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Abstract: Helicobacter pylori is a common pathogen associated with several severe digestive diseases.
Although multiple virulence factors have been described, it is still unclear the role of virulence
factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help
to find genetic markers of virulence strains. In this work, we analyzed three complete genomes
from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma,
using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-
T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences
among the three genomes were mainly related to outer membrane proteins, methylases, restriction
modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one
presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared
genes, higher number of unique genes, and more polymorphisms were found in this genome. With
all the accumulated information, no significant differences were found among the isolates regarding
virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be
linked to the pathogenicity of H. pylori.

Keywords: Helicobacter pylori; genomic comparison; virulence factors; gastric adenocarcinoma

1. Introduction

Helicobacter pylori is a Gram-negative bacterium that persistently infects the human
stomach inducing chronic inflammation. The pathogenicity of H. pylori ranges from asymp-
tomatic colonization to bacterially mediated oncogenesis [1]. This bacterium can cause
several gastrointestinal diseases, such as gastritis, peptic ulcer disease, gastric adenocarci-
noma, and mucosa-associated lymphoid tissue (MALT) lymphoma.

The genomes of H. pylori are highly variable, with considerable allelic diversity. This
genomic plasticity is thought to aid in its adaptation, which is essential for its survival
in different human populations [2]. It has been reported that isolates associated with
different geographic areas, different diseases and different individuals might have variable
genomic features [3–5]. Several genes, such as vacA, cagA, and iceA, among others, have
been identified as markers of enhanced pathogenicity of H. pylori [6].

All H. pylori strains carry the vacuolating cytotoxin gene (vacA). This gene contains
three highly variable polymorphic regions, which are the signal sequence region (s1, s2),
the intermediate region (i1, i2, i3) and the mid region (m1, m2). Cytotoxicity is related
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to variations in the signal and mid regions. Strains of H. pylori with the s1/m1 genotype
are more frequently associated with severe disease symptoms than strains carrying other
combinations of these alleles [7]. Specifically, s region variations are associated with the
vacuolating activity of the protein VacA, whereas variations in the m region determine the
cell specificity of vaculation, by affecting the binding of the toxin to the host cells [8]. Toxin
production is highest in s1/m1 strains, moderate in s1/m2 strains, and scarce or null in s2/m2
strains [9]. The i1 variants of VacA have been shown to have a stronger vacuolating activity
than toxins containing the i2 regions [10].

The cagA gene is a marker for the presence of the cag pathogenicity island (cag-PAI), of
approximately 40 kb, whose presence is associated with more severe clinical outcomes. A
type IV secretion system translocates CagA protein into gastric epithelial cells, where it is
phosphorylated. When this modification occurs, CagA affects various cellular processes
and signal transduction pathways, such as disruption of tight and adherent junctions
that lead to proinflammatory and mitogenic responses–effects [6]. Studies on H. pylori
heterogeneity have proved that the strongest virulence factors were among the genes
within the cag-PAI.

The ‘induced by contact with epithelium A’ (iceA) gene is another virulence factor of
relevance [11]. It has two main allelic variants, iceA1 and iceA2. Allele iceA1 shows sequence
homology with a gene from Neisseria lactamica, nlaIIIR, which encodes a CTAG-specific
restriction endonuclease. Furthermore, it has been associated with peptic ulcer disease. On
the other hand, iceA2 has been associated with gastritis, although homology to other genes
has not been described and the function of its product remains unclear [12].

Flagella, urease, lipopolysaccharide (LPS) and peptidoglycan are other critical fac-
tors related to the pathogenicity of H. pylori. Flagella confer motility to the cell and are
considered an absolutely essential virulence factor for colonization of the gastric mucosa.
Although the presence of the flagellum alone has been shown to be insufficient for colo-
nization, non-mobile mutants lacking the flagellum are unable to establish an infection in
animal models [13]. Urease enzyme transforms urea into ammonium and bicarbonate to
counteract the acidic environment of the stomach, and it plays an important role in the
pathogenesis of H. pylori, being correlated with its adhesion and its immunogenicity [13].
Regarding the LPS, its structural characteristics provide the cell with two mechanisms of
persistence in its niche. On the one hand, Lewis antigens present in the O-antigen mimic the
glycan structures of human cells, thus facilitating the immune escape. On the other hand,
the lipid A unique structure provides cell resistance to host cationic antimicrobial peptides
(CAMPs) [14,15]. Specifically for H. pylori, it has been proposed that the coordinated
action of different proteins causes a crosslinking relaxation of the peptidoglycan, which
confers its characteristic helical curvature, necessary for reliable bacterial colonization of
the stomach [13,15].

