the subgame perfect non-cooperative Nash equilibria (SPNE), we solve the prob-

lem described in Section 2.4 by applying the standard dynamic programming techniques

that are described in detail in e.g. Dockner et al. [2000] and Haurie et al. [2012]. Since

the dynamics changes at time ta, we solve the problem, �rst, for the time period (ta,∞),

incorporating this result later on to �nd the solution in the interval [0, ta].

3.1.1 Solution for t > ta

In the �rst step, for t ∈ (ta,∞), the dynamic programming equation to solve for each user

i ∈ {f, u} is

ρV NC+
i (G) = max

{gi}

{
Fi(G, gi) + (V NC+

i (G))′(r2 − (1− γ)(gi + φNC+
j (G)))

}
, (7)
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for i, j ∈ {f, u}, j 6= i. In (7), φNC+
j (G) denotes the strategy of player j. We focus our

attention on stationary linear (a�ne) strategies in this linear-quadratic di�erential game, so

that φNC+
j (G) = αNC+

j G+βNC+
j , in which case V NC+

j (G) = ANC+
j G2 +BNC+

j G+CNC+
j .

In Appendix A, Lemmas 1 and 2 present the equations to be veri�ed by all these coe�cients.

It remains to characterize the equilibria. If we integrate the di�erential equation de-

scribing the evolution of the stock of the resource for t > ta with the initial condition

G(t+a ) = Gta , we obtain

G(t) = (Gta −GNC∞ )e−(1−γ)(αNC+
f +αNC+

u )(t−ta) +GNC∞ ,

where GNC∞ represents the steady state. The steady state is the solution to Ġ(t) = r2 −
(1− γ)(αNC+

f + αNC+
u )GNC∞ − (1− γ)(βNC+

f + βNC+
u ) = 0, i.e.

GNC∞ =
r2 − (1− γ)(βNC+

f + βNC+
u )

(1− γ)(αNC+
f + αNC+

u )
.

Since we are interested in solutions converging to a steady state, we must impose the

condition αNC+
f + αNC+

u > 0. In addition, since we are looking for interior solutions and

G(t) ≥ 0 for all t, we assume that the resource is not exhausted in �nite time, therefore

r2 ≥ (1− γ)(βNC+
f + βNC+

u ). Hence, we look for stationary linear solutions satisfying

Condition A: αNC+
f + αNC+

u > 0, r2 ≥ (1− γ)(βNC+
f + βNC+

u ).

In Lemma 2, to calculate αNC+
f and αNC+

u , we have to solve a system of two nonlin-

ear equations. If players are symmetric (k = θ = 1), in the symmetric equilibrium the

equation system can be simpli�ed to a second degree equation and the convergence con-

dition typically selects one solution corresponding to a unique SPNE. In the asymmetric

case, the situation is more complicated, since the equation system for αNC+
f and αNC+

u

simpli�es to a unique fourth degree equation, that can have up to four roots. Although the

convergence condition to a steady state typically removes one of these roots, these linear

quadratic di�erential games can have multiple equilibria, as illustrated e.g. in Theorem

8.10 in Engwerda [2005]. However, in our game, if Condition A is imposed, there exists,

at most, one equilibrium. If r2 is too small (r2 < (1 − γ)(βNC+
f + βNC+

u )) for the unique

solution to equations (A.3)-(A.6) (see Appendix A) satisfying Condition A, then there are

no interior equilibria.

Proposition 1 In Problem (3)-(6) for t ≥ ta, there exists, at most, one stationary linear

subgame perfect non-cooperative equilibrium. If it exists, it is given by the unique solution

to equations (A.3)-(A.6) satisfying Condition A.
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Proof: See Appendix A. �

Remark 1 In Section 4.2, to analyze the sources of the stock ine�ciency, we will compare

the values of the steady state for the SPNE with that for the other non-cooperative solutions:

the Nash equilibrium under open-loop information structure and the myopic solution. We

refer to Appendix B for their calculation.

3.1.2 Solution for t ≤ ta

In the second step, for t ∈ [0, ta], the dynamic programming equation to solve for each user
is

ρ̄iV
NC−
i (G, t)−∂V

NC−
i (G, t)

∂t
= max
{gi}

{
Fi(G, gi) +

∂V NC−i (G, t)

∂G
(r1 − (1− γ)(gi − φNC−j (G, t)))

}
,

for i, j ∈ {f, u}, j 6= i, with the initial condition G(0) = G0, where φ
NC−
j (G, t) denotes

the strategy followed by player j. In addition, we have the �nal conditions

V NC−
i (G(ta), ta) = V NC+

i (G(t+a )) , for i ∈ {u, f} .

As a result, the quadratic value functions V NC−
i (G, t) = ANC−i (t)G2 + BNC−

i (t)G +

CNC−i (t) associated to the linear (a�ne) strategies gNC−j = φNC−j (G, t) = αNC−j (t)G +

βNC−j (t), i, j ∈ {f, u}, satisfy ANC−i (ta) = ANC+
i , BNC−

i (ta) = BNC+
i and CNC−i (ta) =

CNC+
i . For the calculation of ANC−i (t), BNC−

i (t) and CNC−i (t), and the corresponding

values of functions αNC−j (t) and βNC−j (t) describing the pumping levels for t < ta, we use

a numerical approximation method.

3.2 Subgame perfect cooperative solution

Next, we compute the cooperative solution as the sum of discounted individual payo�s (see

equations (4) and (5)). As in the previous case, we will solve the problem in two steps.

In the �rst step, for t > ta, both types of players discount the future at the same rate.

