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Abstract

endoplasmic reticulum

Background: Sterols are structural and functional components of eukaryotic cell membranes. Plants produce a
complex mixture of sterols, among which [-sitosterol, stigmasterol, campesterol, and cholesterol in some
Solanaceae, are the most abundant species. Many reports have shown that the stigmasterol to -sitosterol ratio
changes during plant development and in response to stresses, suggesting that it may play a role in the regulation
of these processes. In tomato (Solanum lycopersicum), changes in the stigmasterol to {3-sitosterol ratio correlate with
the induction of the only gene encoding sterol C22-desaturase (C22DES), the enzyme specifically involved in the
conversion of 3-sitosterol to stigmasterol. However, despite the biological interest of this enzyme, there is still a lack
of knowledge about several relevant aspects related to its structure and function.

Results: In this study we report the subcellular localization of tomato C22DES in the endoplasmic reticulum (ER)
based on confocal fluorescence microscopy and cell fractionation analyses. Modeling studies have also revealed
that C22DES consists of two well-differentiated domains: a single N-terminal transmembrane-helix domain (TMH)
anchored in the ER-membrane and a globular (or catalytic) domain that is oriented towards the cytosol. Although
TMH is sufficient for the targeting and retention of the enzyme in the ER, the globular domain may also interact
and be retained in the ER in the absence of the N-terminal transmembrane domain. The observation that a
truncated version of C22DES lacking the TMH is enzymatically inactive revealed that the N-terminal membrane
domain is essential for enzyme activity. The in silico analysis of the TMH region of plant C22DES revealed several
structural features that could be involved in substrate recognition and binding.

Conclusions: Overall, this study contributes to expand the current knowledge on the structure and function of
plant C22DES and to unveil novel aspects related to plant sterol metabolism.
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Background

Sterols are isoprenoid-derived lipids that play an essential
role in the regulation of membrane fluidity, permeability
and function [1, 2]. Sterols share a common structure
based on the cyclopentane perhydro phenanthrene ring
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system with a hydroxyl group at position C3, methyl
groups at positions C10 and C13 and a side chain of vari-
able length attached to C17 [3]. Contrary to other
eukaryotic organisms, plants are characterized by produ-
cing a high diversity of sterols that mostly differ in the
nature of the side chain attached to C17, being pB-
sitosterol, stigmasterol and campesterol the most abun-
dant ones, and in some Solanaceae also cholesterol. In
plants, sterols are present in free form and also in conju-
gated forms as steryl esters, steryl glycosides and acyl
steryl glycosides. While free sterols and steryl glycosides
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are mainly found in the plasma membrane (PM), steryl
esters accumulate in cytoplasmic lipid droplets [4].

Sterols are known to be crucial for the function of the
PM as they modulate its physicochemical properties, as
well as the formation of microdomains (also known as
lipid rafts) that are involved in many relevant cellular
processes such as cell to cell interactions, signal trans-
duction, membrane transport, protein trafficking and
stress responses [5, 6]. In plants, the right function of
the PM depends on the balanced levels of campesterol,
[-sitosterol and stigmasterol [7]. In particular, changes
in the B-sitosterol/stigmasterol ratio have been proposed
to influence different developmental processes and stress
responses [7]. B-Sitosterol and stigmasterol only differ in
the double bond present at position C22 in stigmasterol
side chain (Additional file 1: Fig. S1). However, despite
their high structural similarity these sterols have a differ-
ential effect on the physicochemical properties of the
PM [8]. Stigmasterol-enriched membranes are less per-
meable and, therefore, show a decreased leakage [9, 10].
Therefore, the level of [B-stigmasterol in the PM is
expected to be tightly regulated during plant develop-
ment and stress responses [11-13].

Stigmasterol is the end product of the 24-ethyl branch
of the sterol biosynthetic pathway and is synthesized from
[B-sitosterol by the action of the enzyme sterol C22-
desaturase (C22DES) (Additional file 1:Fig. S1) [11, 14].
C22DES, also known as CYP710, belongs to the cyto-
chrome P450 (CYP) protein family, which includes en-
zymes involved in numerous biosynthetic and xenobiotic
pathways in all living organisms. CYP proteins share a
common catalytic center including a heme-iron binding
domain. NADPH acts as the electron donor in the reac-
tion catalyzed by C22DES through the action of cyto-
chrome P450 reductase, a membrane-bound protein
localized in the ER membrane [14—16]. C22DES is phylo-
genetically related to CYP51, a CYP protein having sterol
14-demethylase activity. CYP51 is common to the plant,
yeast and animal sterol biosynthetic pathways [17, 18],
and there is evolutionary evidence suggesting that these
enzymes already existed in the most ancient eukaryotes
[19]. Since C22DES acts downstream of CYP51 in the
sterol biosynthesis pathway it has been proposed that it
evolved from a CYP51 gene duplication [19, 20].