Adhesins, bacterial proteins with host cell adhesive properties, are also considered
as virulence factors, since they mediate in almost all bacterial pathogenesis [16]. H. pylori
expresses multiple proteins that act as epithelial cell adhesins, such as BabA, OipA or SabA.
One of the most studied adhesins is the protein encoded by babA2, BabA, which binds
to Lewis b blood-group antigen (Leb) found on gastric epithelial cells. Not all H. pylori
strains express BabA. In those expressing BabA, a correlation with increased risk for gastric
cancer has been found [17]. Another H. pylori adhesin is OipA, whose expression induces
inflammation and cause IL-8 cytokine secretion in host cells. However, the host receptor
for OipA has not been yet identified [18]. On the other hand, SabA binds to the sialylated
glycan Lex. The capability of many H. pylori strains to adhere to sialylated glycoconjugates
expressed during chronic inflammation might, therefore, strengthen virulence and the
extraordinary chronicity of H. pylori infection [19].

Further virulence factors identified in H. pylori are outer membrane proteins (OMPs),
phospholipids, glycolipids, a γ-glutamyl transpeptidase (GGT) associated with coloniza-
tion and cell apoptosis, the duodenal ulcer-promoting gene A (dupA), and other adhesins
(hpA, napA, etc.) [10,20,21].
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The high number of these factors and allelic variation of the involved genes generates
a highly complex scenario and reveals the difficulties in testing the contribution of each
individual factor. The association of gastric cancer with the H. pylori infection has led to
its systematic eradication. However, the progression from infection to the development of
cancer continues to be unclear, promoting great interest in clarifying this issue. The aim
of this study was to investigate possible relevant differences among genomes of strains
isolated from tumoral gastric tissue and from non-tumoral tissue. Both samples were
obtained from the same patient who suffered from gastric cancer.

2. Results
2.1. B508A-S1, B508A-T2A, and B508A-T4 Genome Comparison

Basic characteristics of these genomes are shown in Table 1. The average genomic GC
content for each strain was 39%, perfectly fitting with the standards of the species, which
range from 38% to 39% [22]. The genome length of B508A-S1, B508A-T2A and B508A-T4
was 1,580,553 bp, 1,578,500 bp and 1,585,256 bp, respectively. The total number of genes
was 1577 for B508A-S1 and B508A-T2A, and 1581 for B508A-T4. The genomes of B508A-S1,
B508A-T2A and B508A-T4 contained a total of 1445, 1442 and 1444 proteins or coding
genes, respectively. On average, 624-fold genome coverage of sequence data was used
to create draft genome assemblies using the a5 assembler. The number of scaffolds per
genome in each assembly ranged from 25 to 45 (average: 35.6 scaffolds) and a median
N50 of 143,796 bp. Using Roary, a total of 1456 clusters of orthologous sequences were
identified as core genes (>95% of the strains) and 86 were just present in a subset of isolates.
The whole gene set, defined as the pangenome, included 1542 genes.

Table 1. Main features of the analysed H. pylori genomes.

Genome Characteristics B508A-S1 B508A-T2A B508A-T4

GC% 39.0 39.0 38.9
Genome Size (bp) 1,586,749 1,584,784 1,585,256

N50 200,200 106,266 124,923
Genes (total) 1577 1577 1581

Genes (unique) 2 13 3
CDS (total) 1535 1535 1536

CDS (coding) 1445 1442 1444
rRNAs (5S, 16S, 23S) 1, 1, 1 1, 1, 1 2, 1 1, 1

tRNAs 36 36 36
ncRNAs 3 3 3

Pseudo Genes 90 93 92
vacA (PCR) s1-s2/m1-m2 s1-s2/m1-m2 s1-s2/m1-m2

vacA (genome) s2/m2/i2 s1/m2/i2 s2/m2/i2
cagA - - -

GenBank Accession QDJN00000000 QDJM00000000 QDJL00000000
1 There is one complete sequence (1500 bp) and two partial sequences (circa. 150 bp).