Hence, we can apply standard techniques for the problem starting at ta with the initial

condition G(ta) = Gta . On the contrary, for t ≤ ta, since the discount rates are di�erent

during this period, the solution provided by standard optimal control theory becomes time-

inconsistent. In the search for time-consistent solutions, we compute the subgame perfect

cooperative equilibrium (SPCE) proposed in De-Paz et al. [2013] (we refer also to Ekeland

et al. [2013]).
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3.2.1 Solution for t > ta

In the �rst step, in the time interval (ta,∞), since ρf = ρu = ρ, we have to solve a standard
optimal control problem. The dynamic programming equation is

ρV C+
f (G) + ρV C+

u (G) =

max
{gf ,gu}

{
Ff (G, gf ) + Fu(G, gu) +

(
(V C+
f (G))′ + V C+

u (G))′
)

(r2 − (1− γ)(gf + gu))
}
, (8)

where V C+
i (G) = AC+

i G2 +BC+
i G+ CC+

i , i ∈ {u, f}. This is a standard linear-quadratic

optimal control problem, whose solution is presented in Appendix C. If we analyze the

steady state, from equations (C.5), (C.6) and (C.7) in Appendix C, it becomes clear that

∂GC∞
∂r2

> 0 ,
∂gCi,∞
∂r2

> 0 .

As a result, when the value of the recharge rate after the occurrence of the shock, r2,

decreases (respectively increases), both the level of the stock and the pumping rates of

both users at the steady state decrease (respectively increase) for the SPCE, in agreement

with the symmetric case (de Frutos Cachorro et al. [2019]). Moreover, from (2), it becomes

clear that at the steady state, the sum of the pumping rates coincides for all the solution

concepts and is given by

gf,∞ + gu,∞ =
r2

1− γ
.

Concerning the "demand asymmetry e�ect" on the stock at the steady state, from

equation (C.5) in Appendix C we obtain

∂GC∞
∂k

=
θ

(k2 + θ2) bc

[
r2

1− γ
− a(1 + θ)

]
.

Therefore, for a(1 + θ) > r2
1−γ , i.e. when a (the demand parameter) is clearly higher than

r2
1−γ (as is the case of the Western La Mancha aquifer analyzed in Section 4), the stock

of the resource at the steady state under cooperation decreases the higher the demand

asymmetry. On the contrary, if the recharge rate is very high in comparison to the demand

parameter, the introduction of asymmetric demands can be pro�table in terms of the stock

of the resource in the long run.

3.2.2 Solution for t ≤ ta

In the second step, for t ∈ [0, ta], since the discount rates in this period are di�erent, joint

preferences become time-inconsistent. Subgame perfect cooperative decision rules can be
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obtained by solving

gC−i = φC−i (G, t) = arg max
{gi}
{Ff (G, gf ) + Fu(G, gu)+ (9)

(
∂V C−

f (G, t)

∂G
+
∂V C−

u (G, t)

∂G

)
(r1 − (1− γ) (gf + gu))

}
, i ∈ {f, u} ,

together with

V C−
f (G, t) =

∫ ta

t
Ff (G(s), φC−f (G(s), s))e−ρ̄f (s−t) ds+ e−ρ̄f (ta−t)V C+

f (Gt+a ) ,

V C−
u (G, t) =

∫ ta

t
Fu(G(s), φC−u (G(s), s))e−ρ̄u(s−t) ds+ e−ρ̄u(ta−t)V C+

u (Gt+a ) .

Alternatively, we can write

ρ̄fV
C−
f (G, t) + ρ̄uV

C−
u (G, t)−

∂V C−f (G, t)

∂t
− ∂V C−u (G, t)

∂t
= Ff (G,φC−f (G, t))+

Fu(G,φC−u (G, t)) +

(
∂V C−f (G, t)

∂G
+
∂V C−u (G, t)

∂G

)(
r1 − (1− γ)

(
φC−f (G, t) + φC−u (G, t)

))
.

For more details, we refer to De-Paz et al. [2013] (equations (22-24) and (32-33)) and

Ekeland et al. [2013] (Theorems 3-4 and equation (5.19)).

For this linear-quadratic problem, linear decision rules exist and are obtained by taking

V C−
i (G) = AC−i (t)G2 +BC−

i (t)G+ CC−i (t) , i ∈ {f, u} .

As with the SPNE, the solution is calculated by using a numerical approach.

4 Numerical application

In this section, we apply the theoretical model described in Section 2 to data from the

Western La Mancha (WLM) aquifer, using the parameter values reported by Esteban and

Albiac [2011], Esteban and Dinar [2016] and de Frutos Cachorro et al. [2019], which are

listed in Table 1.

The WLM aquifer is located in the southern part of central Spain in a semi-arid region

where dry periods are frequent. In the last decades of the 20th century, the WLM aquifer

su�ered a critical decrease in water table levels due to the development of an intensive
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Parameters Description Units Value

b Water demand slope (Million Cubic

Meters/Year)2

Euros−1

0.097

a Water demand intercept Million Cubic Me-

ters/Year

4400.73

zf Pumping costs intercept farmer Euros/Million

Cubic Meters

266 000

zu Pumping costs intercept urban Euros/Million

Cubic Meters

266 000

c Pumping costs slope Euros/(Million

Cubic Meters)2
3.162

G0 Stock level (in volume) Million Cubic Me-

ters

80960

γ Return �ow coe�cient unitless 0.2

θ Proportion demand uses unitless 0.16

r1 Natural recharge before shock Million Cubic Me-

ters/Year

360

ρ Farmer discount rate after shock Year−1 0.05

ρu Urban discount rate Year−1 0.05

r2 Natural recharge after shock Million Cubic Me-

ters/Year

r2 ∈ [300, 360]

k water demand parameter (Million Cubic

Meters/Year)−2

Euros

k ∈ [1, 2]

ρ̄f Farmer discount rate before shock Year−1 ρ̄f ∈ [0.05, 0.1]

Table 1: Values of parameters of the Western La Mancha aquifer.

irrigated agriculture coupled with ine�cient management regimes. Despite the implemen-

tation of e�cient policy measures such as water restrictions, the problem of water scarcity

is still present and is expected to become severe in a future climate change scenario due

to the increases in the magnitude and intensity of drought periods. In the WLM aquifer,

around 80-95% of the groundwater is used for irrigation depending on the year and the

speci�c agricultural area (see e.g. the extraction regimes of 2017 in Unión CLM [2019]),
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with the rest mainly used for domestic or urban use. Therefore, we can assume that the

proportion between the groundwater demand for irrigation use and that for domestic use

(see Section 2.1) corresponds approximately to θ = 1
6 . The demand parameters of both

users also di�er in the presence of k, which takes into account the fact that urban water

use is typically more inelastic to changes in prices than agricultural use (k ∈ [1, 2] in nu-

merical simulations). Moreover, in periods of scarcity, groundwater is usually prioritized

for domestic use over irrigation. As explained in Section 2.3, we assume that the impa-

tience and, subsequently, the discount rate of the farmer ρf may increase before the shock

occurs (ρ̄f ∈ [0.05, 0.1] in numerical simulations). The urban discount rate before and after

the shock and the farmer discount rate after the shock are therefore set to 0.05. Finally,

we simulate a shock in the aquifer dynamics from a given date that decreases the aquifer

recharge rate (r2 ∈ [300, 360] in numerical simulations).