Plant C22DES was cloned and characterized at the
biochemical level more than one decade ago [14, 21, 22].
However, there are several functional and structural
aspects related to this enzyme that still remain un-
known. One of them concerns the elucidation of its
subcellular localization, an aspect that is particularly
remarkable considering that C22DES may act on f-
sitosterol synthesized in the ER during de novo
sterol biosynthesis and/or also on [-sitosterol
present in the PM (either in free or conjugated
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form). Although it is widely accepted that free sterol
biosynthesis occurs in the ER [23-25], the participa-
tion of the PM in the final steps of the sterol path-
way has not been excluded [3]. All plant CYP
proteins described so far are membrane-bound and
mainly localized in the ER. However, some particular
CYP proteins have been reported in other subcellular
localizations such as mitochondria, plastids and the
PM [26, 27]. Therefore, the elucidation of the sub-
cellular localization of C22DES represents a relevant
issue in plant sterol metabolism. Other important as-
pects related to the characterization of C22DES are
the identification of structural and functional motifs
involved in the intracellular targeting of the enzyme
as well as in its membrane topology and catalytic
function. Some of these issues have been addressed
in the present work using tomato C22DES, which
was chosen for this study not only because this plant
is one of the most important crops worldwide but
also because, in contrast to other plant species, to-
mato contains a single gene coding for this enzyme
[11, 17].

Results

Tomato C22DES localizes in the ER

To define the subcellular location of C22DES, a chimeric
protein containing the entire tomato C22DES coding se-
quence fused at the N-terminal end of the green fluores-
cent protein (GFP) (C22DES-GFP) was transiently
expressed in Nicotiana benthamiana leaves. As revealed
by confocal fluorescence microscopy, C22DES-GFP
exhibited a typical ER-like pattern. This fluorescence
pattern was essentially the same observed in cells co-
expressing T3RE protein fused to the red fluorescent
protein (RFP) (T3RE-RFP), which was used as a specific
marker for ER-localization [28] (Fig. 1). Actually, mer-
ging the fluorescence of both channels revealed a clear
overlap of the two images.

To make sure that the C-terminal GFP tag was not
affecting neither the correct targeting of C22DES nor
its catalytic activity, the stigmasterol levels of the
agroinfiltrated N. benthamiana leaves expressing ei-
ther the native C22DES or the chimeric C22DES-GFP
variant were determined and compared to those of
leaves agroinfiltrated with the empty expression vector
that were used as a control. As shown in Fig. 2, the
total stigmasterol level increased by about 75% in a
similar way in both cases. These results revealed that
the chimeric enzyme was properly targeted to the
subcellular compartment(s) were its substrate (p-sitos-
terol) is found and also provided an in vivo assay to
evaluate the enzyme activity of a set of C22DES-GFP
derivatives described below.
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C22DES-GFP T3RE

Fig. 1 Subcellular localization of C22DES. Confocal optical sections showing the GFP and RFP fluorescence pattern of N. benthamiana cells
transiently co-expressing the C22DES-GFP fusion protein (left) and the ER marker T3RE (middle). The merge of both images is shown on the right

J

3D-modeling of tomato C22DES composed by an N-terminal amphipathic a-helix
The tertiary structure of tomato C22DES was modeled followed by a transmembrane a-helix [29], in C22DES
with 100% confidence using the single highest scoring this region is shorter and contains a single putative
template of the Saccharomyces cerevisiae lanosterol 14a-  transmembrane o-helix (residues 1-28), that was
demethylase (CYP51) crystal structure [29], which has referred to as TMH (Fig. 3a). Moreover, an interaction
previously been reported to be an ER-membrane- model of C22DES with cell membranes, generated using
associated enzyme [30]. The overall tertiary structure the PPM web server of the Orientations of Proteins in
predicted for C22DES was very similar to that of yeast ~Membranes (OPM) database [31], predicted two other
CYP51 although a remarkable difference was observed membrane contact regions in the protein sequence,
in the N-terminal region. While in CYP51 it is namely MCR1 (residues 38-58) and MCR2 (residues
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Fig. 2 In vivo enzymatic activity of C22DES and C22DES-GFP. Stigmasterol levels in total sterol fractions of N. benthamiana leaves transiently
expressing C22DES and C22DES-GFP. Values are mean values + SD of three technical replicates (n = 3). Lowercase letters indicate significant
differences among mean values relative to those in leaf samples expressing the empty vector (one-way ANOVA with Dunnett's multiple
comparisons test). DW: Dry weight
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Fig. 3 Predicted tomato C22DES tertiary structure. a Overall predicted fold of tomato C22DES. b Predicted orientation of C22DES in a
dioleoylphosphatidylcholine (DOPC) membrane. The predicted N-terminal transmembrane helix (TMH) and the membrane contact regions MCR1
and MCR2 are indicated. ¢ and d Sequence logo of the consensus MCR1 and MCR2 sequences obtained from the alignment of the plant C22DES

proteins indicated in Additional file 2: Table S1

227-233) (Fig. 3a and b). MCR1 is a proline-rich motif
located in close proximity to TMH and highly conserved
among C22DES from different plant species (Fig. 3c)
whereas MCR2 is less conserved (Fig. 3d) and localizes
in the globular domain next to a long amphipathic a-
helix predicted in all plant C22DES (Fig. 3a and b).
These results are consistent with our previous finding
showing that functional tomato C22DES localizes into
the ER membrane of N. benthamiana cells.