The average nucleotide identity (ANI) values were higher than 99.50% in all compar-
isons, as expected for strains of the same species. The most similar strains, with an ANI
value of 99.94%, were B508A-S1 and B508A-T4. Regarding the B508A-T2A isolate, it had
an ANI value of 99.58% with the two other strains.

Comparison of the three genomes using OrthoVenn2 showed 1435 clusters of orthol-
ogous genes, where 1394 were shared among all strains, two between B508A-T2A and
B508A-T4, 21 between B508A-T4 and B508A-S1, and 12 between B508A-S1 and B508A-T2A
(Figure 1). The differences among them were mainly in outer membrane proteins, methy-
lases and flagellar biosynthesis proteins (Table S1). Regarding unique clusters, strains
B508A-S1 and B508A-T2A had just one, while strain B508A-T4 had four. Each unique
cluster had a double copy of the protein. The four unique clusters of B508A-T4 consisted of
two Hop family outer membrane proteins, one transposase and one hypothetical protein.
The unique cluster of B508A-T2A corresponded to an outer membrane beta-barrel protein.
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Additionally, the unique cluster of B508A-S1 was found to be a restriction endonuclease.
In total, B508A-S1, B508A-T2A and B508A-T4 showed 1428, 1409 and 1421 gene clusters,
respectively (Figure 1).
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Figure 1. Venn diagram of the three genomes obtained with orthoVenn showing the number of
clusters of orthologous genes.

Focusing on the analysis of the unique genes using Roary, the genomes of B508A-T2A,
B508A-T4 and B508A-S1 had 38, 12 and four unique genes, respectively, most of them
codifying hypothetical proteins with unknown function. A graphical representation of
the distribution of unique genes from the comparison of the three genomes is shown in
Figure 2. The complete annotation of unique genes with known function can be found in
the Table S2.
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Nucleotide polymorphisms and indels between genomes were obtained using Snippy.
On the one hand, few variants, 169 in total, were found between B508A-S1 and B508A-T4.
On the other hand, the number of variants between B508A-T2A and the other genomes was
higher, specifically 3344 with B508A-S1 and 3316 with B508A-T4 (Table 2). This fact reflects
the special distinction of the strain B508A-T2A with the other strains. Most of the variability
was found in coding genes with unknown function (data not shown). Regarding the coding
genes with known function, the greatest variability was found in flagellar proteins, proteins
of LPS biosynthesis and OMPs.
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Table 2. Nucleotide polymorphisms between genomes.

Type Number of Polymorphisms

B508A-S1 Versus -T4 B508A-S1 Versus -T2 B508A-T2 Versus -T4

SNP 1 113 2454 2418
MNP 2 10 198 201

Complex 29 618 619
Deletions 12 35 38
Insertions 5 39 40

Total 169 3344 3316
1 Single nucleotide polymorphism, 2 Multi-nucleotide polymorphism.

The circular representation of genomes obtained with the comparative genomic tool
CG-View (Circular Genome Viewer) is available in Figure S1. They are markedly similar
among them, without visual difference being detected on this representation. It would be
necessary to significantly zoom-in the image in order to perceive the minor differences.

The functional distribution of the genomes was obtained with the Rapid Annota-
tion Subsystem Technology (RAST) server (Figure S2). It showed the same subsystem
distribution statistics for all the strains, with few differences in the categories of DNA
and protein metabolism, motility, and chemotaxis. Remarkably, in genome B508A-T2A, a
unique protein was found, which was classified as a type I restriction modification system,
specifically subunit S (EC 3.1.21.3), which could be of interest because it is present on the
strain with more virulence determinants, as described in next section.

2.2. Virulence Factors and Antimicrobial Resistances

The analysis of the results from Diamond shows that all three strains contain all
the urease genes, the flagella forming genes and most of the virulence factors analyzed,
including vacA and iceA (Table 3). By contrast, they are babA/hopS and sabB/hopO negative.
There are some differences in the number of copies in the babB/hopT adherence gene and
in the genes involved in immune evasion (futA, futB and futC genes). All isolates have
the vacA i2/m2 genotype (Table 1). Furthermore, on the one hand, the strain B508A-T2A
has the s1 allele. On the other hand, the isolates B508A-S1 and B508A-T4 are vacA s2, as
evidenced by the size of the fragment within the primers (Figure S3). It should be noted that
conventional polymerase chain reactions (PCRs) could not discriminate between alleles.
None of the three isolates has the cagPAI nor any other genomic island (Table 1).