In what follows, numerical simulations are shown, in which the extraction behavior

and stock implications are compared for the di�erent solutions and asymmetries, before the

shock occurrence and in the long run. To disentangle the e�ects of di�erent asymmetries, we

�rst analyze simulated results for symmetric costs and return �ow coe�cients between the

users. Additional simulations are described in Section 4.4 demonstrating the robustness of

our numerical results when considering additional asymmetries. We also present a welfare

analysis to validate the numerical results in terms of stock in Section 4.3. The results are

illustrated in Tables 2, 3, 4 and 5, and in Figure 1.

4.1 Analysis of extraction behavior before the shock occurrence

To analyze the numerical results before the shock occurrence, total extractions6 between

t = 0 and the date of the shock occurrence ta are compared. The results are presented in

Table 2 for the cases without shock and with a high-intensity shock (r2 = 300) that takes

place at ta = 20, as well as for two di�erent levels for each type of asymmetry7.

4.1.1 Demand e�ect

We �rst analyze the e�ect of the di�erent levels of asymmetry in the demand function of

the urban user, which is represented by the parameter k (compare, for example, columns

6This is obtained by integrating the rate of extraction over a given period.
7Additional simulations for di�erent levels of shocks and asymmetries have been computed, are consis-

tent with numerical results and are available upon request from the authors.
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Column 2 3 4 5 6 7

k = 1 k = 2

No shock Big shock No shock Big shock

(ta = 20) (ta = 20)

ρ̄f = 0.05 ρ̄f = 0.05 ρ̄f = 0.1 ρ̄f = 0.05 ρ̄f = 0.05 ρ̄f = 0.1

ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05

A.
Farmer

10 259 10 593 12 766 5 220 5 571 7 456
Cooperative

B.
Urban

1 710 1 765 2 128 7 770 7 799 7 956
Cooperative

C.
Farmer

12 874 13 016 14 139 11 543 11 749 12 475
Non-cooperative

D.
Urban

5 124 5 117 4 612 8 816 8 803 8 592
Non-cooperative

E.
Total

11 968 12 359 14 894 12 990 13 070 15 412
Cooperative

F.
Total

17 999 18 133 18 752 20 359 20553 21 067
Non-cooperative

Table 2: Value of total extractions between t = 0 and the date of occurrence of the shock

ta (i.e. [0, ta]) for di�erent values of k and ρ̄f in the cases without shock and with a

high-intensity shock (r1 − r2 = 60) that takes place at ta = 20 years.

3 and 6). In the baseline case (k = 1), the non-cooperative farmer presents the highest

extraction (in absolute numbers), while the cooperative urban water user exhibits the

lowest extraction. Individual extractions increase in presence of the shock (compare, for

example, columns 2 and 3) except in the non-cooperative urban case. These results are

expected in a situation in which the farmer shows, on average, a higher water demand and

is in competition with the urban water user. When asymmetry between the uses increases,

the total extractions increase for the urban water user, but decrease for the farmer. This

is a consequence of the e�ect of the value of k on the bene�t function of the urban water

user, with higher values of k increasing the pro�ts.

We note that non-cooperative solutions are in�uenced more by a change in k than

cooperative solutions (compare rows E and F of the table). For example, in the case with

shock and where k = 2 (see column 6), total extractions in the non-cooperative case are

around 13% higher than for k = 1 (see column 3), with this increase only around 8% in

the cooperative case.
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4.1.2 Discount e�ect

In the analysis of the e�ect of a change in time preferences of the groundwater users

(represented by the parameter ρ̄f ), the demands are �xed to the case in which k = 1 (see

columns 3 and 4) to isolate the discount e�ect.

We note that total extractions increase in all cases when considering a higher discount

rate for the farmer except in the case of the urban non-cooperative solutions. Logically,

the farmer in the cooperative and non-cooperative cases exhibits a more aggressive extrac-

tion behavior due to the higher impatience (higher discount rate). However, while in the

cooperative case the same extraction behavior is observed for the urban water user, in the

non-cooperative case we observe the opposite tendency. The presence of competition seems

then to slow down the e�ect of heterogeneous discounting on the intensity of extractions.

This is con�rmed when comparing total extractions for the cooperative and non-

cooperative cases (see rows E and F of the Table 2). The discount e�ect is much higher

in the cooperative case, that is, in the absence of competition, which appears counterin-

tuitive. However, both types of users exhibit the same cooperative behavior leading to

higher extractions. For example, in the case in which the di�erent users exhibit di�erent

discount rates and ρ̄f = 0.1 (see column 4), total extractions in the cooperative case are

around 20% higher than in the case with equal discount rates (see column 3), with this

increase only around 3% in the non-cooperative case.

4.1.3 Discount and demand e�ects

To analyze the impact of asymmetries in both demand and discount rates on the simulated

results, it is necessary to compare columns 3 and 7 in Table 2.

In fact, regarding the extraction behavior of the di�erent individual users (see rows

A-D), total extractions decrease for the farmer, but increase for the urban water user.

Similar results are obtained when analyzing the demand e�ect.