TMH is sufficient to target and retain tomato C22DES in
the ER membrane

To study the role of the ER interacting sequences pre-
dicted in the N-terminal region of tomato C22DES
(TMH and MCR1), the amino acid sequences containing
residues 1 to 75 (including both TMH and MCR1), resi-
dues 1 to 37 (including only TMH), and residues 28 to
66 (including only MCR1) were fused at the N-terminal
end of GFP (Fig. 4a). The MCR1 motif was included in
these studies because of its close proximity to TMH and
its predicted interaction with the ER membrane (Fig.
4b). The subcellular localization of the resulting
chimeric proteins (TMH + MCR1-GFP, TMH-GFP, and
MCR1-GFP, respectively) was analyzed by confocal mi-
croscopy after transient expression in N. benthamiana
leaves. The fluorescence distribution of TMH + MCR1-
GFP and TMH-GFP resulted in a typical ER localization
pattern (Fig. 4b). In contrast, MCR1-GFP showed a

fluorescence compatible with a cytosolic localization
with fluorescence also present the nucleus (Fig. 4b).
However, MCR1-GFP also showed some overlap with
that of T3RE (Fig. 5¢). These results are in agreement
with the fact that MCR1 may confer the ability of
MCRI1-GFP to interact with the ER, reinforcing in this
way the functional role of this motif in the interaction of
C22DES with the ER. The localization of green fluores-
cence in the nucleus may be explained considering that
at least part of the expressed MCR1-GFP was present in
soluble form in the cytosol.

The globular domain of tomato C22DES interacts with the
ER in the absence of TMH

It has been reported that the globular domain of several
CYP proteins interacts with the ER membrane in the ab-
sence of the transmembrane domain [32-35]. To deter-
mine if this is the case in tomato C22DES, a N-terminal
truncated form of the enzyme lacking the TMH region
(residues 2 to 27) was fused to the N-terminal end of
RFP and the resulting protein (C22DESA2-27-RFP)
transiently expressed along with TMH-GFP in N.
benthamiana leaves. The fluorescence distribution of
C22DESA2-27-RFP showed a typical reticular pattern
and co-localization with TMH-GFP (Fig. 5a). These
results indicated that the globular domain of tomato
C22DES was interacting and retained in the ER in the
absence of TMH. Fluorescence Recovery After
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(See figure on previous page.)

Fig. 4 Role of TMH1 in the targeting and retention of C22DES in the ER membrane. a Schematic representation of the GFP fusion constructs
generated to study the role of TMH and MCR1 in the targeting and retention of C22DES in the ER. Grey boxes indicate the transmembrane helix
(TMH), orange boxes correspond to the MCR1 motif and green boxes correspond to the GFP protein. The amino acid sequence of TMH and
MCRT1 are shown below the corresponding regions. b Confocal optical sections showing the GFP fluorescence pattern of N. benthamiana cells
transiently expressing TMH + MCR1-GFP, TMH-GFP, and MCR1-GFP. The arrow indicates the cell nucleus (n). ¢ Close-up view of the fluorescence
pattern of TMH-GFP and MCR1-GFP (left), T3RE (middle) and the corresponding merged images (right)

Photobleaching (FRAP) analysis [36, 37] was performed
to reinforce these results using the brassinosteroid
receptor BRL3 fused to GFP (BRL3-GFP) [38] and GFP
as membrane-bound and cytosolic control proteins,
respectively. As shown in Fig. 5b, C22DESA2-27-RFP
showed a recovery rate similar to that of BRL3-GFP,
thus confirming its behavior as an integral membrane
protein. In agreement with this result, immunoblot

analysis using anti-GFP antibodies of the cytosolic and
membrane fractions obtained from N. benthamiana
leaves transiently expressing TMH-GFP, C22DES-GFP
and C22DESA2-27-GFP demonstrated that they were
present in the membrane fraction (Fig. 5¢ and d). In the
immunoblot analysis C22DESA2-27-GFP was used
instead of C22DESA2-27-RFP because anti-GFP anti-
bodies do not recognize the RFP.
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Fig. 5 Targeting and retention of the C22DES globular domain in the ER. a Confocal optical sections showing the fluorescence of C22DESA2-27-
RFP (left) and TMH-GFP (middle) transiently expressed in N. benthamiana leaves. Merged images are shown on the right. b FRAP curves
representing the fluorescence recovery rates of C22DESA2-27-RFP, BRL3-GFP, and GFP. Fluorescence recovery curves represent the best fits from
normalized datasets of at least 6 independently bleached points spots. (C) Cropped images of immunoblot analysis of soluble (S) and membrane
(M) cell fractions from N. benthamiana leaves transiently expressing BRL3-GFP (=153 kDa) and GFP (=26.8 kDa) as membrane bound and soluble
control proteins, respectively. Full-length blots are presented in Additional file &: Fig. S4. ¢ Cropped images from immunoblot analysis of soluble
(S) and membrane (M) cell fractions from N. benthamiana leaves transiently expressing C22DESA2-27-GFP (=84.2 kDa), TMH-GFP (=34 kDa), and
C22DES-GFP (=87.2 kDa). Full-length blots are shown in Additional file 7: Fig. S5
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TMH is required for tomato C22DES activity