Possible CRISPR (clustered regularly interspaced short palindromic repeats) sequences
were sought using CRISPR-Finder. No confirmed sequence was found, only two ques-
tionable ones in each of the genomes. The sequences of the two spacers were identical
in all cases and located in the middle of a coding gene which was annotated as a toxin.
The locus tags for B508A-S1, B508A-T2A and B508A-T4 were DDP45_03600, DDP35_03380
and DDP36_03845, respectively. Furthermore, PILER-CR—tool for rapid identification and
classification of CRISPR repeats—could not find any putative CRISPR array.

No resistance genes were found using the database ResFinder. The sequences of
genes pbp1 (amoxicillin), 23S rRNA (clariythromicin), 16S rRNA (tetracycline), frxA, rdxA
(metronidazole) and gyrA (levofloxacin) were manually checked to confirm this statement
and, indeed, no mutation responsible for the resistance was found (Table 4).

2.3. H. pylori Genetic Population

In the phylogenetic tree obtained with MLST (multilocus sequence typing) analysis,
four of the actual populations can be observed. The most distant is hpAfrica2, due to its
ancestral evolution. Population hpAfrica1 is clearly separated from hpAfrica2 and the
other ones. The population hpEastAsia expands from within the hpEurope population,
showing the fact that East Asian H. pylori diverged from European lineages, as suggested
by Kawai et al. [23]. Finally, circled in this phylogenetic tree are the three strains of this
study, which lie within the hpEurope population (Figure 3).
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Table 3. Virulence factors analyzed with Diamond. Gene copy number is indicated.

Virulence Factors Related Genes B508A-S1 B508A-T2A B508A-T4

Urease 1 1 1 1
Flagella 2 1 1 1

Lipopolysaccharide
Lewis antigens

futA 1 2 1
futB 1 - 1
futC 2 2 1

Neutrophil-activating
protein

napA 1 1 1
oipA/hopH 1 1 1

Vacuolating cytotoxin vacA 1 1 1
Adherence-associated

lipoproteins
alpA/hopC 1 1 1
alpB/hopB 1 1 1

Blood group antigen
binding adhesins

babA/hopS - - -
babB/hopT 3 2 3

H. pylori adhesin A hpaA 1 1 1
HopZ hopZ 1 1 1
HorB horB 1 1 1

Sialic acid binding
proteins

sabA/hopP 1 1 1
sabB/hopO - - -

Duodenal ulcer
promoting dupA 1 1 1

Induced by contact
with epithelium A 3 iceA 1 1 1

1 Include all these genes: ureA, ureB, ureI, ureE, ureF, ureG, ureH, 2 Include all these genes: flaA, flaB, flaG, fliR, flgI, flgL, flgH, flaG, fliF, fliG,
fliH, flgG_1, flhA, flhF, fliA, fliM, fliY, fliN, fliP, fliD, fliS, flhB_1, fliL, motA, motB, flgE_1, flgD, flgE_2, flgK, flA, fliQ, fliI, flgA, fliE, flgC, flgB,
flhB_2, flgG_2, 3 Found with JGI IMG (https://img.jgi.doe.gov/ accessed on 10 April 2019).

Table 4. Nucleotides/amino acids found in the described mutational positions in resistance genes for each antibiotic.

Gene Mutational Position Susceptible Strains B508A-S1 B508A-T2 B508A-T4

pbp1

V374L V V V V
E406A E E E E
S414R S S S S
T593A T T T T
A599G A A A A
V601G V V V V

23S rRNA

A2143G A A A A
A2144G A A A A
T2183C T T T T
C2196T C C C C
A2224G A A A A

16S rRNA
A926T A A A A
G927T G G G G
A928C A A A A

frxA

A32V A A A A
A70T A A A A
F72S F F F F
G73S G G G G

A138V A A A A
A152V A A A A
A153V A A A A
C193S C C C C

rdxA

G3A G G G G
C46T C C C C

G238A G G G G
G352A G G G G

gyrA

D86N D D D D
N87K\I\Y N N N N

A88V A A A A
D91Y\G\N D D D D

https://img.jgi.doe.gov/
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3. Discussion

Even though hundreds of H. pylori genomes have been published, few studies focused
on different strains obtained from the same patient at a single point in time [24]. Recently,
we suggested that the predominant pattern of H. pylori infections in humans are events
of multiple infections, including a predominant strain and multiple minority H. pylori
strains [25].