If we now compare the sum of total extractions of both users for the cooperative and

non-cooperative cases (see rows E-F), the e�ects of both demand and discount rate mainly

in�uence the cooperative case. Indeed, there is an increase in total extractions of around

25% in the cooperative case and only of around 16% in the non-cooperative case (see

column 7) with respect to the baseline case (see column 3). Similar results are obtained

when analyzing the discount e�ect.

Numerical simulations show that the impact of the discount e�ect on extraction be-

havior is higher at the group level (i.e., cooperative or non-cooperative action) than at
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the individual level (i.e., farmer or urban user). In Section 4.3, we will analyze if this

interesting result is also true in terms of welfare.

4.2 Long-term stock analysis

Table 3 presents the results from the analysis of the in�uence of the shock intensity, r1−r2

(or equivalently a decrease in r2 with respect to r1), and asymmetric demand, i.e., k, on

the steady-state stock (see also Figure 1). The discount e�ect is not analyzed as it does

not a�ect the steady state, as shown in the top-side of Figure 1.

Column 2 3 4 5 6 7

No shock Big shock

r1 = r2 = 360 r1 = 360, r2 = 300

k = 1 k = 1.5 k = 2 k = 1 k = 1.5 k = 2

A. Cooperative 78 187 77 530 77 176 76 777 76 109 75 750

B. Open-loop 75 353 73 671 72 432 74 415 72 656 71 360

C. Non-cooperative 73 446 72 107 71 115 72 826 71 364 70 280

D. Myopic 70 987 70 330 69 976 70 777 70 109 69 750

E.
Cost externality

2 834 3 859 4 744 2 362 3 453 4 390
(A)-(B)

F.
Strategic externality 1 907 1 564 1 317 1 589 1 292 1 080

(B)-(C)

G.
Ine�ciency non-cooperative

4 741 5 423 6 061 3 951 4 745 5 470
(A)-(C)

H.
Ine�ciency myopic

7 200 7 200 7 200 6 000 6 000 6 000
(A)-(D)

Table 3: Results of steady-state stock (in Mm3) for the di�erent cooperative and non-

cooperative solutions and di�erences between solutions.

4.2.1 In�uence of the shock intensity

When the recharge rate upon the shock (r2) decreases (respectively increases), the level of

the stock at the steady state decreases (respectively increases) for the cooperative and non-

cooperative solutions. This has been shown theoretically in Section 3.2 for the cooperative

case and is now also con�rmed for the subgame perfect non-cooperative case (see row C,

for example, columns 3 and 6 in Table 3). Moreover, subgame perfect non-cooperative

solutions are always ine�cient with respect to cooperative solutions in terms of stock, with
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this ine�ciency decreasing with lower values of r2 (see row G, e.g., columns 3 and 6, and

Figure 1). Therefore, our numerical results are consistent with the �ndings in the literature

regarding this type of shock involving symmetric players (de Frutos Cachorro et al. [2019]).

It is important to consider other types of non-cooperative solutions (see analytical solu-

tions in Appendix B) that are described in the literature to better understand the sources of

possible ine�ciencies. As shown in Table 3, the open-loop solution (respectively the myopic

solution) is less (respectively more) ine�cient than the subgame perfect non-cooperative

solutions in terms of stock. These results are also in line with previous literature (e.g.,

Gisser and Sanchez [1980], Rubio and Casino [2001]).

4.2.2 In�uence of the demand asymmetry

Regarding the impact of asymmetric players, when the value of k increases (see, for ex-

ample, columns 2, 3 and 4), steady-state stocks decrease, but the di�erence between the

subgame perfect cooperative and non-cooperative stocks increases (see row G in Table 3

and bottom-side of Figure 1). This means that the ine�ciency of non-cooperative solu-

tions in terms of stock increases with higher asymmetry in demand between the users. The

calculation of the open-loop solution helps us to interpret this result. Indeed, this increase

in ine�ciency is mainly due to the pumping cost externality (see row E), which captures

the fact that the extractions made by one user lower the water table level, resulting in an

increase in pumping costs for the other users, and not to the strategic (or stock) externality

(see row F), which represents competition arising from the limited stock. Finally, the inef-

�ciency of myopic solutions (see row H of the table) is not in�uenced by the asymmetry in

demand, demonstrating the importance of considering dynamic interactions between the

users in the modeling.

4.3 Welfare analysis

To study the e�ciency of di�erent extraction behaviors per type of user and solution,

individual total welfare8 and total welfare per group over the whole planning horizon are

calculated. The simulated results are shown in Table 4.

Concerning group (or joint) welfare (see row G of the table), the ine�ciency of non-

cooperative solutions with respect to cooperative solutions seems to increase with higher

levels of k (see, for example, columns 3 and 6). However, additional simulations show that

the ine�ciency reaches a minimum at around k = 1.2 due to the additional asymmetry

8Individual welfare is de�ned as the present value of future individual pro�ts (see equation (3))
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Column 2 3 4 5 6 7

k = 1 k = 2

No shock Big shock No shock Big shock

(ta = 20) (ta = 20)

ρ̄f = 0.05 ρ̄f = 0.05 ρ̄f = 0.1 ρ̄f = 0.05 ρ̄f = 0.05 ρ̄f = 0.1

ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05 ρ̄u = 0.05

A.
Farmer

267 258 257 069 173 667 123 604 121 665 112 362
Cooperative

B.
Urban

44 543 42 845 41 409 380 818 370 783 345 748
Cooperative

C.
Farmer

198 145 193 383 149 180 155 522 153 849 128 896
Non-cooperative

D.
Urban

54 855 52 712 45 594 280 582 274 188 262 513
Non-cooperative

E.
Pro�tability

69 112 63 686 24 487 -31 918 -32 183 -16 533
Farmer

F.
Pro�tability

-10 312 -9 867 - 4 185 100 236 96 597 83 235
urban

G.

Ine�ciency
58 800 53 819 20 302 68 318 64 414 66 702

non-cooperation

( in %) - (-8.5 % ) ( -65.5 %) ( 16.2% ) ( 9.5%) ( 13.4 %)

Table 4: Welfare (value function) analysis (in thousand euros) corresponding to Table 2.

in parameter θ in the demand function9. By contrast, the ine�ciency of non-cooperative

solutions decreases when only the discount e�ect is considered (see, for example, columns

3 and 4).