The results reported above suggested that TMH could
have other functions in addition to anchor the enzyme
to the ER. To explore this possibility, C22DESA2-27-
GFP was transiently expressed in N. benthamiana leaves
to evaluate its enzyme activity. C22DES-GFP was
expressed in parallel as a positive control. The expres-
sion of both proteins was determined by immunoblot
analysis using anti-GFP antibodies (Fig. 6a). As expected,
the samples expressing C22DES-GFP showed an
increase in the total stigmasterol content (Fig. 6b).
However, in the case of C22DESA2-27-GEFP, the stig-
masterol content was similar to that found in the leaves
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agroinfiltrated with the empty expression vector (Fig. 6b),
thus indicating that TMH is necessary for enzyme activity.

The N-terminal region of C22DES from different plant
species share features that may be relevant for enzyme
activity

The sequence alignment of C22DES from different plant
species showed that both the length and the sequence of
the TMH was poorly conserved (Fig. 7). However, a
careful inspection of these sequences revealed the pres-
ence of several common features shared by all plant
C22DES proteins. One of them was the high number of
threonine and serine residues in the N-terminal half of
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Fig. 6 Test of C22DESA2-27 enzymatic activity in vivo (a) Cropped image from immunoblot analysis of C22DES-GFP (=87.24 kDa) and
C22DESA2-27-GFP (=84.22 kDa) of agroinfiltrated N. benthamiana leaves. Full-length blot is presented in Additional file 8: Fig. S6. b Stigmasterol
levels in total sterol fractions of N. benthamiana leaves expressing C22DES-GFP and C22DESA2-27-GFP. Values are mean values + SD of three
technical replicates (n = 3). Lowercase letters indicate significant differences among mean values relative to those in leaf samples expressing the
empty vector (one-way ANOVA with Dunnett's multiple comparisons test)
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carota; Cyca, Cynara cardunculus; Vivi, Vitis vinifera; Eugr, Eucalyptus grandis

TMH MCR1
Soly MAS TWGLLSPW I gPY Faty ETLVFEFLGNVIFLVTNE 58
Klni MVEYLMEVEE---ALLDAQLORMOAFVEAL 60
Semo 55
Pisy M HD———;EII;II;LGF 5w 67
Sppo MAf|----AAAENATI VG GLFLGEAVL-- 75
Orsa MAAVVDFLDLRAAA-~ 60
Deca MALWQL 57
Phda MDGDJiTRRAL 60
Anco MK LMEGCWE§-VGLEG 72
Amtr MDLALYA--YfiL-— 53
Bevu  MNBKFOHEAHFFELFKIELOEKLNEHE T HEHLKELFAAMKLELEE TWVALKLAA- {8 101
Kafe M B 59
Potr ML LLEC 62
Cicl MDYY 60
Gora MVAC 58
Arth ! E 58
Frve MN. E 58
Ergu E 59
Cusa 1 58
Glma MKALL E 65
Paso E 60
Jure E 59
Nenu E 58
Daca E 59
Cyca E 58
Vivi LIALLV! 61
Eugr ILLAFL. 59

Fig. 7 Multiple sequence alignment of the N-terminal region of plant C22DES. The sequence alignment of the N-terminal region of C22DES from
the 27 plant species listed in Additional file 2: Table S1 is shown. Amino acid residues are numbered on the right. Asterisks denote residues
conserved in all sequences. Colons indicate conservation between amino acid groups of strongly similar properties whereas periods indicate
conservation between amino acid groups of weakly similar properties. Hyphens indicate gaps introduced to optimize the alignment. The tomato
TMH sequence is highlighted in blue; prolines (P) are shown in red, and serine (S) and threonine (T) residues are shown in magenta. The CRAC1
motif (including the conserved Q27 and Y30 residues) and the MCR1 sequence are also shown. The branched-chain amino-acids [leucine (L),
valine (V) and isoleucine (I)] in CRACT are shown in green, tyrosine (Y) in cyan and the dibasic residues [arginine (R) and lysine (K)] in yellow. Soly,
Solanum lycopersicum; Kini, Klebsormidium nitens; Semo, Selaginella moellendorffii; Pisy, Pinus sylvestris; Sppo, Spirodela polyrhiza; Orsa, Oryza sativa;
Deca, Dendrobium catenatum; Phda, Phoenix dactylifera; Anco, Ananas comosus; Amtr, Amborella trichopoda; Bevu, Beta vulgaris; Kafe, Kalanchoe
fedtschenkoi; Potr, Populus trichocarpa; Cicl, Citrus clementina; Gora, Gossypium raimondii; Arth, Arabidopsis thaliana; Frve, Fragaria vesca; Ergu,
Erythranthe guttata; Cusa, Cucumis sativus; GIma, Glycine max; Paso, Papaver somniferum;, Jure, Juglans regia; Nenu, Nelumbo nucifera; Daca, Daucus

.