This study focused directly on three strains, isolated from a patient suffering gastric
cancer. The aforementioned study showed, through amplicon sequencing of housekeeping
genes, that these three strains were a result of microevolution events by mutation of an
original strain infecting the gastric mucosa. Additionally, the interest on using these
strains lies in the finding that the strain B508A-T4 (isolated from tumoral tissue) was
found genetically closer to the strain B508A-S1 (from non-tumoral tissue) than to the strain
B508A-T2A (from the same tumoral tissue).

The ANI values of the B508 isolates were≥99.58%, being consistent with the definition
of species [26], and it is even more consistent considering they come from microevolution
events. As shown by Palau et al. [25,27], the strain B508A-T2A is the most distant among
them. Therefore, the aim of the study was to search within these three strains for genetic
markers that could be linked with the level of virulence, pathogenicity or the risk of
developing gastric cancer.

The strain B508A-T2A is the most divergent isolate, as seen by multiple factors. One
of them is the length of its genome, being the smallest of the three with a difference of 2053
bp with B508A-S1 and 6756 bp with B508A-T4, respectively (Table 1). It also has fewer
coding genes than the rest, indicating a gene loss. Any change in selection pressure might
contribute to a gene loss, which might be done in several ways: selection for a smaller
genome, some genes become actively deleterious, or some genes become less necessary [28].
Adoption of a pathogenic lifestyle can lead to recurrent changes in selection pressures, due
to the host adaptive immune responses [29,30]. Such changes have been observed to occur
even within the same strain during the course of infection [31]. Hence, the present results
are consistent with the events of microevolution.
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Unique genes obtained with Roary (Figure 2) show the relative abundance of the
unique genes found in the comparison among the three isolates. The strain B508A-T2A is
the one with more unique genes. It can clearly be seen that the area describing hypothetical
proteins is much bigger than the rest, showing there are many undiscovered functions.
Strain B508A-T4 showed a unique vacuolating cytotoxin autotransporter, although caution
must be taken when assigning its real function, because just a small percentage of these
proteins have been proved to be able to translocate proteins [32]. Consequently, further
studies have to be undertaken in this direction to understand the role of this protein.

As seen in our results, RAST and OrthoVenn analyses point at restriction modification
systems, which have been described to have a relevant role in the regulation of gene
expression and in modulating virulence [33]. These restriction modification systems are
important providers of defense against foreign DNA. Furthermore, in order to avoid
destroying its own DNA, methyl groups are added to the sequences by methyltransferases,
which also appear in our results.

Also important to mention is that the number of shared genes of strain B508-T2A with
any of the two other strains is lower than the number of shared genes between these two
other strains (Figure 1), thus, making strain B508-T2A a more differentiated strain.

After studying all the types of polymorphisms among the three strains, this work
continued with the focus on the differences between the most different strain, B508A-T2A,
and the other two. Specifically, nonsense polymorphisms were sought. Being B508A-
T2A the most differentiated strain and isolated from tumoral tissue, the search for these
differences serves to highlight possible signs of differentiations between virulent and none-
virulent strains. Even though only one strain is here considered, the current results provide
hints to narrow the search for possible candidates.

Changes in the expression of bacterial surface structures, such as OMPs, are anticipated
to facilitate adaption of the bacterium to the new human host [34]. A total of 21 non-
synonymous or missense single nucleotide polymorphisms (SNPs) were related to outer
membrane proteins. Specifically, on the hof family of adhesins, six were situated in the
hofB gene, two in the hofG gene and one in the hofH gene. The other 12 involved bamA,
an outer membrane protein assembly factor. Additionally, eight non-synonymous SNPs
were detected on the fliI gene and a single one in the flgG gene. These differences may
be of relevance since colonization is the basis of the inflammatory reaction induced by
H. pylori [35]. Consequently, the motility of H. pylori, and in particular the flagellum, is a
critical colonization determinant that affects the infection outcome.