As for individual welfare (see rows A-D), it is interesting to see that for a higher

asymmetry in demand, it is not worth it for the farmer to cooperate (see row E, columns

5 and 6), while this is not observed for the baseline case (i.e., k = 1). The opposite result

is obtained for the urban water user (see row F, columns 2 and 3). When considering the

discount e�ect (see for example, columns 3 and 4), the same tendencies are observed for

each type of use (see rows E and F).

Thus, we con�rm the results obtained when analyzing extraction behavior. The demand

e�ect mainly in�uences individual welfare, producing situations in which it is not always

pro�table for the farmer to cooperate. However, the asymmetry in discount rates mostly

9Indeed, θ = 1
6
in our numerical example. However, when θ = 1 and the conditions of Proposition 1 are

ful�lled, the ine�ciency of non-cooperative solutions compared with cooperative solutions is monotonic

with respect to k (in k ∈ [1, 2]) and increases with greater asymmetry in demand.
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a�ects total group welfare, leading to a lower ine�ciency of non-cooperative solutions with

respect to cooperative solutions.

4.4 Additional simulations

Here, we present additional simulations for a �xed level of shock (r1 − r2 = 60, see Table

5). In the case of di�erent uses, it could be more realistic to consider di�erent units of

�xed costs (represented by z) and di�erent return �ow coe�cients (represented by γ). To

check the robustness of our numerical results, we assume a slightly higher �xed cost per

unit and a lower return �ow coe�cient10 for the urban water user. Our analysis con�rms

that the main results regarding ine�ciency in terms of stock and welfare are maintained.

Demand e�ect Discount e�ect

zu > zf γf > γu No zu > zf γf > γu No

adaptation adaptation

Stock ine�ciency ↗ ↗ ↗ No e�ect No e�ect ↗
Welfare ine�ciency ↘↗ ↘↗ ↘↗ ↘ ↘ ↗

Table 5: Sensitivity analysis with respect to cost and return �ow parameters and the

non-adaptation case. Symbol ↘↗ refers to non-monotonicity.

Numerical simulations are also performed for what we call the non-adaptation case to

the shock, in the sense that we assume a unique discount rate for the cooperative case,

and constant (but di�erent) discount rates over the whole planning horizon for the non-

cooperative case. The main results are maintained for the demand e�ect, but the tendencies

change for the discount e�ect. This indicates the importance of considering heterogeneous

time preferences when studying possible ine�ciencies, especially in the case of shocks.

10Due to the absence of data and in order to obtain stationary and positive solutions, we assume that

z2 is 1% higher than z1 and γ2 = 0.
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Figure 1: Simulations of the evolution of the stock (in Mm3) for the subgame perfect

cooperative (GC , in black) and non-cooperative (GNC , in red) cases, and ine�ciency of

non-cooperation (bidirectional vertical arrows) for the di�erent model scenarios.



5 Conclusions and discussion

In this paper, we study how di�erent asymmetries in demand and time preferences between

users a�ect groundwater exploitation, when facing a future shock in water availability.

In particular, we compute cooperative and di�erent types of non-cooperative solutions,

namely open-loop, subgame perfect and myopic non-cooperative solutions.

First of all, we provide steady-state analytical solutions for cooperative and non-

cooperative cases under the open-loop information structure and myopic behavior. We

show that not only the steady-state stock levels, but also the di�erences between the stock

solutions decrease with higher levels of the shock, as reported in de Frutos Cachorro et al.

[2019] for the symmetric case.

To compare the subgame perfect cooperative and non-cooperative solutions and calcu-

late the di�erence between the solutions, which re�ects the whole ine�ciency of private

exploitation (i.e., pumping costs and strategic externalities), we apply the model to the

real case of the Western La Mancha (WLM) aquifer. The WLM aquifer has su�ered from

several droughts in the last decades and is characterized mainly by two highly heteroge-

neous groundwater uses: urban water use (mainly drinking water) and irrigation. This

makes it a good case for studying our theoretical setting.

Regarding steady-state numerical results, simulated stock solutions con�rm that the

ine�ciency of subgame perfect non-cooperative solutions also decreases with greater shocks,

but increases with a higher asymmetry in demand. The latter result is mainly due to the

increase in pumping costs for individual users when the stock level is lowered by the other

users.

When analyzing extraction behavior before the shock occurrence, we �nd that while

the asymmetry in the users' demand a�ects individual strategic behavior more than group

behavior (i.e., cooperation or not) before the shock, the opposite result is obtained when

considering the asymmetry in discount rates. This result is maintained when analyzing

total welfare over the whole planning horizon. When the demand e�ect is considered,

cooperation might not always be the most pro�table solution for the farmer. However,

group ine�ciency (in terms of welfare) due to non-cooperative behavior is reduced when

considering only the discount e�ect.

Important policy implications could be derived from our numerical results. Indeed,

Spanish studies such as Maestu et al. [2007] have highlighted the need to obtain more

information about di�erent economic variables to promote a more e�cient use of water

resources, e.g., "estimation on price-demand elasticities of water use are needed in order

23



to predict the impact of current water price policies on demand" and on adequate price

levels. This is re�ected in our work when studying the impact of the demand e�ect on

welfare ine�ciency for di�erent types of uses. More speci�cally, we observe that the more

inelastic the demand curve of the urban water user, the less incentive the farmer has to

cooperate, and the higher the ine�ciency of non-cooperation between uses. For the case of

irrigation water, empirical �ndings in Tsur et al. [2004] support the view that water pricing

should be designed primarily to increase the e�ciency of water use. However, for the case

of drinking water, since it is a necessity good, pricing policies could not be so e�ective as

for irrigation water, and could thus be boosted by actions based on water saving such as

improvement in urban water networks to reduce water losses, awareness campaigns, home

�ow reducers, among others. Furthermore, under conditions of water scarcity, regulators