THM (Fig. 7). This may be relevant since some studies
have described the role of hydroxylated residues in pro-
tein transmembrane domains to provide substrate speci-
ficity or correct associations with other membrane
components through interactions with the hydroxyl
group of their polar side chains [39, 40]. Another
common feature was the presence of one or more pro-
line residues in the N-terminal half of TMH (Fig. 7).
Since proline residues induce a turn of about 30 degrees
in a-helices, the TMH sequence of most plant C22DES
may have one or more turns in their N-terminal half.
The alignment shown in Fig. 7 also showed the con-
servation of a glutamine and a tyrosine residue (corre-
sponding to Q27 and Y30 in the tomato sequence) and
the presence of a short stretch of positively charged resi-
dues between TMH and MCRI1. Interestingly, the con-
served tyrosine residue and the positively charged
residues were identified as elements of a cholesterol rec-
ognition/interaction amino acid (CRAC) motif defined
by the consensus —L/V-X1-5-Y-X1-5-R/K [41] (Fig. 7).
CRAC motifs are usually found in transmembrane heli-
ces of membrane proteins. This putative CRAC motif
identified in the N-terminal region of C22DES (hereafter

referred to as CRAC1) also includes the conserved glu-
tamine residue indicated above.

The globular domain of plant C22DES contains
cholesterol recognition/interaction amino acid consensus
motifs

The multiple alignment of plant C22DES (Additional file 2:
Table S1) revealed the presence of other conserved choles-
terol recognition/interaction amino acid consensus motifs
in the globular domain. In addition to the already
described CRAC motifs, the globular domain also contains
the so called CARC motifs, which correspond to a specu-
lar sequence of the CRAC motifs and are defined by the
consensus K/R-X1-5-Y/F-X1-5-L/V). CARC motifs may
also bind cholesterol although in opposite orientation
[42]. Two CRAC motifs (CRAC2 and CRAC4), three
CARC motifs (CARC1, CARC2 and CARC3) and one in
which a CRAC motif and a CARC motif overlap (CRAC3/
CARC4) were found to be conserved in the globular
domain of plant C22DES (Additional file 3: Fig. S2). The
identification of such a large number of putative
cholesterol-interaction motifs was surprising and led to
hypothesize that, at least in some cases, it could merely
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reflect the laxity of these consensus motifs. Since the
functional CRAC and CARC motifs reported in the
globular domain of membrane proteins are found in
a-helices [43, 44] it is likely that only those motifs lo-
cated in predicted a-helices (CARC2, CARC3, CRAC2
and CRAC3/CARC4) (Additional file 4: Fig. S3) might
have a functional role in C22DES. Among them,
CARC2, CARC3, and CRAC3/CARC4 could be of special
interest as they are present in amphipathic a-helices and
located near the catalytic site in the upper part of the
globular domain (Additional file 4: Fig. S3).

Discussion

The results obtained in this work demonstrate that to-
mato C22DES is an ER-resident protein. The 3D model-
ing of tomato C22DES using the crystal structure of the
phylogenetically related lanosterol 14a-demethylase
(CYP51), an enzyme also involved in sterol metabolism
thought to be one of the most ancient and conserved
P450s across the kingdoms, predicted the presence of an
N-terminal hydrophobic transmembrane domain and
two short sequences (MCR1 and MCR2) located in the
globular domain which also interact with the ER mem-
brane (Fig. 3). Subcellular localization studies using
C22DES derivatives fused to GFP indicated that TMH is
sufficient for the targeting and retention of C22DES in
the ER (Fig. 4 and 5d). These studies also revealed that
the globular domain can interact and be retained in the
ER membrane in the absence of TMH (Fig. 5). The
sequence conservation of MCR1 and MCR2 among
plant C22DES (Figs. 3c and d) supports a role for these
sequences in the interaction with the ER membrane.

The mechanisms underlying the interaction and reten-
tion of the globular domain of C22DES in the ER remain
to be characterized. However, it is likely that they could
involve the hydrophobic interaction of MCR1 and
MCR2 with the ER membrane and/or its interaction
with other ER resident proteins such as NADPH-cyto-
chrome P450 reductase, which is required for the func-
tion of CYPs [27, 45]. The interaction between some
CYP proteins to form heterodimers, as well as between
CYPs and other proteins such as cytochrome b5 and
UDP-glucuronosyltransferase (UGT)1A has also been
reported [46-50].