The LPS of this organism plays a key role in its colonization and persistence in the
stomach. In addition, the LPS of H. pylori modulates pathogen-induced host inflammatory
responses. These responses may result in chronic inflammation within the gastrointestinal
tract. Very little is known about the LPS compositions of different strains of H. pylori
with varied degree of virulence in human [36]. Here, 27 missense SNPs in the same LPS
biosynthesis protein, a glycosyltransferase, were found in the strain B508A-T2A when
comparing it with the two other strains.

Different virulence factors have been described until now, related to persistent col-
onization of the gastric mucosa, toxin expression or immune evasion [10,37,38]. Some
of these pathogenicity factors have been associated with increased risk of gastric cancer:
cagA+ and vacA s1i1m1 genotypes and the protein expression of AlpA, OipA, BabA, and
SabA [39–41]. The three studied genomes are cagA, babA and sabB/hopO negative. This
is a surprising result for two main reasons. First, as mentioned above, these genes have
been clearly defined in the literature as gastric cancer markers and, second, the strains
B508A-T2A and B508A-T4 were isolated from tumoral tissue.

Strain B508A-T2A is the only presenting the genotype vacA s1, showing a specific
feature directly linked with pathogenicity, while the others are s2. On the other hand, the
three strains have the coding genes for the proteins AlpA, OipA and SabA and other genes
related to pathogenicity (Table 3).
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Although CRISPR-Cas systems are of vital importance in the immunological defense
of certain bacteria, as they confer resistance to foreign genetic elements, no cas genes could
be detected in this work, and neither CRISPR-like sequences could be defined. From the
bibliography, CRISPR-like loci have been identified in H. pylori, but no CRISPR-Cas system
has been found so far [42].

Regarding the study of antibiotic resistances, all three strains were defined as suscepti-
ble to the five antibiotics studied (amoxicillin, clarithromycin, levofloxacin, metronidazole
and tetracycline), as none of them contained any mutation in the sites responsible for the
resistances. H. pylori is nowadays on the high priority list of the World Health Organization
(WHO) for research into and the discovery of new antibiotics. Resistances have arisen in
the last years, leading to suboptimal eradication rates [43,44]. Here, however, these three
strains show no mutations linked with resistances. This could be explained by multiple
factors, such as the patient history of antibiotics intake.

Regarding the MLST analysis and its predicted phylogenetic tree (Figure 3), the three
isolates of study were from the group within the hpEurope population, so the European
origin of the patient is demonstrated.

4. Materials and Methods
4.1. H. pylori Strains and Genomic DNA Extraction and Sequencing

The present study focuses on the study of strains B508A-S1, B508A-T2A, and B508A-
T4. These were isolated from the stomach of a single patient with adenocarcinoma [27]. In
particular, strains B508A-T2A and B508A-T4 were obtained from the same cancerous tissue
and strain B508A-S1 from non-tumoral tissue.

The selection and culture of the strains is extensively described in Palau et al. [27].
Briefly, the strains were obtained from the H. pylori collection of the Digestive Diseases
Department of the Hospital Taulí (Sabadell, Barcelona, Catalonia, Spain). The strains
were recovered on Columbia agar with 5% sheep blood (bioMérieux) and subcultured
on Columbia blood agar or Brucella agar (BD Diagnostics, Franklin Lakes, NJ, USA)
supplemented with 10% fetal bovine serum (Invitrogen, Waltham, MA, USA) at 37 ◦C
under microaerophilic conditions for a week. Different colonies were isolated from antral
biopsies B508A-S and B508A-T that were taken from the same patient (B508), B508A-S
from normal tissue and B508A-T from gastric adenocarcinoma. Six colonies from each
sample were analyzed by multilocus sequence analyses (MLSA) of six housekeeping genes,
detecting a unique strain from B508A-S (B508A-S1 = -S2 = -S3 = -S4 = -S5 = -S6), and two
different strains from B508A-T, B508A-T2A (= -T2B = -T3 = -T5 = -T6) and B508A-T4.

Genomic DNAs from all three strains were extracted using the genomic DNA extrac-
tion kit (REAL, Durviz S.L., València, Spain) following the procedure explained by Palau
et al. [27]. Genome sequencing was performed using Illumina technology (San Diego,
CA, USA). The sequencing library preparation and sequencing of the whole genome was
done by the Centre for Genomic Regulation (CRG, Barcelona, Spain) using an Illumina
Hi-Seq Sequencing with 2 × 125 bp v4 chemistry. Following, a de novo assembly of
all the set of genomes was carried out using the tool a5-assembler [45]. The alignment
and rearrangement of the sequences was achieved using the software Mauve [46]. The
draft genome annotation was performed using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) [47].