(e.g. water agencies) could act by prioritizing urban uses over agricultural uses through

quota implementation or/and by increasing water prices. In this context, it seems reason-

able to assume that farmers will exhibit a higher impatience rate than urban users when

internalizing this risk. We obtain that while the consideration of this risk (or, equivalently,

of heterogeneous time preferences in the irrigation and urban sectors) before the period of

water scarcity could decrease the ine�ciency of non-cooperative solutions, and therefore

reduce the incentive to cooperate in the long term, it also increases the overexploitation

of the aquifer during this period. In fact, not only the user with the higher impatience

rate will increase total extractions, as expected, but also total extractions by the other

user are a�ected, increasing in the cooperative case and decreasing in the noncooperative

case because of considering strategic e�ects. Therefore, measures aimed at reducing this

perceived higher risk will not only in�uence the decisions of the farmer but also of the

urban user, improving their e�ciency in terms of water use. Some of these measures could

be to facilitate the transition to less risky cropping patterns, investments in improved

irrigation technologies, use of treated urban wastewater for irrigation, or speci�c insur-

ances for irrigated crops with drought risk, among other possible long-term and short-term

strategies.

This study opens up the possibility of further investigations. First, it would be inter-

esting to consider priority rules in case of water scarcity for agricultural and urban uses by

introducing, for example, a minimum level of groundwater extraction for drinking water.

We could also introduce a stochastic shock in terms of the date or the intensity of the

shock, which might be a more realistic case from a practical point of view. Moreover,

annual and seasonal water demands (per type of use) often depend on weather conditions

as well as social and economic activities. Changes on the proportion between annual water
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demands could be introduced by considering di�erent values of the parameter θ. Related

to seasonal needs, demand for urban user is needed throughout the year, while farmers

need water only during the growing season. To consider this in the modeling, it would be

necessary a short-term decision model, including di�erent decision periods within the year

and estimates of di�erent demand price functions for each of these periods. Finally, we

could apply our theoretical model to other aquifers with di�erent climatic characteristics

and types of users.
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APPENDIX

A Subgame Perfect Non-cooperative Equilibrium

Lemma 1 In Problem (3)-(6) if, for t > ta, stationary linear SPNE of farmers and ur-

ban users are given by gNC+
f = φNC+

f (G) = αNC+
f G + βNC+

f and gNC+
u = φNC+

u (G) =

αNC+
u G + βNC+

u , respectively, then the corresponding value functions are V NC+
i (G) =

ANC+
i G2 +BNC+

i G+CNC+
i , for i = u, f , where the coe�cients ANC+

i , BNC+
i and CNC+

i

are given by

ANC+
f =

− 1
2b (α

NC+
f )2 + cαNC+

f

ρ+ 2(1− γ)(αNC+
f + αNC+

u )
,

BNC+
f =

− 1
bα

NC+
f βNC+

f + (ab − zf )αNC+
f + cβNC+

f + 2(r2 − (1− γ)(βNC+
f + βNC+

u ))ANC+
f

ρ+ (1− γ)(αNC+
f + αNC+

u )
,

CNC+
f =

− 1
2b (β

NC+
f )2 + (ab − zf )βNC+

f + (r2 − (1− γ)(βNC+
f + βNC+

u ))BNC+
f

ρ
,

ANC+
u =

− k
2bθ (αNC+

u )2 + cαNC+
u

ρ+ 2(1− γ)(αNC+
f + αNC+

u )
,

BNC+
u =

− k
bθα

NC+
u βNC+

u + (kab − zu)αNC+
u + cβNC+

u + 2(r2 − (1− γ)(βNC+
f + βNC+

u ))ANC+
u

ρ+ (1− γ)(αNC+
f + αNC+

u )
,

CNC+
u =

− k
2bθ (βNC+

u )2 + (kab − zu)βNC+
u + (r2 − (1− γ)(βNC+

f + βNC+
u ))BNC+

u

ρ
.

Proof: From the �rst order conditions for a maximum in the right hand term of equation

(7) we easily obtain

1

b
φNC+
f =

[
c− 2ANC+

f (1− γ)
]
G+

a

b
− zf − (1− γ)BNC+

f ,

k

bθ
φNC+
u =

[
c− 2ANC+

u (1− γ)
]
G+

ka

b
− zu − (1− γ)BNC+

u .

Therefore,

αNC+
f = b

[
c− 2(1− γ)ANC+

f

]
, αNC+

u =
bθ

k

[
c− 2(1− γ)ANC+

u

]
, (A.1)

βNC+
f = a− bzf − b(1− γ)BNC+

f and βNC+
u = aθ − bθ

k
zu −

bθ

k
(1− γ)BNC+

u . (A.2)
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The result follows by substituting the above expressions in equation (7) and identifying

terms in G2, G and independent terms. �

Next, we describe the nonlinear equations to be satis�ed by αNC+
f , βNC+

f , αNC+
u and

βNC+
u .

Lemma 2 In Problem (3)-(6) for t > ta, if there are SPNE of the form gNC+
f = φNC+

f (G) =

αNC+
f G + βNC+

f and gNC+
u = φNC+

u (G) = αNC+
u G + βNC+

u , then coe�cients αNC+
f and

αNC+
u solve the nonlinear equation system

ρ

2(1− γ)

(
c− 1

b
αNC+
f

)
= − 1

2b
(αNC+

f )2 + cαNC+
f −

(
c− 1

b
αNC+
f

)
(αNC+

f + αNC+
u ) ,

(A.3)
ρ

2(1− γ)

(
c− k

bθ
αNC+
u

)
= − k

2bθ
(αNC+

u )2 + cαNC+
u −

(
c− k

bθ
αNC+
u

)
(αNC+

f + αNC+
u ) ,

(A.4)

whereas, given αNC+
f and αNC+

u , βNC+
f and βNC+

u satisfy the linear equation system

1

b

(
ρ

1− γ
+ αNC+

f + αNC+
u

)
βNC+
f +

(
αNC+
f

b
− c

)
βNC+
u = (A.5)

(a
b
− zf

)(
αNC+
u +

ρ

1− γ

)
+

r2

1− γ

(
αNC+
f

b
− c

)
,

(
kαNC+

u

bθ
− c
)
βNC+
f +

k

bθ

(
ρ

1− γ
+ αNC+

f + αNC+
u

)
βNC+
u = (A.6)(

ka

b
− zu

)(
αNC+
f +

ρ

1− γ

)
+

r2

1− γ

(
kαNC+

u

bθ
− c
)
.