The observation that the globular domain of tomato
C22DES was enzymatically inactive despite behaving as
an integral membrane protein (Fig. 6) revealed that
TMH was also required for enzyme activity. This result
was somehow unexpected considering the recent work
of Gnanasekaran et al. (2015) showing that the N-
terminal region of CYP720B4, a plant cytochrome P450
involved in isopimeric acid biosynthesis, was not essen-
tial for the activity of this enzyme when expressed in N.
benthamiana leaves. However, the functional role of the
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N-terminal transmembrane domain of CYPs remains a
controversial issue. Thus, while some recombinant CYPs
lacking the N-terminal anchor region have been
reported to be active in vitro, no activity could be
detected in in vivo assays [34, 51, 52]. The differential
behavior of the N-terminal region of CYPs may be
related, at least in part, with the nature and subcellular
availability of their substrates. This would explain why
some CYPs show activity under in vitro test conditions
in which the substrate is fully available, but not under
in vivo assay conditions where the availability of sub-
strate may be a limiting factor. Furthermore, it has been
proposed that the N-terminal membrane domain of
some CYPs participates in the correct positioning of the
globular domain with respect to the membrane during
catalysis. Thus, it has been reported that the transient
tilting of the globular domain is an essential requirement
to allow the interaction of CYPs with their substrates
when located within the hydrophobic core of the ER
membrane [53, 54]. In the particular case of C22DES, it
can be speculated that it could not interact with its sub-
strate (B-sitosterol) unless TMH provides the right
anchoring of the globular domain to allow its tilting
within the ER membrane during catalysis.

Despite the essential role of TMH in tomato C22DES
activity, it was surprising to find that both the length
and the amino acid sequence of the N-terminal region
of plant C22DES was poorly conserved (Fig. 7). How-
ever, a detailed inspection of these sequences revealed
two conserved features that could be relevant for
enzyme activity: i) the presence of a cholesterol recogni-
tion/interaction amino-acid consensus (CRAC) motif,
and ii) an enrichment of serine and threonine residues
in the N-terminal half of TMH. Cholesterol-binding
domains have been the focus of many studies involving
computational methods to explore the transmembrane
regions of animal proteins for which there is good evi-
dence of their interaction with cholesterol [41, 42]. The
first motif to be identified was termed cholesterol recog-
nition/interaction amino-acid consensus (CRAC) and
fulfills the consensus (L/V)-X;_5-(Y)-X;_5-(R/K), (where
X is any amino acid) [41, 42, 55]. Another cholesterol-
binding motif named CARC corresponds to the mirror
version of the CRAC motif with the consensus sequence
(K/R)-X;_5-(Y/F)-X;_5-(L/V) [42, 55]. Despite the CRAC
motif was initially identified and characterized in animal
proteins [55-58], its cholesterol-binding function has
also been demonstrated in plants [59]. Interestingly, a
CRAC motif able to interact with [-sitosterol has
recently been described in the type 1 cholecystokinin
receptor [60]. Thus, it is likely the CRAC1 motif present
in the N-terminal region of plant C22DES (CRAC1) may
contribute to the interaction of the enzyme with the p-
sitosterol present in the ER membrane. Another feature
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reported in cholesterol-binding regions is the presence
of serine and threonine residues. Furthermore, the struc-
tural analysis of several cholesterol-binding proteins has
led to propose that the hydrophilic side-chain of these
amino acids may interact with the C3-hydroxyl group of
the cholesterol molecule [61]. Thus, it is likely that the
serine and threonine residues present in the N-terminal
half of TMH could enhance the interaction of C22DES
with B-sitosterol in the ER, facilitating in this way its
interaction with the CRAC1 motif.

The localization of C22DES in the ER was not unex-
pected considering that other enzymes involved in sterol
biosynthesis, such as SMT1, CPI1, HYD1, and DWEF/
DIM [5, 62—-64] as well as cytochrome P450 reductase,
the physiological redox partner of cytochrome P450s,
also localize in this cellular compartment [65]. However,
the localization of C22DES in the ER raises the question
about how this enzyme can act on the major cellular
pool of B-sitosterol present in the PM. It is likely that
this process may involve the capacity of the ER to phys-
ically interact with the PM at structures known as ER-
PM contact sites in which both membranes are in close
contact [66—68]. The possibility that enzymes located in
one membrane may act on substrates present in a differ-
ent cell membrane, the so-called in trans activity, is not
unprecedented [69-72]. Interestingly, specific ER-PM
contact sites involved in the regulation of lipid-
homeostasis, including phospholipids and sterols, have
recently been reported [73]. Furthermore, enzymes in-
volved in lipid biosynthesis have been localized at ER-
PM contact sites and shown to contribute to their for-
mation [72, 74]. However, and to the best of our know-
ledge, the involvement of ER-PM contact sites in sterol
or lipid homeostasis has not yet been reported in plants,
although it has been suggested that the PM-localized to-
mato Acyl-CoA:sterol acyltransferase (SIASAT1) may
act in trans on its substrate cycloartenol in the ER lipid
bilayer at ER-PM contact sites to produce cycloartenyl
esters [75]. The existence of several conserved CRAC/
CARC motifs in the globular domain of plant C22DES
suggests that they could have a role in the interaction of
the enzyme with the [B-sitosterol present in the PM. In
this respect, the localization of CARC2, CARC3 and
CRAC3/CARC4 in amphypathic a-helices may be rele-
vant considering that this type of structures has been de-
scribed to serve not only as membrane interaction
domains but also as lipid binding sites [76]. The study of
the contribution of these CARC and CRAC motifs in the
activity of C22DES on the [-sitosterol present in the PM
represents an interesting issue in further studies dealing
with the functional characterization of this enzyme and
the regulation of plant sterol metabolism.