4.2. Genomic Comparison and Characterization

Pan- and core-genome analyses for all strains were performed using Roary (https:
//github.com/sanger-pathogens/Roary) (accessed on 4 February 2020) [48].

In order to fully characterize the genomes, different analyses were carried out. Average
nucleotide identity (OrthoANIu algorithm) [49] was calculated using EzBioCloud’s ANI
calculator (www.ezbiocloud.net/tools/ani) (accessed on 4 February 2020). OrthoVenn2 [50]
was used for the comparison of orthologous gene clusters. Snippy [51] was used to find both
substitutions and insertions/deletions (indels). Later, snippy-core was used to combine

https://github.com/sanger-pathogens/Roary
https://github.com/sanger-pathogens/Roary
www.ezbiocloud.net/tools/ani
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the previous obtained snippy outputs into a core SNP alignment. Snippy and snippy-core
were run on the Galaxy platform [52] with the default parameters.

In order to visualize the results, CGView server [53] was used to obtain a circular
representation of the genomes. Additionally, the RAST and SEED [54] servers were used to
compare the subsystem distribution statistics among all strains.

4.3. Virulence and Antimicrobial Resistance Genes

With the aim of finding pathogenic genes, Diamond [55] was used as a search tool
against the Virulence-Factor database (VFDB). In addition, PCR was used to determine
H. pylori cagA status and to genotype the vacA gene (signal, intermediate and mid-region
polymorphisms), as described by Lario et al. [56]. PCR results were verified by looking for
the primers in the sequence of the whole genomes and calculating the size of the fragments
to determine the corresponding allele [7,9,57] (Figure S3). Furthermore, PILER-CR [58] and
CRISPRCasFinder [59] were used for CRISPR identification.

ResFinder [60] was used to identify acquired antimicrobial resistance genes in the total
sequenced isolates of bacteria. Sequences of genes involved in amoxicillin, clarithromycin,
tetracycline, metronidazole and levofloxacin resistances were also manually checked:
pbp1 [61–63], 23S rRNA [64–67], 16S rRNA [68,69], frxA [70], rdxA [71,72] and gyrA [73,74],
respectively.

4.4. H. pylori Genetic Population Assignment

For multilocus sequence typing (MLST) of the three genomes, seven housekeeping
genes (atpA, efp, mutY, ppa, trpC, ureI and yphC) were extracted using BLAST and the JGI-
database (https://img.jgi.doe.gov/) (accessed on 23 April 2019). A total of 243 representa-
tive sequences from different H. pylori populations were downloaded with public databases
PubMLST (https://pubmlst.org/helicobacter/) (accessed on 10 April 2019), and the mul-
tiple sequence alignment program MAFFT (https://mafft.cbrc.jp/alignment/server/)
(accessed on 23 April 2019) was used to align all the sequences and to predict a neighbor-
joining phylogenetic tree.

5. Conclusions

With all the accumulated information no significant differences were found between
the isolates regarding the virulence and the origin of the isolates. Still, considering that
B508A-S1 and B508A-T4 are more closely related and that they originate from non-tumoral
and tumoral tissue, respectively, it could be inferred that their characteristics/genes are
not a cause for developing a cancerous process. On the other hand, regarding B508A-T2,
being markedly distant from the other two and having been found in the tumoral tissue, it
can be hypothesised that some of its characteristics could be linked to the pathogenicity
of Helicobacter pylori. A further consideration to take into account is that even though two
strains were extracted from a cancerous tissue, they are all missing some relevant virulence
genes such as cagA, babA or sabB. Nonetheless, more exhaustive analyses are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/3/331/s1, Figure S1: circular comparative representation of the whole genomes using CGView,
Figure S2: pie charts representing Rapid Annotation Subsystem Technology (RAST) functional
subsystems in the B508A-S1 (a), B508A-T2A (b), and B508A-T4 (c) genomes, Figure S3: vacA genomic
sequences extracted from the whole genomes of strains B508A-S1, B508A-T2A and B508A-T4, Table S1:
shared clusters between strains found using OrthoVenn2, Table S2: Description of the unique genes
found with Roary.
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