Proof: From equations (A.1) and (A.2) we obtain

ANC+
f =

1

2(1− γ)

(
c−

αNC+
f

b

)
, ANC+

u =
1

2(1− γ)

(
c− kαNC+

u

θb

)
,

BNC+
f =

1

b(1− γ)

(
a− bzf − βNC+

f

)
and BNC+

u =
k

bθ(1− γ)

(
aθ − bθ

k
zu − βNC+

u

)
.

The result follows by substituting in the expressions of ANC+
f , ANC+

u , BNC+
f and BNC+

u

in Lemma 1 and rearranging terms. �

Proof of Proposition 1: From Lemma 2, we know that the SPNE satisfy conditions (A.3)

and (A.4). In fact, SPNE are the solutions to equations (A.3)-(A.6) satisfying Condition

A.
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First we prove that there exists a unique solution to (A.3)-(A.4) such that αNC+
f +

αNC+
u > 0. Note that, if we isolate αNC+

u in (A.3) and we substitute its value in (A.4), we

obtain a fourth degree polynomial. So the question is how many roots of this polynomial

meet condition αNC+
f + αNC+

u > 0. By introducing the new variables x = αNC+
f − bc and

y = αNC+
u − θ

k bc, equations (A.3)-(A.4) can be written as

x2 + 2xy +

[
2bc

(
1 +

θ

k

)
+

ρ

1− γ

]
x+ b2c2 = 0 ,

y2 + 2xy +

[
2bc

(
1 +

θ

k

)
+

ρ

1− γ

]
y +

θ2

k2
b2c2 = 0 .

Condition αNC+
f + αNC+

u > 0 becomes x+ y +
(
1 + θ

k

)
bc > 0.

Next, let us de�ne

z = x+ y +

(
1 +

θ

k

)
bc+

ρ

2(1− γ)
. (A.7)

By substituting in the above equations, we have to solve the constrained system of algebraic

equations

x2 − 2zx− b2c2 = 0 , y2 − 2zy − θ2

k2
b2c2 = 0 , with z >

ρ

2(1− γ)
,

hence

x = z ±
√
z2 + b2c2 , y = z ±

√
z2 +

θ2

k2
b2c2 , with z >

ρ

2(1− γ)
.

By denoting t1, t2 ∈ {−1, 1}, from the above equations we obtain

x+ y = 2z + t1
√
z2 + b2c2 + t2

√
z2 +

θ2

k2
b2c2

and, using equation (A.7) we can write

z + t1
√
z2 + b2c2 + t2

√
z2 +

θ2

k2
b2c2 = −

(
1 +

θ

k

)
bc− ρ

2(1− γ)
. (A.8)

Since z > ρ
2(1−γ) > 0, it is clear that equation (A.8) has no solution for t1 = t2 = 1. In

addition, condition θ
k < 1 (recall that 0 < θ < 1 and k ≥ 1) implies that equation (A.8)

has not also solution for t1 = 1, t2 = −1. For t1 = −1, t2 = 1, we can write (A.8) as

f1(z) = −
(

1 +
θ

k

)
bc− ρ

2(1− γ)
, where f1(z) = z −

√
z2 + b2c2 +

√
z2 +

θ2

k2
b2c2 .
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Next, note that f ′1(z) > 0 for z > 0 (and, in particular, for z > ρ
2(1−γ) > 0), so that f1(z) is

strictly increasing. But f1(0) =
(
θ
k − 1

)
bc > −

(
1 + θ

k

)
bc− ρ

2(1−γ) , so that equation (A.8)

has no solution for t1 = −1 and t2 = 1 verifying condition z > ρ
2(1−γ) > 0.

It remains to check if has solution for t1 = t2 = −1. In that case, (A.8) becomes

f2(z) = −
(

1 +
θ

k

)
bc− ρ

2(1− γ)
, where f2(z) = z −

√
z2 + b2c2 −

√
z2 +

θ2

k2
b2c2 .

Elementary calculations show that f ′′2 (z) < 0, hence f2(z) is strictly concave. Moreover,

limz→∞ f2(z) = −∞. In addition, since

f2

(
ρ

2(1− γ)

)
+

(
1 +

θ

k

)
bc+

ρ

2(1− γ)
=

 ρ

2(1− γ)
+ bc−

√(
ρ

2(1− γ)

)2

+ b2c2

+

 ρ

2(1− γ)
+
θ

k
bc−

√(
ρ

2(1− γ)

)2

+
θ2

k2
b2c2

 > 0 ,

therefore f2

(
ρ

2(1−γ)

)
> −

(
1 + θ

k

)
bc − ρ

2(1−γ) . As a consequence, there is a unique z∗ >
ρ

2(1−γ) verifying condition f2(z∗) = −
(
1 + θ

k

)
bc− ρ

2(1−γ) . For this value of z
∗,

αNC+
f = z∗ −

√
(z∗)2 + b2c2 + bc , αNC+

u = z∗ −
√

(z∗)2 +
θ2

k2
b2c2 +

θ

k
bc

is the unique candidate to a SPNE verifying condition αNC+
f + αNC+

u > 0. For these

αNC+
f and αNC+

u , next we solve the linear equation system (A.5)-(A.6). If a solution exists

satisfying r2 ≥ (1−γ)(βNC+
f +βNC+

u ), then a unique SPNE exists. On the contrary, if the

recharge rate r2 is small enough so that such inequality is not met, no interior solutions

exist (the groundwater well will be depleted in �nite time). �

B Other noncooperative solutions. Steady state

First, we compute the solution under myopic behavior. By solving
∂Ff
∂gf

=
∂Fu
∂gu

= 0, we

obtain gf = a− b(zf − cG), gu = θa− bθ
k (zu − cG). By substituting in (2) for r = r2, the

steady state (Ġ = 0) is given by

GMY
∞ =

k

bc(k + θ)