Cellular and metabolic engineering approaches aimed
at modifying stigmasterol levels in plants represent a
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very challenging topic in the field of plant biology and
biotechnology [11, 77]. In this sense, the progress in this
field should certainly benefit from the new advances in
the characterization of C22DES at the genetic, cellular
and biochemical levels. Although the structural and
functional studies carried out in the present work repre-
sent a significant contribution towards this end, we be-
lieve that future research in this area should pay special
attention to better understand the cellular and molecular
mechanisms involved in the regulation of C22DES activ-
ity considering the different pools of -sitosterol present
in the plant cell endomembrane system.

Conclusion

Tomato C22DES is an integral ER-membrane protein
having a single transmembrane a-helix at the N-
terminal end (TMH). Two short sequences able to inter-
act with the ER membrane (MCR1 and MCR2) have also
been predicted in the globular domain. TMH is suffi-
cient for the targeting and retention of the enzyme in
the ER-membrane. However, the globular domain can
also interact and be retained in the ER-membrane in the
absence of TMH, which is required for C22DES activity
in vivo. The TMH region contains a highly conserved
cholesterol recognition/interaction amino-acid consen-
sus (CRAC) motif and is enriched in threonine and
serine residues. These features may be relevant for the
recognition and uptake of the [B-sitosterol present in the
ER membrane to the catalytic site of the enzyme. Over-
all, the results presented here suggest the existence of a
complex pattern of interactions of C22DES with the ER-
membrane which are essential for proper enzyme func-
tion. The molecular mechanisms underlying the inter-
action of C22DES with the major cellular pool of B-
sitosterol present in the PM remain unknown and de-
serve further studies.

Methods

Plant material

Nicotiana benthamiana plants (obtained from the Plant
Growth Service of the Center for Research in Agricul-
tural Genomics, Barcelona) were grown under standard
greenhouse conditions (14 h light at 26 +1°C and 10h
dark at 21+1°C) in individual pots of 12cm of
diameter.

Cloning and plasmid constructions

All the protein-coding sequences lacking the stop codon
used for in-frame fusions of tomato C22DES with the
GFP and RFP were amplified by PCR using 35S:C22DES
plasmid as a template, which was previously obtained in
the laboratory and contained the open reading frame
coding for the C22DES (GenBank: NM_001247585). All
the PCR reactions were performed using high fidelity
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AccuPrime™ Taq DNA polymerase (Invitrogen) and spe-
cific primer pairs (Additional file 5: Table S2). Amplifi-
cation products were purified and cloned into
pDONR207 donor vector using Gateway® technology
(Invitrogen) and the resulting pENTRY plasmids trans-
formed into chemically competent ToplO E. coli cells,
which were used for all cloning steps. The cDNA se-
quences in the resulting pENTRY plasmids were se-
quenced to confirm the absence of mutations derived
from the amplification process. The verified sequences
were sub-cloned into the binary vectors pEarleyGate103
[78] and pGWB454 [79] using Gateway® technology to
respectively generate GFP and RFP fusions at the C-
terminus under the control of the CaMV35S promoter.
The obtained constructs were confirmed by restriction
mapping and DNA sequence analysis.