[
r2 − (1− γ)(1 + θ)a+ (1− γ)

(
zf +

θ

k
zu

)]
.
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Next, let us calculate the open-loop Nash equilibrium. We center our attention in the

analysis of the steady state. The corresponding Hamiltonian functions are given by

Hi = Fi(G, gi) + λi (r2 − (1− γ) (gf + gu)) ,

for i ∈ {f, u}, with Fi(G, gi) given by equations (4-5). Functions G(t) and λi(t) (the

adjoint variables) are continuous. By applying the Pontryaguin maximum principle and

assuming the existence of interior solutions, we can easily solve
∂Hf

∂gf
=
∂Hu

∂gu
= 0, together

with λ̇f = ρλf −
∂Hf

∂G
, λ̇u = ρλu −

∂Hu

∂G
and Ġ = r2 − (1 − γ)(gf + gu). In the steady

state, Ġ = λ̇f = λ̇u = 0. After some algebra, we easily obtain

GOL∞ =
kρ2 + (θ + k)ρbc(1− γ) + θb2c2(1− γ)2

ρbc(1− γ)[(θ + k)ρ+ 2θbc(1− γ)]
r2−

(a− bzf )(kρ+ θbc(1− γ)) + θ(ka− bzu)(ρ+ bc(1− γ))

bc((θ + k)ρ+ 2θbc(1− γ))
.

C Subgame Perfect Cooperative Solution

Solution for t > ta

From the maximization of (8), with V C+
f (G) = AC+

f G2 + BC+
f G + CC+

f , V C+
u (G) =

AC+
u G2 +BC+

u G+ CC+
u , we easily obtain

φC+
f (G) = a− b[zf + (1− γ)(BC+

f +BC+
u )] + b[c− 2(1− γ)(AC+

f +AC+
u )]G , (C.1)

φC+
u (G) = aθ − b θ

k

[
zu + (1− γ)(BC+

f +BC+
u )

]
+ b

θ

k

[
c− 2(1− γ)(AC+

f +AC+
u )

]
G . (C.2)

For the calculation of coe�cients AC+
f , AC+

u , BC+
f , BC+

u , CC+
f and CC+

u , we numerically

solve the system of six equations with six unknown variables obtained when we identify

the second degree polynomials

ρ
(
AC+
i G2 +BC+

i G+ CC+
i

)
= Fi(G,φ

C+
i (G))+

[
2AC+

i G+BC+
i

] [
r2 − (1− γ)

(
φC+
f (G) + φC+

u (G))
)]

,

for i = f, u, with φC+
i (G) given by (C.1)-(C.2), together with the transversality condition

guaranteeing the convergence to an interior steady state.
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For the calculation of the steady state, it is easier to apply the Pontryaguin maximum

principle. The Hamiltonian function is

H = Ff (G, gC+
f ) + Fu(G, gC+

u ) + λ[r2 − (1− γ)(gC+
f + gC+

u )] .

By assuming that the optimal solution is interior, from the �rst order optimality conditions

we obtain

gC+
f = a− bzf + bcG− b(1− γ)λ and gC+

u = θa− bθ

k
zu +

bθ

k
cG− bθ

k
(1− γ)λ . (C.3)

In addition λ̇ = ρλ− (∂H/∂G) = ρλ− c(gC+
f + gC+

u ). Hence, from the state equation (2)
we obtain

Ġ = r2 − (1− γ)
[
(1 + θ)a−

(
zf + θ

kzu
)
b+

(
1 + θ

k

)
bcG− b(1− γ)

(
λ+ θ

kλ
)]

,

λ̇ = ρλ− c
[
(1 + θ)a−

(
zf + θ

kzu
)
b
]
−
(
1 + θ

k

)
bc2G+ bc(1− γ)

(
λ+ θ

kλ
)
.

(C.4)

The solution to the linear di�erential equation system above converging to a steady

state is
GC+(t) = eµ(t−ta)

(
GC+
ta −G

C+
∞

)
+GC∞,

λC+(t) = eµ(t−ta)
(
λC+
ta − λ

C
∞

)
+ λC+

∞ ,

with µ =
1

2

[
ρ−

√
ρ2 + 4ρ(1− γ)bc

(
1 +

θ

k

)]
, where GC∞, λ

C
∞ represent the steady state

solutions, i.e. when Ġ = λ̇ = 0. From (C.4), we easily derive λC∞ = r2c/(ρ(1− γ)) and

GC∞ =

[
1

ρ
+

1

bc(1− γ)
(
1 + θ

k

)] r2 −
a(1 + θ)

bc
(
1 + θ

k

) +
zf + θ

kzu

c
(
1 + θ

k

) . (C.5)

By substituting in (C.3), the corresponding extraction rates at the steady state are

gCf,∞ =
k

(1− γ)(k + θ)
r2 −

aθ

θ + k
(k − 1) +

bθ

θ + k
(zu − zf ) , (C.6)

gCu,∞ =
θ

(1− γ)(k + θ)
r2 +

aθ

θ + k
(k − 1)− bθ

θ + k
(zu − zf ) . (C.7)

Solution for t ∈ [0, ta]

From the maximization of (9), with V C−
f (G, t) = AC−f (t)G2 + BC−

f (t)G + CC−f (t),

V C−
u (G, t) = AC−u (t)G2 +BC−

u (t)G+ CCu (t), we obtain

31



gC−f (G, t) = a− b[z + (1− γ)(BC−
f (t) +BC−

u (t))] + b[c− 2(1− γ)(AC−f (t) +AC−u (t))]G ,

gC−u (G, t) = aθ− bθ
k

[z+(1−γ)(BC−
f (t)+BC−

u (t))]+
bθ

k
[c−2(1−γ)(AC−f (t)+AC−u (t))]G .

Finally, we substitute the above expressions in the associated dynamic programming equa-

tions. We solve the corresponding system of di�erential equations by using a numerical

approach.
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