Agroinfiltration of N. benthamiana leaves

Subcellular localization assays were performed by ex-
pression of C22DES fusions with GFP or RFP proteins
in leaves of 3—5-week-old N. benthamiana plants grown
under standard greenhouse conditions (14h light at
26 +1°C and 10 h dark at 21 + 1 °C) in individual pots of
12 cm diameter. Leaves were infiltrated with suspensions
of the different GV3101 A. tumefaciens strains har-
boring the corresponding recombinant expression
plasmids [80, 81], which were prepared as follows. A
single positive colony per construct was inoculated
into 3mL of YEB medium supplemented with the
right antibiotics (rifampicin 50 pg/ml, gentamycin
25 pg/ml and the plasmid selective antibiotic) and in-
cubated overnight at 28°C and at 250 rpm in a con-
tinuous rotary shaker. A 1:100 dilution of the
overnight culture was inoculated into 25 mL of YEB
medium containing the same antibiotics and incu-
bated under the same conditions. The culture was
centrifuged at 5.000rpm for 15min at 4°C and the
bacterial pellets resuspended in infiltration buffer (10
mM MES, pH5.6, 10 mM MgSO, and 150 pM aceto-
syringone) to reach a final ODggg of 1. Cultures of
the transformed A. tumefaciens strains were separately
mixed with a culture of A. tumefaciens strain express-
ing HC-Pro [82] in a 1:1 ratio and infiltrated in the
abaxial part of N. benthamiana leaves using a syringe.
For co-expression analysis, the strains harboring the
different expression plasmids were mixed in equal
proportions and also with HC-Pro (the mix never
reaching an ODyggo higher than 1). Agroinfiltrated
plants were let to grow for 3-4 days under the green-
house conditions indicated above.

Confocal microscopy
Agroinfiltrated leaves were cut into small pieces and the
abaxial epidermis analyzed with an Olympus FV 1000
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confocal laser-scanning microscope using the 60x water
immersion NA: 1.20 objective. The emission windows
for fluorescence visualization and the conditions used
for image acquisition have been described in Ramirez-
Estrada et al. [83]. Fluorescence recovery after photo-
bleaching (FRAP) analysis were also performed as
described in Ramirez-Estrada et al. [83]

Sterol analysis

N. benthamiana leaves from three independently agroin-
filtrated plants were frozen in liquid nitrogen, ground
with a mortar and pestle and lyophilized. Samples (30
mg) were mixed with internal standards [2.5 pug of cho-
lestanol, 5ug of palmitoyl-cholestanol, 5pug of
cholestanyl-p-D-glucoside and 5pg of palmitoyl-p-D-
glucosyl-cholestanol in chloroform-methanol (2:1)] and
extracted with chloroform-methanol (2:1) as indicated in
Ramirez-Estrada et al. [83]. Free sterol, steryl ester, steryl
glucoside and acyl steryl glcusoside fractions were sepa-
rated by TLC and their sterol composition determined
by GC-MS as described in Lara et al. (2018) [75]. Total
stigmaterol levels were calculated from those present in
the four sterol fractions extracted from each sample.

Immunoblot analysis

Soluble (S) and membrane (M) protein fractions from N.
benthamiana agroinfiltrated leaves were obtained from
approximately 10g of tissue samples as previously
reported [83]. Protein concentration was determined as
described in Bradford et al, 1976 [84]. Equivalent pro-
tein amounts of the T fractions (samples before ultra-
centrifugation) (around 20pg), M fractions (around
5pg) and S fractions (around 20 pg) from each leaf sam-
ple were fractionated by 10% polyacrylamide-SDS gel
electrophoresis TGX™ FastCast™ Gel (Bio-Rad). After
SDS-PAGE, the proteins were transferred to a 0.45 pm
nitrocellulose membrane (Amersham, GE Healthcare)
using the Trans-Blot® Turbo™ Transfer system (Bio-Rad).
Immunoblots using a rabbit anti-GFP antibody (Invitro-
gen) were performed as described in Ramirez-Estrada
et al. [83].

In silico analysis of protein structure

The 3D structure of the C22DES (NP_001234514.1) was
modeled using Phyre2 fold recognition server [85]
(http://www.sbg.bio.ic.ac.uk/phyre2). The tertiary struc-
ture was predicted using the Lanosterol 1l4a-
Demethylase (Ergllp) of Saccharomyces cerevisiae [Pro-
tein Data Bank (PDB) ID: c4lxjA] as a template with
100% confidence. For membrane-protein interactions,
the predicted 3D models were orientated using PPM
web server from the Orientations of Proteins in Mem-
branes (OPM) database [31] (https://opm.phar.umich.
edu/ppm_server).
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Protein sequence analysis
S. lycopersicum C22DES protein sequence was retrieved
from the SolGenomics Network website (http://
solgenomics.net/) and used as query to search for other
plant species homologs using the BLAST tool on the
Phytozome (https://phytozome.jgi.doe.gov), GenomeNet
(https://www.genome.jp/), NCBI (https://www.ncbi.nlm.
nih.gov/), PLAZA (https://bioinformatics.psb.ugent.be/
plaza/) and the EnsemblPlants (http://plants.ensembl.
org) websites. The accession numbers of the used homo-
logs are listed in Additional file 2: Table S1. Protein
alignments were performed using ClustalX v 2.0 [86]
with default settings and the GeneDoc software was used
for alignment visualizations and manual edition. The cri-
teria for sequence inclusion on the final alignment was
choosing one C22DES from each plant family, preferably
those in which C22DES was a single-copy gene. For the
plant species with more than one C22DES paralog, the
selection of just one of them was based on the highest
similarity of each paralog with those C22DES from the
single-copy species.

For sequence logo generation, WebLogo web server
was used [87] (https://weblogo.berkeley.edu/).
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